Symmetry and super-symmetry distribution for partitions

Heesung Shin Jiang Zeng

Institut Camille Jordan
Université Claude Bernard Lyon-I, France

63th Séminaire Lotharingien de Combinatoire, Bertinoro, Italy

27-30 September 2009

Outline

(9) Introduction
(2) Main results
(3) Super-Symmetry

Outline

(2) Main results

(3) Super-Symmetry

Partitions

- A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ of n, write $\lambda \vdash n$, if

$$
\begin{gathered}
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{\ell}>0 \\
|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n .
\end{gathered}
$$

- $p(n)=$ the number of partitions of n.

Ferrers diagram

$(1,1,1,1)$
(2,1,1)
$(2,2)$
$(3,1)$
(4)

Pointed Partitions

- A pointed partition (λ, v) of n if $\lambda \vdash n$ and v is a cell in the Ferrers diagram of λ.

- $\mathcal{F}_{n}=$ the set of pointed partitions of n.

$$
\left|\mathcal{F}_{n}\right|=p(n) \times n
$$

The arm, leg, coarm, coleg, hook, and part of a pointed partition

$$
h_{v}=l_{v}+a_{v}+1 \quad \text { and } \quad p_{v}=m_{v}+a_{v}+1
$$

The distribution of h_{v}

The distribution of h_{v} on \mathcal{F}_{4} is given below:

1
2
3
4

4	3	2	1

where h_{v} is written in a cell v.

$$
\begin{array}{l|llll|l}
h_{v} & 1 & 2 & 3 & 4 & \sum \\
\hline \# v & 7 & 6 & 3 & 4 & 20
\end{array}
$$

The distribution of p_{v}

The distribution of p_{v} on \mathcal{F}_{4} is given below:

1
1
1
1

2	2
2	2

4	4	4	4

where p_{v} is written in a cell v.

$$
\begin{array}{l|llll|l}
p_{v} & 1 & 2 & 3 & 4 & \sum \\
\hline \# v & 7 & 6 & 3 & 4 & 20
\end{array}
$$

h_{v} and p_{v} are equidistributed

$$
\begin{aligned}
& \sum_{(\lambda, v) \in \mathcal{F}_{4}} x^{h_{v}}=7 x+6 x^{2}+3 x^{3}+4 x^{4} . \\
& \sum_{(\lambda, v) \in \mathcal{F}_{4}} x^{p_{v}}=7 x+6 x^{2}+3 x^{3}+4 x^{4} .
\end{aligned}
$$

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The hook length h., and the part length n., are equidistributea

h_{v} and p_{v} are equidistributed

$$
\begin{gathered}
\sum_{(\lambda, v) \in \mathcal{F}_{4}} x^{h_{v}}=7 x+6 x^{2}+3 x^{3}+4 x^{4} \\
\sum_{(\lambda, v) \in \mathcal{F}_{4}} x^{p_{v}}=7 x+6 x^{2}+3 x^{3}+4 x^{4}
\end{gathered}
$$

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The hook length h_{v} and the part length p_{v} are equidistributed.

$$
\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{h_{v}}=\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{p_{v}}
$$

The joint distribution of h_{v} and p_{v}

The joint distribution of $\left(h_{v}, p_{v}\right)$ on \mathcal{F}_{4} is given below:

$(1,1)$
$(2,1)$
$(3,1)$
$(4,1)$

where $\left(h_{v}, p_{v}\right)$ is written in a cell v.

$$
\begin{array}{c|cccc|c}
h_{v} \backslash p_{v} & 1 & 2 & 3 & 4 & \sum \\
\hline 1 & 3 & 2 & 1 & 1 & 7 \\
2 & 2 & 2 & 1 & 1 & 6 \\
3 & 1 & 1 & 0 & 1 & 3 \\
4 & 1 & 1 & 1 & 1 & 4 \\
\hline \sum & 7 & 6 & 3 & 4 & 20
\end{array}
$$

Theorem (Bessenrodt-Han, 2009)

The hook length $h .$, and the part length n are symmetric.

$h_{v} \backslash p_{v}$	1	2	3	4	\sum
1	3	2	1	1	7
2	2	2	1	1	6
3	1	1	0	1	3
4	1	1	1	1	4
\sum	7	6	3	4	20

Theorem (Bessenrodt-Han, 2009)

The hook length h_{v} and the part length p_{v} are symmetric.

$$
\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{h_{v}} y^{p_{v}}=\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{p_{v}} y^{h_{v}}
$$

Question

How to construct an involution on \mathcal{F}_{n} exchanging hook length and part length?

$a_{v} \backslash l_{v}$	0	1	2	3	\sum
0	7	3	1	1	12
1	3	1	1	0	5
2	1	1	0	0	2
3	1	0	0	0	1
\sum	12	5	2	1	20

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The arm lenath a_{v} and the lea lenath l_{v} are super-svmmetric.

$a_{v} \backslash l_{v}$	0	1	2	3	\sum
0	7	3	1	1	12
1	3	1	1	0	5
2	1	1	0	0	2
3	1	0	0	0	1
\sum	12	5	2	1	20

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The arm length a_{v} and the leg length l_{v} are super-symmetric.

- $\mathcal{F}_{n}(\alpha, \beta)=$ the set of pointed partitions with arm length α and leg length β.

Question

How to construct an bijection from $\mathcal{F}_{n}(\alpha, \beta)$ to $\mathcal{F}_{n}\left(\alpha^{\prime}, \beta^{\prime}\right)$ where $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$?

- The rim hook R_{v} or $R_{v}(\lambda)$ is the contiguous border strip of λ connecting the rightmost and the uppermost cells of the hook H_{v}.

$$
h_{v}=r_{v}=l_{v}+a_{v}+1
$$

- If λ be a partition, denote its conjugate by $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$, that is, λ_{i}^{\prime} is the number of parts of λ that are $\geqslant i$.

Outline

(9) Introduction

(2) Main results
(3) Super-Symmetry

Pointed partition to quintuple

We can construct the mapping $\psi_{a, l, m}$ and its inverse as follows:

- $\mathcal{F}_{n}(a, l, m)=$ the set of pointed partitions (λ, v) of n such that $a_{v}=a, l_{v}=l$ and $m_{v}=m$.
- $Q_{n}(a, l, m)=$ the set of quintuples (A, B, \tilde{C}, D, E) such that $A \subset a \times m$ rectangle, $B \subset l \times a$ rectangle,
$\tilde{C}=$ a partition whose all parts are $\geqslant a+1$,
$D=(l+1) \times(m+1)$ rectangle,
$E=1 \times a$ rectangle, and

$$
|A|+|B|+|\tilde{C}|+|D|+|E|=n .
$$

- $Q_{n}=$ the set of such quintuples (A, B, \tilde{C}, D, E).

Define the bijection ψ from \mathcal{F}_{n} to Q_{n} by

$$
\psi(\lambda, v)=\psi_{a, l, m}(\lambda, v) \quad \text { if }(\lambda, v) \in \mathcal{F}_{n}(a, l, m)
$$

and the involution ρ on Q_{n} by

$$
\rho(A, B, \tilde{C}, D, E)=\left(B^{\prime}, A^{\prime}, \tilde{C}, D^{\prime}, E\right)
$$

where X^{\prime} is the conjugate of the partition X.

Theorem (S.-Zeng, 2009)

For all $n \geqslant 0$, the mapping

$$
\varphi=\psi^{-1} \circ \rho \circ \psi
$$

is an involution on \mathcal{F}_{n} such that if $\varphi:(\lambda, v) \mapsto(\mu, u)$ then

$$
\begin{equation*}
\left(a_{v}, l_{v}, m_{v}\right)(\lambda)=\left(a_{u}, m_{u}, l_{u}\right)(\mu) \tag{1}
\end{equation*}
$$

In particular, the mapping φ also satisfies

$$
\begin{equation*}
\left(h_{v}, p_{v}\right)(\lambda)=\left(p_{u}, h_{u}\right)(\mu) . \tag{2}
\end{equation*}
$$

In other words, we have the following diagram:

$$
\begin{aligned}
& \mathcal{F}_{n}(a, l, m) \xrightarrow{\varphi} \mathcal{F}_{n}(a, m, l) \\
& \psi_{a, l, m} \downarrow \quad \uparrow \psi_{a, m, l}^{-1} \\
& Q_{n}(a, l, m) \xrightarrow{\rho} Q_{n}(a, m, l) .
\end{aligned}
$$

.

For example, the bijection φ on \mathcal{F}_{4} is illustrated below:

We derive immediately the following result of Bessenrodt and Han [BH09, Theorem 3].

Corollary (Bessenrodt-Han, 2009)

The triple statistic (a_{v}, l_{v}, m_{v}) has the same distribution as $\left(a_{v}, m_{v}, l_{v}\right)$. In other words,

$$
Q_{n}(x, y, z)=Q_{n}(x, z, y)
$$

where

$$
Q_{n}(x, y, z)=\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{a_{v}} y^{l_{v}} z^{m_{v}} .
$$

is the generating function for $\left(a_{v}, l_{v}, m_{v}\right)$.

For nonnegative integers m and n,

- q-ascending factorial

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

- q-binomial coefficient

$$
\left[\begin{array}{l}
n \\
m
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}} \quad \text { for } 0 \leqslant m \leqslant n
$$

It is easy (see [And98, Chapter 3]) to see that

$$
\begin{aligned}
& A(q)=\left[\begin{array}{c}
m+a \\
a
\end{array}\right]_{q}, \\
& B(q)=\left[\begin{array}{c}
l+a \\
a
\end{array}\right]_{q}, \\
& \tilde{C}(q)=\frac{1}{\left(q^{a+1} ; q\right)_{\infty}}, \\
& D(q)=q^{(m+1)(l+1)}, \\
& E(q)=q^{a} .
\end{aligned}
$$

Let $f_{n}(a, l, m)$ be the cardinality of $\mathcal{F}_{n}(a, l, m)$. We can apply the bijection φ to give a different proof of Bessenrodt and Han's formula [BH09, Theorem 2] for $\sum_{n \geqslant 0} f_{n}(a, l, m) q^{n}$.

Corollary (Bessenrodt-Han, 2009)

The generating function of $f_{n}(a, l, m)$ is given by the following formula:

$$
\sum_{n \geqslant 0} f_{n}(a, l, m) q^{n}=\frac{1}{\left(q^{a+1} ; q\right)_{\infty}}\left[\begin{array}{c}
m+a \\
a
\end{array}\right]_{q}\left[\begin{array}{c}
l+a \\
a
\end{array}\right]_{q} q^{(m+1)(l+1)+a}
$$

Outline

(9) Introduction

2) Main results

(3) Super-Symmetry

A polynomial $P(x, y)$ in two variables x and y is super-symmetric if

$$
\left[x^{\alpha} y^{\beta}\right] P(x, y)=\left[x^{\alpha^{\prime}} y^{\beta^{\prime}}\right] P(x, y)
$$

when $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$.

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001; Bessenrodt-Han, 2009)

The generating function for the pointed partitions of \mathscr{F}_{n} by the two joint statistics arm length and coarm length (resp. leg length) is super-symmetric. In other words, the polynomial

$$
\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{a_{v} y^{m_{v}}} \quad\left(\text { resp. } \quad \sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{a_{v}} y^{l_{v}}\right)
$$

is super-symmetric.
Note that the above two polynomials are actually equal due to the corollary for the polynomial Q_{n}.

- $\mathcal{F}_{n}(a, *, m)=$ the set of pointed partitions (λ, v) of n such that $a_{v}=a$ and $m_{v}=m$.
- $\mathcal{F}_{n}(a, l, *)=$ the set of pointed partitions (λ, v) of n such that $a_{v}=a$ and $l_{v}=l$.

$$
\tau_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}: \mathcal{F}_{n}(\alpha, *, \beta) \rightarrow \mathcal{F}_{n}\left(\alpha^{\prime}, *, \beta^{\prime}\right)
$$

It is easy to give a combinatorial proof of the super-symmetry of the first polynomial $\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{a_{v}} y^{m_{v}}$.

$$
\zeta_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}: \mathcal{F}_{n}(\alpha, \beta, *) \rightarrow \mathcal{F}_{n}\left(\alpha^{\prime}, \beta^{\prime}, *\right)
$$

We can prove bijectively the super-symmetry of the polynomial $\sum_{(\lambda, v) \in \mathcal{F}_{n}} x^{a_{v}} y^{l_{v}}$. The bijection $\zeta_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}$ can be defined by

$$
\begin{gathered}
\mathcal{F}_{n}(\alpha, \beta, *) \xrightarrow{\zeta_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}} \mathcal{F}_{n}\left(\alpha^{\prime}, \beta^{\prime}, *\right) \\
\varphi \downarrow \\
\uparrow \varphi \\
\mathcal{F}_{n}(\alpha, *, \beta) \xrightarrow{\tau_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}} \mathcal{F}_{n}\left(\alpha^{\prime}, *, \beta^{\prime}\right) .
\end{gathered}
$$

Theorem (S.-Zeng, 2009)

If $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$, the mapping

$$
\zeta_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}=\varphi \circ \tau_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}} \circ \varphi
$$

is a bijection from $\mathcal{F}_{n}(\alpha, \beta, *)$ to $\mathcal{F}_{n}\left(\alpha^{\prime}, \beta^{\prime}, *\right)$.
This theorem yields that the generating function of \mathcal{F}_{n} by the bivariate joint distribution of arm length and leg length is super-symmetric.

Summary

(1) h_{v} and p_{v} are symmetric. \leftarrow the involution φ.
(2) l_{v} and m_{v} are symmetric. \leftarrow the involution φ.
(3) a_{v} and m_{v} are super-symmetric. \leftarrow the bijection $\tau_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}$.
(9) a_{v} and l_{v} are super-symmetric. \leftarrow the bijection $\zeta_{\alpha, \beta, \alpha^{\prime}, \beta^{\prime}}$.

References

嗇 George E．Andrews，The theory of partitions，Cambridge Mathematical Library，Cambridge University Press， Cambridge，1998，Reprint of the 1976 original．

围 Christine Bessenrodt，On hooks of Young diagrams，Ann． Comb． 2 （1998），no．2，103－110．

囦 Christine Bessenrodt and Guo－Niu Han，Symmetry distribution between hook length and part length for partitions，Discrete Mathematics（2009）， doi：10．1016／j．disc．2009．05．012．

Roland Bacher and Laurent Manivel，Hooks and powers of parts in partitions，Sém．Lothar．Combin． 47 （2001／02）， Article B47d， 11 pp．（electronic）．

Thank you for your attention.

63th SÉminaire Lotharingien de Combinatoire, Bertinoro, Italy

27-30 September 2009

```
Email : hshin@math.univ-lyon1.fr
Homepage : http://math.univ-lyon1.fr/~hshin
```


Acknowledgement

This work is supported by la Région Rhône-Alpes through the program "MIRA Recherche 2008", project 0803414701.

