Symmetry and super-symmetry distribution for partitions

Heesung Shin Jiang Zeng

Institut Camille Jordan Université Claude Bernard Lyon-I, France

63th Séminaire Lotharingien de Combinatoire, Bertinoro, Italy

27-30 September 2009

Outline

Outline

2 Main results

Partitions

Ferrers diagram

Pointed Partitions

 A pointed partition (λ, ν) of n if λ ⊢ n and v is a cell in the Ferrers diagram of λ.

• \mathcal{F}_n = the set of pointed partitions of *n*.

$$|\mathcal{F}_n| = p(n) \times n$$

The arm, leg, coarm, coleg, hook, and part of a pointed partition

 $h_v = l_v + a_v + 1$ and $p_v = m_v + a_v + 1$

The distribution of h_v

The distribution of h_v on \mathfrak{F}_4 is given below:

where h_v is written in a cell v.

The distribution of p_v

The distribution of p_v on \mathcal{F}_4 is given below:

where p_v is written in a cell v.

h_{v} and p_{v} are equidistributed

$$\sum_{\substack{(\lambda,\nu)\in\mathcal{F}_4\\(\lambda,\nu)\in\mathcal{F}_4}} x^{h_\nu} = 7x + 6x^2 + 3x^3 + 4x^4.$$
$$\sum_{\substack{(\lambda,\nu)\in\mathcal{F}_4\\(\lambda,\nu)\in\mathcal{F}_4}} x^{p_\nu} = 7x + 6x^2 + 3x^3 + 4x^4.$$

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The hook length h_v and the part length p_v are equidistributed.

$$\sum_{(\lambda,\nu)\in\mathfrak{F}_n} x^{h_\nu} = \sum_{(\lambda,\nu)\in\mathfrak{F}_n} x^{p_1}$$

h_{v} and p_{v} are equidistributed

$$\sum_{\substack{(\lambda,\nu)\in\mathcal{F}_4}} x^{h_\nu} = 7x + 6x^2 + 3x^3 + 4x^4.$$
$$\sum_{\substack{(\lambda,\nu)\in\mathcal{F}_4}} x^{p_\nu} = 7x + 6x^2 + 3x^3 + 4x^4.$$

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The hook length h_v and the part length p_v are equidistributed.

$$\sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{h_\nu} = \sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{p_\nu}$$

The joint distribution of h_v and p_v

The joint distribution of (h_v, p_v) on \mathcal{F}_4 is given below:

where (h_v, p_v) is written in a cell *v*.

Theorem (Bessenrodt-Han, 2009)

The hook length h_v and the part length p_v are symmetric.

$$\sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{h_\nu} y^{p_\nu} = \sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{p_\nu} y^{h_\nu}.$$

Theorem (Bessenrodt-Han, 2009)

The hook length h_v and the part length p_v are symmetric.

$$\sum_{\lambda,\nu)\in\mathcal{F}_n} x^{h_\nu} y^{p_\nu} = \sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{p_\nu} y^{h_\nu}$$

Question

How to construct an involution on \mathcal{F}_n exchanging hook length and part length?

$a_v \setminus l_v$	0	1	2	3	Σ
0	7	3	1	1	12
1	3	1	1	0	5
2	1	1	0	0	2
3	1	0	0	0	1
Σ	12	5	2	1	20

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

$a_v \setminus l_v$	0	1	2	3	Σ
0	7	3	1	1	12
1	3	1	1	0	5
2	1	1	0	0	2
3	1	0	0	0	1
Σ	12	5	2	1	20

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001)

The arm length a_v and the leg length l_v are super-symmetric.

F_n(α, β) = the set of pointed partitions with arm length α and leg length β.

Question

How to construct an bijection from $\mathcal{F}_n(\alpha, \beta)$ to $\mathcal{F}_n(\alpha', \beta')$ where $\alpha + \beta = \alpha' + \beta'$?

The rim hook R_ν or R_ν(λ) is the contiguous border strip of λ connecting the rightmost and the uppermost cells of the hook H_ν.

$$h_v = r_v = l_v + a_v + 1$$

If λ be a partition, denote its conjugate by λ' = (λ'₁, λ'₂, ...), that is, λ'_i is the number of parts of λ that are ≥ i.

Outline

Pointed partition to quintuple

We can construct the mapping $\psi_{a,l,m}$ and its inverse as follows:

- *F_n(a, l, m)* = the set of pointed partitions (λ, ν) of *n* such that a_ν = a, l_ν = l and m_ν = m.
- $Q_n(a, l, m)$ = the set of quintuples (A, B, \tilde{C}, D, E) such that $A \subset a \times m$ rectangle, $B \subset l \times a$ rectangle,
 - \tilde{C} = a partition whose all parts are $\geq a + 1$,
 - $D = (l+1) \times (m+1)$ rectangle,
 - $E = 1 \times a$ rectangle, and

$$|A| + |B| + |\tilde{C}| + |D| + |E| = n.$$

• Q_n = the set of such quintuples (*A*, *B*, \tilde{C} , *D*, *E*).

Define the bijection ψ from \mathfrak{F}_n to \mathfrak{Q}_n by

$$\psi(\lambda, v) = \psi_{a,l,m}(\lambda, v)$$
 if $(\lambda, v) \in \mathfrak{F}_n(a, l, m)$

and the involution ρ on Q_n by

$$\rho(A, B, \tilde{C}, D, E) = (B', A', \tilde{C}, D', E)$$

where X' is the conjugate of the partition X.

Theorem (S.-Zeng, 2009)

For all $n \ge 0$, the mapping

 $\phi=\psi^{-1}\circ\rho\circ\psi$

is an involution on \mathfrak{F}_n such that if $\phi : (\lambda, v) \mapsto (\mu, u)$ then

$$(a_v, l_v, m_v)(\lambda) = (a_u, m_u, l_u)(\mu).$$
 (1)

In particular, the mapping ϕ also satisfies

$$(h_{\nu}, p_{\nu})(\lambda) = (p_u, h_u)(\mu).$$
 (2)

In other words, we have the following diagram:

$$\begin{array}{ccc} \mathfrak{F}_n(a,l,m) & \stackrel{\varphi}{\longrightarrow} & \mathfrak{F}_n(a,m,l) \\ \psi_{a,l,m} & & & \uparrow \psi_{a,m,l}^{-1} \\ \mathfrak{Q}_n(a,l,m) & \stackrel{\rho}{\longrightarrow} & \mathfrak{Q}_n(a,m,l). \end{array}$$

For example, the bijection ϕ on \mathfrak{F}_4 is illustrated below:

We derive immediately the following result of Bessenrodt and Han [BH09, Theorem 3].

Corollary (Bessenrodt-Han, 2009)

The triple statistic (a_v, l_v, m_v) has the same distribution as (a_v, m_v, l_v) . In other words,

$$Q_n(x, y, z) = Q_n(x, z, y)$$

where

$$Q_n(x, y, z) = \sum_{(\lambda, \nu) \in \mathcal{F}_n} x^{a_\nu} y^{l_\nu} z^{m_\nu}.$$

is the generating function for (a_v, l_v, m_v) .

For nonnegative integers m and n,

q-ascending factorial

$$(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$$

q-binomial coefficient

$$\begin{bmatrix} n \\ m \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_m (q;q)_{n-m}} \quad \text{for } 0 \leqslant m \leqslant n.$$

It is easy (see [And98, Chapter 3]) to see that

$$A(q) = \begin{bmatrix} m+a \\ a \end{bmatrix}_{q},$$

$$B(q) = \begin{bmatrix} l+a \\ a \end{bmatrix}_{q},$$

$$\tilde{C}(q) = \frac{1}{(q^{a+1};q)_{\infty}},$$

$$D(q) = q^{(m+1)(l+1)},$$

$$E(q) = q^{a}.$$

Let $f_n(a, l, m)$ be the cardinality of $\mathcal{F}_n(a, l, m)$. We can apply the bijection φ to give a different proof of Bessenrodt and Han's formula [BH09, Theorem 2] for $\sum_{n \ge 0} f_n(a, l, m)q^n$.

Corollary (Bessenrodt-Han, 2009)

The generating function of $f_n(a, l, m)$ is given by the following formula:

$$\sum_{n \ge 0} f_n(a, l, m) q^n = \frac{1}{(q^{a+1}; q)_{\infty}} \begin{bmatrix} m+a \\ a \end{bmatrix}_q \begin{bmatrix} l+a \\ a \end{bmatrix}_q q^{(m+1)(l+1)+a}.$$

Outline

A polynomial P(x, y) in two variables x and y is super-symmetric if

$$[x^{\alpha}y^{\beta}]P(x,y) = [x^{\alpha'}y^{\beta'}]P(x,y)$$

when $\alpha + \beta = \alpha' + \beta'$.

Theorem (Bessenrodt, 1998; Bacher-Manivel, 2001; Bessenrodt-Han, 2009)

The generating function for the pointed partitions of \mathcal{F}_n by the two joint statistics arm length and coarm length (resp. leg length) is super-symmetric. In other words, the polynomial

$$\sum_{\lambda,\nu)\in\mathcal{F}_n} x^{a_\nu} y^{m_\nu} \quad (resp. \quad \sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{a_\nu} y^{l_\nu})$$

is super-symmetric.

Note that the above two polynomials are actually equal due to the corollary for the polynomial Q_n . \bigcirc

- *F_n(a, *, m)* = the set of pointed partitions (λ, ν) of *n* such that *a_v* = *a* and *m_v* = *m*.
- *F_n(a, l, *)* = the set of pointed partitions (λ, ν) of *n* such that a_v = a and l_v = l.

$$\tau_{\alpha,\beta,\alpha',\beta'}:\mathfrak{F}_n(\alpha,*,\beta)\to\mathfrak{F}_n(\alpha',*,\beta')$$

It is easy to give a combinatorial proof of the super-symmetry of the first polynomial $\sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{a_\nu} y^{m_\nu}$.

$\zeta_{\alpha,\beta,\alpha',\beta'}:\mathfrak{F}_n(\alpha,\beta,*)\to\mathfrak{F}_n(\alpha',\beta',*)$

We can prove bijectively the super-symmetry of the polynomial $\sum_{(\lambda,\nu)\in\mathcal{F}_n} x^{a_\nu} y^{l_\nu}$. The bijection $\zeta_{\alpha,\beta,\alpha',\beta'}$ can be defined by

$$\begin{array}{ccc} \mathcal{F}_{n}(\alpha,\beta,\ast) & \xrightarrow{\zeta_{\alpha,\beta,\alpha',\beta'}} & \mathcal{F}_{n}(\alpha',\beta',\ast) \\ \varphi & & & \uparrow \varphi \\ \mathcal{F}_{n}(\alpha,\ast,\beta) & \xrightarrow{\tau_{\alpha,\beta,\alpha',\beta'}} & \mathcal{F}_{n}(\alpha',\ast,\beta'). \end{array}$$

Theorem (S.-Zeng, 2009)

If $\alpha + \beta = \alpha' + \beta'$, the mapping

 $\zeta_{\alpha,\beta,\alpha',\beta'} = \phi \circ \tau_{\alpha,\beta,\alpha',\beta'} \circ \phi$

is a bijection from $\mathfrak{F}_n(\alpha, \beta, *)$ to $\mathfrak{F}_n(\alpha', \beta', *)$.

This theorem yields that the generating function of \mathcal{F}_n by the bivariate joint distribution of arm length and leg length is super-symmetric.

Summary

- h_v and p_v are symmetric. \leftarrow the involution φ .
- **2** l_v and m_v are symmetric. \leftarrow the involution φ .
- **③** a_v and m_v are super-symmetric. ← the bijection $\tau_{\alpha,\beta,\alpha',\beta'}$.
- a_v and l_v are super-symmetric. \leftarrow the bijection $\zeta_{\alpha,\beta,\alpha',\beta'}$.

References

- George E. Andrews, *The theory of partitions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998, Reprint of the 1976 original.
- Christine Bessenrodt, *On hooks of Young diagrams*, Ann. Comb. **2** (1998), no. 2, 103–110.
- Christine Bessenrodt and Guo-Niu Han, *Symmetry distribution between hook length and part length for partitions*, Discrete Mathematics (2009), doi:10.1016/j.disc.2009.05.012.
- Roland Bacher and Laurent Manivel, *Hooks and powers of parts in partitions*, Sém. Lothar. Combin. 47 (2001/02), Article B47d, 11 pp. (electronic).

Thank you for your attention.

63TH SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE, BERTINORO, ITALY

27-30 SEPTEMBER 2009

Email : hshin@math.univ-lyon1.fr

Homepage : http://math.univ-lyon1.fr/~hshin

Acknowledgement

This work is supported by la Région Rhône-Alpes through the program "MIRA Recherche 2008", project 08 034147 01.

