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SYMMETRIC AND ANTISYMMETRIC
VECTOR-VALUED JACK POLYNOMIALS

CHARLES F. DUNKL

ABSTRACT. Polynomials with values in an irreducible module of
the symmetric group can be given the structure of a module for the
rational Cherednik algebra, called a standard module. This algebra
has one free parameter and is generated by differential-difference
(“Dunkl”) operators, multiplication by coordinate functions and
the group algebra. By specializing Griffeth’s (aryiv:0707.0251)
results for the G(r,p, N) setting, one obtains norm formulae for
symmetric and antisymmetric polynomials in the standard module.
Such polynomials of minimum degree have norms which involve
hook-lengths and generalize the norm of the alternating polyno-
mial.

1. INTRODUCTION

Hook-lengths of nodes in Young tableaux appear in a variety of dif-
ferent settings. Griffeth [6] introduced Jack polynomials whose values
lie in irreducible modules of the family G (r, p, V) of complex reflection
groups. This class of polynomials forms an orthogonal basis for the
associated standard module of the rational Cherednik algebra. In this
paper we specialize his results to the symmetric group and show how
the norms of two special symmetric and antisymmetric polynomials
in the standard module depend on the hook-lengths of the partition
associated to the representation. These norm formulae prove a neces-
sity condition for aspherical parameter values. This condition was first
found by Gordon and Stafford [5].

For N > 2,2 = (xq,...,2y) € RY and let N := {0,1,2,3,...}.
For a,b € N and a < b let [a,b] = {a,a+1,...,b} (an interval of
integers). The cardinality of a set E is denoted by #E. For a € NV (a
composition) let |a] := SN g, 2 := [[, 2%, a monomial of degree
|a|. The spaces of polynomials, respectively homogeneous, polynomials
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are
P::spanF{xa:aeNN},
P, :=spang {z* : a € NV |a| =n}, n €N,

where I is a field D Q. Consider the symmetric group Sy as the group
of permutations of [1, N]. The group acts on polynomials by linear
extension of (zw), = xuu),w € Sy,1 < i < N, that is, wf (z) =
f(zw), f € P. For a € NV let (wa);, = a1, then w (z*) = 2™,
Also Sy is a finite reflection group whose reflections are the trans-

positions (i,7); x (i,5) = ( . ,chj, T ) The simple reflections

si:=(i,i+1),1 <i < N, generate Sy.

Say A € NV is a partition if \; > \;;; for all i. Denote the set of
partitions by NV, Suppose 7 is a partition of N, that is, |7| = N;
then there is an associated Ferrers diagram, namely the set of lattice
points {(i,7) EN?:1<i < {(7),1 <j <7}, also denoted by 7; the
length of T is £(7) := max {i: 7; > 0}. The conjugate partition 7’ is
the partition whose diagram is the transpose of the diagram of 7 (that
is, 7/, = #{i : 7, > m}). For anode (or point) (i, j) € T the arm-length
is arm (4, j) := 7; — j, the leg-length is leg (i, j) := 7j — i, and the hook-
length is h (i,7) := arm (i,7) + leg (i,7) + 1. We will use arm (7, j; 7)
ete. if it is necessary to specify the partition.

To each partition 7 of N there is an associated irreducible Sy-module
V,. We analyze the space M (1) of V,-valued polynomials under the
action of differential-difference (“Dunkl”) operators. There is a canon-
ical symmetric bilinear (the contravariant) form (-, -) on this space. We
will construct distinguished polynomials f?, f¢ € M (1), with f? being
symmetric and f¢ being antisymmetric, such that

ey =co IT =G ®eguy)

(4,9)€T

FEN DR | ICER AR IR
(i,9)€T
and cg,c; € Q are constants depending on 7, and the Pochhammer
symbol is

1), =[]t+i-1).,neN
i=1
This result generalizes the situation of the trivial representation of Sy;
in this case 7 = (N),ff =1,f¢ = [] (xi—z;) and (f2, f2) =
1<i<j<N

e [IX, (1 + i), , (see Opdam [10]).
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Section 2 collects the needed information about representations of
Sny. The Dunkl operators and their action on monomials are discussed
in Section 3. The (nonsymmetric) Jack polynomials are constructed
in Section 4; this material is the specialization of Griffeth’s results
for G (r,p,N) to Sy = G(1,1,N) and some of the proofs are in the
Appendix. Our main results on symmetric and antisymmetric poly-
nomials are contained in Section 5. There is the description of an
orthogonal basis and the detailed exposition of the special polynomials
whose norms involve the hook-lengths. In fact these are the symmetric
and antisymmetric polynomials of minimum degree. In the standard
module M (1) the orthogonal basis of symmetric (respectively antisym-
metric) Jack polynomials is labeled by the column-strict (respectively
row-strict) tableaux of shape .

2. REPRESENTATIONS OF Sy

Let Y (7) be the set of reversed standard Young tableauz (RSYT)
of shape 7, namely, an assignment of the numbers 1,2,..., N to each
node of 7 such that entries decrease in each row and in each column.
(Note: we use reversed tableaux because they provide a direct way of
expressing eigenvalues of the operators defining the nonsymmetric Jack
polynomials, see (4.1).) The node of 7' containing 7 is denoted 7T (7)
and the row and column of this node are denoted by rw (i, 7") , cm (i, T')
respectively, i € [1, N]. The content of T'(i) is ¢ (i,T) := cm (3,T) —
rw (¢,7). Thus ¢(N,T) = 0 for each T'. The well-known hook-length
formula asserts that #Y () = N!/ ][ h(i,j). Following Murphy

(i,g)er
8] define an action of Sy on the # (Y (7))-dimensional vector space
V. :=spang {vr: T € Y (1)} as follows:

Proposition 1. Suppose T € Y (1) and
bi(T) =1/ (c(i,T) = c(i+1,7))
for1 <1 < N then:

(1) ifb; (T) =1 (when rw (:,T) =rw (i + 1,7T)) then s;vyr = vr;

(2) if b;(T) = -1 (when cm(i,T7) = cm(i+1,7)) then
Sivr = —Ur;

(3)if 0 < b;(T) < 5 (when rw(i,T) < rw(i+1,T) and
cm (4,T) > em (i + 1, T) then

sivp = by (T) vr + v,

SiVs, = (1 —b; (T)2) vr — b; (T) vs,T;
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(4) of =2 < b;(T) < 0 (when rw(i,T) > rw(i+1,T) and
cm (i, T) < cem (i + 1,T)) then

S;Ur = bz (T) U + (1 - bz (T)2) Us, T
and
Si'UsiT = Ur — b, (T) UsiT'

In cases (3) and (4) the tableau s;T is obtained by interchanging the
entries 1,1+ 1. Furthermore in case (3) s;fo = fo and s;f1 = —f1 for

fo = (bz (T) -+ ].) (% + Us, T
fi= 0 (T) — 1) vr + v

There is an ordering on tableaux such that 7' > s;7" in case (4).

Corollary 1. Let f = ZTey(T) krvr with the coefficients kr € Q and
sif = xf for somei € [1,N —1]. Then

(1) T,s,T €Y (1) implies ks;p = rky for some r # 0;

(2) sif = f and em (i, T) = cm (i + 1,T) implies kr = 0;

(3) sif =—f andrw (i,T) =rw (i + 1,T) implies kr = 0.

Statement (1) means that ks and kp are either both nonzero or
both zero.

Definition 1. The Jucys-Murphy elements (in the group algebra QSy )

are
N

wi= Y (i,j),i € [LN].
j=it1
There are commutation relations: w;w; = w;w; for all 4, j; wis; = s;w;
for j #i—1,14; s;w;—w;18; = 1 (see Vershik and Okounkov [9, Sec. 4] for
the representations of the algebra generated by {w;, w11, s;}). Murphy
proved the following:

Theorem 1. Suppose T € Y (1) and i € [1, N| then wyvr = ¢ (i,T) vr.

Let (-,-), be a Sy-invariant positive-definite bilinear form on V7,
(the form is unique up to a multiplicative constant) then each wj; is
self-adjoint and hence the vectors vy are pairwise orthogonal, being
cigenvectors with different eigenvalues. Denote |[v|[; = (v,v),. For
given T and i as in case (4) we have |[vp||2 = b (i, T)* ||vr|i + [Jvsrl?
(since s; is an isometry) and thus [|vs,z| = (1-0b(, T)2) [vz||Z. There

is one formula for [|lur||2 in [8, Thm. 4.1]. The following is based on the
content vector of T (that is, (¢(1,7),...,¢(N,T))) :



SYMMETRIC AND ANTISYMMETRIC POLYNOMIALS 5

Definition 2. For T € Y (1) let
H (C(ZvT)_C(]aT))2_1

. . 2
1<i<j<N, c(i,T)<c(j,T)—2 (c(,T)—c(5,T))

2
lorlle =

For example, let N = 4,7 = (3, 1) and for convenience label tableaux

vasn.alf. = 2

by sequences of rows; then Hv[(4,2,1),(3)]Hi = 1
lvias2,anll; = 2

Lemma 1. Suppose {g;; (T') : 1 <i < j < N} is a collection of func-
tions on Y (T) such that

(1) gi; (T) = gij (s T) for all i, j with {i,5} N{m,m+1} =0,

(2) gi,m (T) = gi,m-l—l (SmT) and gi,m—l—l (T) = gi,m (SmT) fO’I"i <m,

(3) 9y (T) = Gm+1,j (smT) and gmi1; (T) = G, (smT) for j >

m + 1, whenever m € [1, N — 1] and {T,s,,T} CY (), then
H1§i<j§N i (T) __Ymmi (T)
H1§i<j§N 9ij (5mT)  Gmm+1 (5mT)

The proof is a straightforward calculation.

Proposition 2. Suppose 0 < b;(T) < % for T € Y (1) and some

i € [1,N —1] then |vgr|’ = (1—0b (T)z) lor||?. Thus ||-||, is an S-

movariant norm.

Proof. By hypothesis ¢ (i,T) > ¢(i+1,T) + 2 and
c(i,s;T)=c(i+1,T),c(i+1,8T)=c(i,T).

2 2 ¢ (1 1 2
./ lvrll; excep —\ D) =G

in the numerator cancel out, by Lemma 1. 0

All factors in the ratio ||vg,r

Henceforth we drop the subscript “c” and use “0” for the form. Next
we consider invariance properties for certain subgroups of Sy, specifi-
cally the stabilizer subgroups of the monomials z*, where A € NV:+.

Definition 3. for1 <a<b< N let
Sjap = {w € Sy i ¢ [a,b] = w (i) =i},
the subgroup of permutations of [a,b], generated by {s; : a < i < b}.

We look for elements f of V. which are symmetric or antisymmetric
for a group Sy, or the equivalent properties: s;f = f, respectively,
s;f = —f, for a < i < b. The idea is to find the expansions of
Zwes[a,b] wor, or Zwes[a,b] sgn (w) wuvr, in the basis {vg: S €Y (1)}
for given T' € Y (7).
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Definition 4. For T € Y (1) and a subgroup H of Sy let Vi (H) =
span{wvr :w € H} and let Y (T; H) ={T" € Y (1) : v € Vp (H)}.

In the case H = S|, there are two extremal elements of Y (7' H),
namely Ty with the property cm (i, Ty) > cm (i + 1,7;) for a < i < b,
and T) with the property rw (i, To) > rw (i + 1,7}) (it is possible that
To = T1). To produce Ty one applies a sequence of transformations of
type (4) (in Proposition 1) (type (3) for 7). If cm (i1, 7T") = cm (ia, T')
for some iy, iy € [a, b] (suppose i; > iy then any entry j in this column of
T between i; and is has to satisfy i; > j > is) then Tj has cm (i, Ty) =
cm (i + 1, Tp) for some i € [a,b — 1]. Similarly if rw (i1, 7)) = rw (i2, T')
for some i1,y € [a,b] then T} has rw (¢,7}) = rw (i + 1,7}) for some
i € la,b—1].

2.1. Subgroup symmetric vectors. First consider the invariant
(symmetric) situation. Corollary 1 and the properties of Ty imply
the following necessary condition for Vr (S[mb]) to contain a nontrivial
S|a,p-invariant.

Say T satisfies condition [a,b]. if the entries a,a 4+ 1,...,b are in
distinct columns of T, that is, a < i < j < m implies cm (i, T) #
cm (7, T). Fix some T satisfying this condition and consider the sub-
space Vip (S[a,b}). Let Tp € Y (T; S[a,b]) satisfy cm (¢,7) > em (5, T)
for a < i < j < b (equality is ruled out by hypothesis). It is pos-
sible that ¢ and i + 1 are in the same row of Ty for some i € |a,b]
(in which case #Y (T;Sjy) < (b—a+1)! = #S8jy). Fora < i <
b we have rw (i,7y) < rw(i+ 1,7p), thus @ < i < j < b implies
c(j,Ty) —c(i,Tp) < —2o0r j =i+ 1 and rw (i + 1,Ty) = rw (¢, Tp);
indeed suppose the latter condition does not hold then if j > ¢+ 1

¢ (4, To) — ¢ (i,To) = (em (5, To) — em (¢, Tp)) + (rw (i, To) — rw (4, 1p))
< em (j, Tp) —em (i, Tp) < i—j < =2,
or j =14+ 1 and
c(i+1,To) —c(i,To)

=(cm(i+1,Ty) —em (i, Ty)) + (vw (4, Tp) —rw (i + 1,Tp))
<1-1=-2

Definition 5. Suppose T' € Y (1) satisfies condition [a,b]_,, then let

C(]>T) - C(Z,T)
Py (T;a,b) := H : n
esiciss, em(imy<emmy L TG T) =@ T)
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The denominator can not vanish, for suppose i < j,cm (i,7) <
cm (7, T), and T (i) = Ty (i1),T (j) = To (i2) with i1 < iy (this fol-
lows from cm (ig, T') < cm (i1, 7)) then ¢ (¢,T) — ¢(5,T) = ¢ (i2, Tp) —
C(’il,To) < —2 s and rw (Z,T) = I'w (’iQ,To) 7£ ™w (], T) = I'w (il,To).
For notational convenience we use the fact Y (T; S[a,b]) =Y (To; S[a,b})
(and let T be variable, henceforth).

Proposition 3. Let f = ZTGY(TO.S
all w € Sja -

) Py (T;a,b)vr thenwf = f for

[a,b

Proof. Suppose a < i < b then let
A={T €Y (Ty;Suy) 11w (i,T) =rw (i+1,T)}

and
B={T €Y (To;Sjuy) : 1w (i,T) <tw (i +1,T)} .
Then
f=> PR (T;a,b)vr+ Y (Po(Tia,b)vr + Py (siT;a,b) var) .

TeA TeB

Fix T' € B and compute Py (T;a,b) /Py (s;T;a,b) using Lemma 1; set
Gmn (T) = 1 if em (m,T) > em (n,T) and g, (T) = % if
cm (m,T) < cm (n,T). Then g;,41 (1) =1 and

i+ 1,5T)—c(i,sT) 1 B 1

14 c(i+1,8T)—c(i,sT)  1—0b(sT) 1+b;(T)
Thus Py (T;a,b) /Py (s;T;a,b) = 1+ b;(T) and s;f = f by Proposi-
tion 1. U

Gii+1 <3iT)

Corollary 2. Let ng = # {w € Sjap : WU, = UTO}, then
(b—a)

|

172 = C=2 P (3350,8) or 2.

Proof. It T, T" € Y (1) and T" is obtained from T by a sequence of
steps of type (3) in Proposition 1 then 7" = wT for some w € Sy
and vpr = wur + Z]- bjvs,, where b; € Q and [S; =T, S;,...] is the
list of intermediate steps. Let fi = > wuvg, thus fi = ¢f for some

WES[q4,p)

constant c. In the expansion of f; in the basis {UT T ey (Tg; S[a,b])}
the coefficient of vy, is ng, because Tj, 77 have the property described
above and vy, is extremal in Y (TO;S[GJ,}) (heuristically the “bubble
sort” is used; first apply (b —1,b) (b—2,b—1)...(a,a + 1) to Tp; this
moves b to the column with highest possible number; then repeat the
process with Sy, 1), or Sgp—x if b —k +1,...,b are now in the same
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row, and so on). The coefficient of vy, in f is Py (131;a,b). Thus ¢ =

min f Finally

1 1
(£ fdo == (i fho== D {won, £
wES[a b]
(b —a)! (b—a)!
= c <UT07 f>0 <UT07 UT0>
This completes the proof. O

It is straightforward to extend these methods to the case H =
S[al,bl] X S[ag,bg] X "'S[an,bn] where 1 < a1 < b < ag < by < ... <
a, < b, < N. This requires a tableau Ty € Y (7) satisfying condition
lai, bs],,,, for 1 <i < n. Then

F= > J[rTiab)vr

TeY (Tp;H) i=1
is the unique H-invariant element of Vi, (H).

2.2. Subgroup antisymmetric vectors. We turn to the problem
of antisymmetric vectors in Vr (H). The previous arguments transfer
almost directly by transposing tableaux and inserting minus signs at
appropriate places.

Say T satisfies condition [a, b] , if the entries a,a+1,...,b are in dis-
tinct rows of T, that is, a < i < j < mimpliesrw (i, T") # rw (j,T'). Fix
some T satisfying this condition and consider the subspace Vi (S[a,b])'
Let Ty € Y (T; Sja ) satisfy cm (i,7) > em (5, T) for a <i < j <b.

Definition 6. Suppose T' € Y (1) satisfies condition [a,b]_,, then let

. B c(3,T)—c(i,T)
Py (T;a,b) = 11 T—cG. D)+ T)

a<i<j<b, em(i,T)<em(j,T)

As before we use the basic set Y (TO;S[ayb}) to produce an anti-
symmetric vector. Note P; (Tp;a,b) = 1.

Proposition 4. Let [ = ZTGY(TO;S[M) P, (T;a,b) vy then s;f = —f
fora < i < b and wf = sgn(w) f for all w € Sjp. Let ng =
#{w € Spopy s wopy, = Fvg, } then ||f]° = EL P (Ty;a,0)] Jog ||
Proof. Suppose a < i < b then let

A={T €Y (Ty;Suy) :em (i,T) =cm (i +1,7)}

and
B={T €Y (To;Spuy) : em (i,T) > cm (i + 1,T)} ;



SYMMETRIC AND ANTISYMMETRIC POLYNOMIALS 9
T € A implies s;vr = —vp. Then
F=> Pi(T;a,b)vr+ Y (P (Tia,b)vr + Pi (siT;a,b) var) .

TeA TeB
Fix T' € B and compute P, (T;a,b) /P, (s;T;a,b) using Lemma 1; set
G (T) = 1 if em (m,T) > em (n,T) and g, (T) = % if
cm (m,T) < cm (n,T). Then g; ;41 (T) =1 and

e+ 1,5T) —c(i,sT)
S l—c(i+1,8T)+c(i,sT)
1 1

T 10 (sT) b(T)—1

Thus Py (T;a,b) /Py (s;T;a,b) = b; (T) — 1 and s;f = —f by Proposi-
tion 1. The norm formula follows from the proof of Corollary 2 with
some small modifications to take care of sign-changes. U

i1 (81

There are corresponding statements for H = S, 5] X ... X Sjay ba)>
using disjoint intervals. The branching theorem for the restriction of
irreducible representations of Sy to those of the parabolic subgroups
(like H) implicitly appears in the previous discussion, in connection
with the conditions [a, ], and [a,b],,,.

3. DUNKL OPERATORS

Let k be a transcendental (formal parameter) and set F = Q (k).
Consider the space P ® V, = spang {xavT caeNVTecYy (T)}, poly-
nomials p (z) on RY with values in V;. The space is an Sy-module
with the action w (x%v7) = z%* (wvr) for w € Sy, extended to all of
P ® V; by linearity. For pe Pand u €V, and 1 <7 < N let

31 D) = pute Y PELECD 5,
! j=1,5# v

The definition is extended to P&V} by linearity. Then D;D; = D;D; for
1 <i,5 < N. The proof is a straightforward adaptation of the original
proof for scalar polynomials p (z) (see [3, Ch. 4]). There are important
commutators (appearing in the definition of the rational Cherednik
algebra, the algebra generated by FSy and {z;,D; : i € [1, N|}):

J#
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Definition 7. The space P ® V.. equipped with the action of FSy and
{z;,D; :i € [1,N]} is a standard module of the rational Cherednik al-
gebra and is denoted by M (7). For n € N the linear subspace P, @ V;
is denoted by M, (T).

The representation theory of rational Cherednik algebras is described
in the survey [11] by Rouquier. For p(z) € P ® V; set

Uip (2) = i (aip (2)) ~ 53 (0, )p (), 1 S 4 < .

The operators U; also commute pairwise. They have a triangularity
property (a special case of a result of Griffeth [6] for the complex re-
flection groups G (r,p, N)). There is an important function on compo-
sitions:

Definition 8. For o € NV and 1 <i < N let
rlogi) =#{j o >a}t+#{j:1<j<ia;=aq}

be the rank function.

A consequence of the definition is that r (a,7) < r (v, j) is equivalent
to a; > a, or oy = ; and @ < j. For any « the function i — 7 (a,4) is
one-to-one on {1,2,..., N}. Let w, denote the inverse function, thus
r (o, w, (1)) = ¢. Further « is a partition if and only if r («,7) = i for
all 4. In general (w;'a), = ay, ) for 1 <i < N, and thus w;'a is a
partition, denoted by a™. For example, let a = (1,0,4,2,4) then

[r ()i = [4.5,1,3,2],
[wa (0))7-y = [3.5,4,1,2],
at =(4,4,2,1,0).
The order on compositions is derived from the dominance order.

Definition 9. For a, 3 € NN the partial order o = 3 (o dominates [3)
means that « # 3 and Y1_ a; > Y1 f; for 1 < j < N; and a > 8
means that |a| = || and either a™ = T or ot = 1 and o > (.

For example (5,1,4) > (1,5,4) > (4,3, 3), while (1,5,4) and (6,2, 2)
are not comparable in >. There are some results useful in analyzing
U;z%u. Let € (i) be the ith standard basis vector in NV, for1 <i< N.
By [3, Lemma 8.2.3] the following hold for o € N¥:

(1) if oy > aj and i < j then (4, j) a < «;
(2) at > «;
(3) if 1 <5< a;—ajthen at > (a—s(e(i) —e(5)))".
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The following is a consequence of these relations and an easy com-
putation.

Lemma 2. For a € NV and i # j let Bjz® = zir® — (i, j)

)

XT; — 33j
then
(1) if a; = o then Bjjz® = %
(2) if oy > «j then
ai—a]-—l
Bijz® = x%+ (i,7) 2% + Z po—s(e@)—£(7))
s=1

and o > (a—s( (i) = ()" Jor 1 <5 < -y — L;
(3) if a; < o then
aj—a;—1

Byt =— Y a0
s=1

and ot > (a —s(e(j) —e (@) for 1 <s<aj —a; — 1.

The following proposition can be elegantly stated in terms of con-
jugates of Jucys-Murphy elements. Recall the conjugation relation
w(d, j)wt = (w (i), w(5)).

Definition 10. For o € N¥ and 1 < i < N let wf' := WaWr(anWa',
where w,, is the inverse of r («,-). Equivalently w¥ = > (i,7).
r(e,g)>r(a,i)

To justify the second equation observe that

Woth(aiywa' = D (wa(r(ayi),wa ()= Y (iwa(j))

r(a,i)<j r(eni)<j
and r (a, wq (7)) = 7.
Proposition 5. Suppose a € NV, u €V, and 1 <i < N then

Uiz®u = 2 [(o; + 1) u + kwiu] + mZxBUg,
[<la
where each ug =0 or £ (i, 7) u for some j.

Proof. Let g, denote elements of span {:cﬁ 1B < a}. In the case 1 <
J < i the coefficient of k (4, j) u is B;ja® — (¢, ) x® which equals (1) 0 if
a; =, (2) 2%+ qa if a5 > aj, (3) = ((4,7) 2* + ¢o) if o > @, so that
(i,j) @ < . In the case i < j < N the coefficient of (i, j) u is B;;z®
which equals (1) z* if a; = oy, (2) %+ (4, ) 2* + ¢o if & > @, so that
(i,7) @ <, (3) go if @; < aj. Thus kz® (4, j) u appears in U;z“u exactly
when o; > a; or o; = aj and j > i, that is, r (o, 7) > 7 (a2, 7). O
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Following Griffeth we define an order on the pairs {(a, u) o€ NV }:
(a,up) > (B, u2) means that oo > (. For this order the leading term of
Uiz®u is % (o; + 1 + kwi) u.

4. NONSYMMETRIC JACK POLYNOMIALS

This section presents the structure of the simultaneous eigenvectors
of {U; : 1 <i< N} in M (7). These are vector-valued generalizations
of the nonsymmetric Jack polynomials (see [3, Ch. 8]). The operators
U; are self-adjoint with respect to the contravariant form, which is
described as follows:

The contravariant form (-,-) on M (7) is the canonical symmetric
Sy-invariant bilinear form, extending the form (-, -), on V;, : such that

(zif,g) = (f,Dig),i € [L,N], f,g € M (7).

An existence proof can be based on the operator

N
D aDitr >, (i)
i=1

1<i<j<N
and induction. The important properties of the form are:
(1) if feP,®V;,9g€P,®V, and m # n then (f,g) = 0;
(2) if w € Sy then (wf,wg) = (f,g) forall f,ge M (1),if 1 <i<
J < N then {(i,) f.9) = (f.(,7) g);
(3) ifi € [1, N] and f,g € M (1) then (D;x;f, g) = (f, Dix:g).

We use || f||* to denote (f, f) although the form may not be positive-
definite . For a specific value k € Q the kernel of the form, that is,
{f:{g,f)=0,Vg € M (1)}, is called the radical of M (7) and denoted
J. (1), and the quotient module M (7) /J, (7) is denoted L, (7). Values
of x such that J, (1) # (0) are called singular values.

If A € NV* then the leading term in Uiz u is 2 (N + 1+ kw;) u;
this suggests that eigenvectors of w; have good properties under the
action of U;. For compositions the coordinates have to be appropriately
permuted. From (5) we see that for T € Y (1) and a € NV the
leading term in U;z®wavr is (a; + 1 + ke (r (o, 1), T)) 2%wav7, because
WWUP = WaWr(anVr = ¢ (7 (o, i), T)wqvp. For any n € N the set
{z°wavr :a € NV Ja| =n,T €Y (1)} is a basis of M, (7) on which
the operators U; act in a triangular manner (with respect to ). For
a e NV T eY (1), let

(4.1) & (a,T) =a;+ 1+ ke(r(a,i),T),i € [1,N].

For any  # « and |3] = |a] there is at least one i such that o; # 0
and a; # 0; thus & (a,T) # & (8, T') for any T,T" € Y (1) (and
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generic k). (The restriction to «; # 0 is needed in the next section; if
la| = |B] and «; # 0 implies o; = (; then a = [5.) Thus there exists
a basis of simultaneous eigenvectors of {Uf; : i € [1, N]}. The following
is the specialization to Sy of Griffeth’s construction [6, Thm. 5.2] of
nonsymmetric Jack polynomials.

Proposition 6. For o € NV T € Y (1) there exists a unique element
Car of M (7) such that UiCor = & (o, T) o for 1 <i < N and

Car () = 2%Wwour + Z U0,
B<la

where ug, € V;.

Existence of this set of simultaneous eigenvectors of {Uf; : i € [1, N}
follows from the triangular property, the commutativity, and the sepa-
ration properties of the eigenvalues (a, T') — [&; (v, T)]i]il.

Because each U; is self-adjoint for (-, -) we have ((o.r, (s77) = 0 when
a#tforT#T.

We consider the action of Sy on the polynomials (, 7. As usual
there are explicit formulae for the action of s; = (4,7 4+ 1) based on the
commutations U;s; = s;U; for j #i,i+ 1 and s}U;s; = U; 11 + k. These
are special cases of [6, Thm. 5.3], however we use the nonnormalized
basis for V; rather than the orthonormal one used there (so coefficients
in Q (k) suffice). Asin [6] let o; denote the formal operator s;+ T
suppose f € M (1) and U;f = \;jf for 1 < j < N (with A\; € Q (k) and
/\i 7£ )‘H-l) then Mjoif = )\jaif fOI'j 7& Z,Z +1 and MZUZf = >\i+10ifa
Uiro:f = Noif (where o,f = s;f + ﬁf Specifically there are
two main cases a; # a1 and o = ;1. For a € NV and T € Y (1)

let
K

& (O./, T) - gi—l—l (a7 T)

bi (Oé, T) =
K
a; — a1 + K (c(r(a,i),T)—c(r(a,i+1),T))
The proof of the following is in the Appendix.

Proposition 7. Suppose o € N and o; > a1 for somei < N. Then
siCar = b; (0, T) Car + (1 = b; (o, T)Q) Csia,T
$iCsia,r = Ca,r — Ui (0, T') Gy,
I¢all” = (1 =0 (@, T)%) [IGsiar |-

Remark 1. A necessary condition for the form (-,-) to be positive-
definite now becomes apparent: b; (a,T)2 < 1 for all i,a,T. The
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“trivial” cases are T = (N) and 7 = (1,...,1) for which k > —+
and K < ]lv are necessary and sufficient, respectively. Otherwise let
h, =1 +L(7)—1, the mazimum hook-length of T, then —i <k < i
implies b; (a,T)2 <1 foralli,a,T. Note that 1 <1i,7 < N, T €Y (1)

implies |c (i, T) —c(3,T)] < h, — 1.

Etingof, Stoica and Griffeth [4, Thm. 5.5] found the complete de-
scription of the set of values of k for which L, (7) provides a unitary
representation of the rational Cherednik algebra. We can find an ex-
pression for ||Cr||” in terms of [|(u+ 7, following the approach used

in 3, Thm. 8.5.8].
Definition 11. For a e NY. T € Y (1) and € = & let
eR
€ 7T = 1 ; ; y
sen= T (o —aremran moeemo )

1<i<j<N
a; <o

and let & (o, T) = &, (o, T) E_ (o, T) .
Definition 12. For o € NV et
inv (o) :==#{(4,j) 1 <i<j< N, <qj},

the number of inversions in .

Proposition 8. Suppose « € NV T € Y (1),e = & and a1 > «; for
some i € [1, N — 1] then & (s;a,T) /& (a, T) =14 ¢eb; (o, T).

Proof. Using an argument similar to that of Lemma 1 we have

E (sia, T')
& (a,T)
14 ER
(si0);41 — (sia); + K (c(r (siq, 1+ 1),T) — c(r (s;0,3) , T))
=14e¢b; (a,T),
because 7 (s;a, i+ 1) = 7 («,4) and r (s;a,1) =7 (a, 1+ 1). O

Corollary 3. Suppose « € NV, T € Y () then
[Carll* = & (@, T) " Gar 2]1*

Proof. Argue by induction on inv (a). If the formula is valid for some
a with a; > a1 then by Proposition 7

-1
[Cosarll” = (1= b (. T)) " |Carrl?
= (1=b; (., T)*) " & (0, )" [|Car )1
= & (si, T) 1 ||t 2|
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This completes the induction. O

Consider the case a; = a;41 and let I = r («, i) so that r (a,i+ 1) =
I+1and b (a,T) = (c(I,T) —c(I+1,T))"" = by (T) (see Proposi-
tion 1). Furthermore

SiWe = Wy, (w’l (3),wyt (i + 1)) =wy (I, 1+ 1) =wy,s;.

[0}

The transformation properties depend on the positions of [ and [ + 1
inT.

Proposition 9. Suppose a« € NY, T € Y (1) and a; = ayy1 for some
i <N. ForI=r(a,T) the following hold:

(1) Zf b[ (T) =1 then SiCa,T = Ca,T;
(2) if by (T') = —1 then s;(or = —Car,
(3) if —% < b (T) <0 then

$iCar = br (T) Car + (1 — by (T)Q) Cas; T

(4) if 0 < b (T) < % then 5,Ca,r = by (T') Ca,1 + Caysy T

Proof. Tt suffices to consider the action of s; on the leading term of
Cor- Indeed s;x*wavr = x%w, (syvr) and we use the equations from
Proposition 1. 0

Note that in case (3) |Gz’ = (1—1b; (T)Q) | Cos,7|l? (and the re-
ciprocal in case (4)). The closed formula for the norm is proven by
means of induction and a raising operator involving a cyclic shift and
multiplication by xy. The details are in the Appendix.

The following result is due to Griffeth [6, Thm. 6.1] for the gen-
eral setting of G (r,1, N). There is a slight change due to our use of
nonnormalized vectors vy and reversed standard tableaux.

Theorem 2. Suppose A € NV+ and T € Y (1) then

N
Ior = llorlls TT (1 + me i, 1)),

i=1

Xi—A; )2
< 11 H(1_(zm(c(z’,T)—c(j,T)))Q)'

1<i<j<N =1
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5. SYMMETRIC AND ANTISYMMETRIC POLYNOMIALS

We consider symmetric and antisymmetric linear combinations of
{Car}- Recall
K
bi 7T == A N 5
) e e 1) — e e 1).7))
1
c(t,T)—c(i+1,T)
for « € NV T € Y (7),i € [1, N —1]. Here is a description of s;-
invariant polynomials for a given ¢:
(1) Ca,T + (]. - bz (OZ,T)) gsia’T, fOI‘ a; > CYZ'+1;
(2) (by (1) + 1) Car + Casyrs for oy = ajiq, I = r(a,i) and 0 <

bi (T) =

br (T) < 3;
(3) Car, for a; = ip1, I = r(ayi) and by (T) = 1 (rw (I,T) =
rw (I +1,7)).
The antisymmetric polynomials for s; (s;f = —f) are

(1) COA,T — (]. + b; (Oé,T)) Csz'Ot,Ta for a; > Qg1

(2) (by (T) = 1) Cax + Casyrs for a = ay1,I = r(a,i) and 0 <
by (T) < %;

(3) Cars, for o = i1, I = 7 (ayi) and by (T) = =1 (em (I,T) =
cm (I 4+ 1,7)).

Now we construct invariants. In any orbit span{w(,r :w € Sy}
there must be a polynomial with leading term 2" so it suffices to
consider the situation ¢y r for partitions A\. We collect concepts for use
in the sequel.

Notation 1. For A € NVT Jet Wy = {w € Sy : w\ = A}, the stabilizer
subgroup of A. Thus

W)\ = S[al,bl] X S[az,bg] X .. -S[an,bnb

where 1 < a; < by <ag <by <...<a,<b, <N (this means \,, =
Ao, > Aoy 41 and so forth). These intervals depend on A but we will not
incorporate this into the notation. Let \® = (An, Ay_1,..., 1) € NV,
the reverse of A\. The permutation wyr is defined by (w/\pa)_1 (1) =
r (A1) ,i € [1, N] (Definition 10).

Generally wyr # wy where wy is the longest permutation given
by wo (i) = N + 1 —i (example: A\ = (3,2,2,1) then [wyr (i)];, =
[4,2,3,1]). The composition A\® is the unique minimum for the order
“~” on {a:at =A}. For at = X and T € Y (1) the leading term
of (o1 is x®wavr (where w' (i) = r(,i)) and the minimality of A"
implies that the expansion of (yr 1 has no term of the form x“u with



SYMMETRIC AND ANTISYMMETRIC POLYNOMIALS 17

u € V, when a # A\f o™ = \. From the expressions in (2) above we
see that the subgroup W, is an important part of the analysis. The
formulae developed in Section 2 will be used. The method is an analog
of the one for scalar nonsymmetric Jack polynomials, introduced by
Baker and Forrester [1].

Definition 13. For A € NV and T € Y (1) define the tableau |\, T |
to be the assignment of A1, \a, ..., An to the nodes of the Ferrers dia-
gram of T so that the entry at T (i) is A;,1 € [1, N]. Thus the entries

of I\, T| are weakly increasing (<) in each row and in each column.
The set of T' satisfying [N\, T'| = |\, T| is exactly Y (T; Wy).

5.1. Case: #Y (T;W,) = 1. We begin with the situation of sym-
metrizing () r when #Y (7', W) = 1, that is, vr is Wy-invariant so that
each interval [a;, b;] is contained in a row of T,( 1 < i <n (rw (j,T) =
rw (b;, T) for 1< i < n and a; < j < b;). Then szSN wlr =
Y arer Aala,r with coefficients to be determined.

Theorem 3. Suppose A € NV and T € Y (1) such that w € W,
implies wur = vp then the polynomial fr defined by

Br=>Y & (a,T)lar,

at=X

18 Sy-invariant and

HfATH #W 5 ()\R T) HCAT“

Proof. Fix i € [1, N — 1] and let
A={a:a" =)o =ai},
B:{a:a+:)\,ai>ai+1}.
Write
Fr=> (T Cr+ Y (E-(a,T) Carr +E- (510, T) Carr) -

acA a€B

Suppose a € A then 7 (i + 1,a) = 7 (i,«) + 1 thus the values r (i, «)
and r (i + 1, ) belong to some interval [a;, b;] (where Sjg, 4, is a factor
of W) and are adjacent entries in some row of 7', hence s,(o1r =
Car- Next let @ € B then the corresponding term in the sum is

E (a,T) (Ca T+ (‘W T) Cssan T) Using the techniques of Lemma 1 we




18 CHARLES F. DUNKL

find that
E_ (s;a,T)
E_ (a,T)
=1- (8i00);01 — (si); + Kk (c(r (sia, i+ 1), T) — c(r (si, ), T))
=1- a; — i+ k(c(r(a,i),T) —c(r(a,i+1),T))
=1-0b;(a,T),

and thus the term for « in the sum over B is s;-invariant. Consider
g = ZwGSN w(yr ; since g is Sy-invariant it must equal a constant
multiple 7 of f3 . To find v consider the coefficients of 2 upin f s and
g. The leading term of (yz r is 2wy g (vr) . The coefficient in f3 . is 1
(by definition of ¢, 7). The term z*vr appears in w( \r 1 With coefficient
1 exactly when w = wlw_,% for w; € Wy. Thus g = (#W,) f3r and

HffTH2 #W <gaf)\T> #W Z <@UC,\RT,f>\T>

wESN
N! s
= W <<>\R,T7f,\,T> = #W & ( ) HCARTH
O NIEL(ART) )
~ s
This completes the proof. O

Continuing with the case #Y (T'; W,) = 1 we turn to the correspond-
ing antisymmetric function involving ¢y 7 such that vy is antisymmetric
for W,. That is each interval [a;, b;] (appearing in W) is contained in
a column of T', a; < j < b; implies cm (5, T) = cm (b;, T')). The number
of inversions inv () takes the place of the sign of a permutation in
order to allow A to have some repeated values.

Theorem 4. Suppose A € NV and T € Y (1) such that s; € W,

implies s;ur = —vr then the polynomial [ defined by
f)C\L,T = Z (‘Dinv(a) Er (,T) Cars
at=\

1s Sy-alternating, and

HfATH #W s ()\R T) HCAT“



SYMMETRIC AND ANTISYMMETRIC POLYNOMIALS 19
Proof. Fix i € [1, N — 1] and let
A={a:a" =)o =ai},
B={a:a"=Xa;>aj1}.
Note o € B implies inv (s;a) = inv (o) + 1. Write
fr =2 (=)™ (@ T) Car

acA

+3 (D)™ (E (@, T) Car — Ex (510, T) Goparr) -
a€B
Suppose o € A then r (i + 1,a) = 7 (i,«) + 1 thus the values r (i, o)
and r (i + 1, ) belong to some interval [a;, b;] (where Sy, 5, is a factor
of W)) and are adjacent entries in some column of 7', hence s,(, 1 =
—Cor- Next let a € B then the corresponding term in the sum is

(_ >1nv a) 5+ (Oé T) (gaT &4 (5i0,T) gs aT>’ a scalar Inultlple of Ca,T _

E+(a,T)
(1+b; (, 7)) (s;0r, by an argument similar to the previous theorem.
This term satisfies s;f = —f. Thus s;f{; = —f{7. Consider g =
> wesy Sen (w) wyr p; since g is Sy-alternating it must equal a con-
stant multiple v of f{ 7. To find 7 consider the coefficients of v in
fir and g. The coefficient in f§ ;. is 1 (by definition of (y7). The term

2 vp appears in wCyr p exactly when w = wlw;,% for wy € W,. Let

e = sgn(wyr) = (—1)mv(’\R), because the length of wyr is inv ()\R)).
Furthermore

R
sgn (wlw)\R) wlw)\RC,\R T = sgn (wlww) wlw)\R (:c’\ ’w/\RUT) + hq
= ¢ sgn (wy) wy (:B/\UT) + ho
= ex’vr + ha,

where h; and hy are terms of lower order, that is, of the form ) B Pug
with ug € V. Thus g =¢ (#W,\) for and

82l = i (0 5) = s 20 sem ) o, i)
wWESN
= #;VA Z sgn (w <C)\R T, W f)\T> = <C>\R Taf,\T>
wESN
! : R
- g, a7y ch,THQ
NIEL (AR,T)

1ol

T (#W) & (AR T)
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This completes the proof. O

5.2. Case: #Y (T;W,) > 1. Let Ty € Y (1) such that Tj satisfies
condition [a;, b;],, for each factor Sy, s, of Wy and a; < ji < jp <
b; implies cm (j1,7p) > cm (j2,7p). This condition is equivalent to
the tableau |\, Ty | being column-strict (the entries strictly increase in
each column, see [7, p. 5], such tableaux are also called semistandard
Young tableaux) and T, has a certain extremal property among all
T eY (Ty; Wy). Let

fi,To = Z Z HPO (T;aj7bj)g— (avT> Ca,T;

at=X\ TEY(T();WA) 7=1

UNT, = Z HPO (T, aj,bj) vp € V...

TeY (To;Wy) j=1

The term involving 2* is hy = > [T Fo(T;a;,05) G, thus
TeY (To;Wy) j=1

the leading term in f§7T0 is x’\u)\%. From the transformation rules
in Proposition 9 it follows that ||ho||> = |Gl [luam I / l[vn|ls (see
Corollary 2). Also hq is Wy-invariant. In the symbol f{; one could
replace Ty by any T € Y (To; Wy); then [[}_, P (T;a;5,b;) = 1 and
T €Y (Ty; Wy) implies T' = Ty.

Theorem 5. wfs = fig for dlw e Sy and

_ N! HU/\,ToH?) ||<AT||2
HWAE, (AR T) op |2

2
173,

Proof. Let F (o, T) = [}, Po (T a;,b;) E- (o, T). Fixi € [I,N —1]
and collect the terms of f3 7, into three parts. Let
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The first part is Z(WT)GA}"(CX, T) Cor and in this case s;Cor = Car-
The second part is

S (F(aT) Car + F (5:0,T) Coarr)

(a,T)EB

f(SiO[7T) )
= f 7T o T g Ssia, .
20 (6o + Ty o

F(s;a,T)
F(a,T)
si-invariant. For use in C let I (o) = rw (e, i). Then the third part is

Just as in Proposition 1 =1—10b;(a,T), and hence this sum is

Z (f (a,T)Cor +F (a, sI(a)T) (mSI(Q)T)

(a,T)EC

Fl(a, T
= Z «7:(04, Sl(a)T) (WC%T-FC@S,(MT)-

To show that each term is s;-invariant we must show
F(a,T)
F (a, SI(Q)T)

Fix such a term. The equality o; = ;11 implies [I («), ] (a) +1] C
la;, b;] for some i. Thus

[[o P (Tha5,b5)  Py(Tsai,by)
H?:l Py (sl(a)T; a;, bj) P (Sf(a)T; a;, b'i)
Finally consider £_ (o, T) /E_ (v, s7()T); let

gij (T) =1- aj—ogl—l—li(C(T(Oé,j),T)_C<T(O‘7l)7T))

if | < jand o < o, and ¢;; (T') = 1 otherwise. Then 7 (a,j) ¢
{I(a),I(c)+ 1} implies that

c(r(a,j),T)=c (r (v, 7), sI(a)T) ,

= b[(a) + 1.

=1+ b[(a) (T) .

also
c(r(a,i),T)=c (7" (a,i+1), sl(a)T)
and
cr(a,i+1),T)=c ('r (o, i), sI(Q)T) )
Thus g1 (T) = griv1 (s1)T) and gi; (s1)T) = guira (T) for 1 <1 <i
with similar relations for ¢;; and g;41; when i +1 < j < N. Also

Giir1 (T) =1=g;in1 (Sl(a)T)
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thus

H 9 (T) = E- (O‘ SI(Q)T)

1<I<j<N

Hence s;f3 r, = fir,-

2 .
To compute || f5,||” consider Y- whp where
wWESN

hR = Z HPO T (I], C)\RT'

TeY (To;Wy) j=1
By the argument used above for type (4), we have
E-(ANET) =€ (VN Ty)

for all T € Y (Tp;Wy). Thus the term for a = A in f§, is
E_ (/\R,TO) hr and the leading term in hpg is .CE)\RU])\RU)\’TO. Similarly
to the proof of Theorem 3 we conclude }_ whgr = (#W)) f} 7, and

wWESN
F#W) | Ball” = N, fi,)
— Nig_ (V4 T) [lgll?
thus

gl = 1Gam || sz 2 o P luan iy
-
H 7b”0 EQ(ARvjb)|hUbHO

]

Corollary 4. Suppose A\, u € NVT and Ty, Ty € Y (1) such that |\, T |
and |p,Ty| are column-strict. If X # p or To ¢ Y (T1; W) then

<f§JH’ ;ﬂb> =0.

Let Ty € Y (7) such that T satisfies condition [a;, b;],, for each factor
Sja; b of Wy and a; < ji < jo < b; implies cm (1, 7o) < cm (fa, Tp)-
This condition is equivalent to the tableau |\, T'| being row-strict (the
entries strictly increase in each row), and Ty having a certain extremal
property. Let

flg =Y (=)™ >~ HP1 T;a5,b;) & (,T) Carrs

at=\ TeY (To;W,) j=1

UNT, = Z le T aj, UT eV.

TEY(TO%WA) J=1
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The term involving z* is hg = Y. [ P (T;a;,b;) (a1, thus the
TEY (To;Wy) j=1

leading term in f¥ ;. is x*uy 1, From the transformation rules in Propo-

sition 9 it follows that ||hol|> = |G |I” luam |1 / vz |I° (see Proposi-
tion 4). Also hg is Wy-antisymmetric.

Theorem 6. wfy = sgn (w) fNg, for allw € Sy and
Jur, I
1zl = #W &R T o] Eamll” -
Proof. Let F (o, T) = [[}_, Pr (T5a;,b;) &4 (a,T). Fixi € [I, N —1]
and collect the terms of f{, into three parts. Let
L={(a,T):a"=X\TeY (To;W,)}
={(a,T) € L:a;=a1,em(r (i), T)=cm(r(a,i) +1,7)},
B={(a,T) € L:a; > a1},
={(a,T) € L:;=a1,em(r (i), T) <cm(r(a,i)+1,7)}.
U

The proof that each of the following satisfies s; f = — f is analogous
to the proof of the previous theorem:

Z (_1)iHV(a) F (O{, T) Coe,Tv

(a,T)EA
Z (_1)inV(Oé) (F (O[, T) CO&,T -F (SZ‘O[, T) Csia,T)
(a,7)EB
i F (si, T)
_ . inv(a) . 1O,
g Z ( 1) f(a7T> (COL,T F(O(, T) gsia,T) 9
(a,7T)EB

Yo (=™ <f (,T) G+ F (0, 81(e)T) Ca, sI<a)T>

(a,T)EC

: F(a,T)
. _1)\inv(@) )
= Z (—1) F (o, s1)7T) (—]__ (o, 510 T) Ca,1 + €a,s,(a>T> :

(a,T)EC
In the second equation f(? )) 14 b; (a,T). In the third equation
I =r(a,)and el o) — 1. The proof for the norm formula
( ) .’F(OZ,SI([X)T) ]( ) p

is also analogous, based on }_ ¢ whg where

hr = Z le T@p C,\RT

TeY (To;Wy) =1
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Note sgn (wyr) = (—l)inv()‘R).

Remark 2. The polynomials in Theorems 5 and 6 form orthogonal
bases for the symmetric and antisymmetric polynomials, respectively,

in M (1).

5.3. Minimum degree polynomials. For a given partition 7 of N
there are unique symmetric and antisymmetric polynomials of mini-
mum degree in the standard module M (7). We now establish the key
results concerning the norms of these polynomials. It is obvious that
the column-strict tableau |\, 7| with minimum |A| has the entries 0 in
row #1, 1 in row #2 and so on (consider the minimum entries in each
column). Denote this partition by 6° (1) and the unique possible T" by
T* (the entries N, N —1,...,2,1 are entered row-by-row in the Ferrers
diagram of 7). Example: let 7 = (5,3, 2) then

10 9876 00000
TS= 5 4 3 (), =111 :
2 1 2 2

and ¢° (1) = (2,2,1,1,1,0,0,0,0,0).

Similarly the row-strict tableau | A, T'| with minimum |A| has the en-
tries 0 in column #1, 1 in column #2 and so on (consider the minimum
entries in each row). Denote this partition by 6% (7) and the unique
possible T" by T* (the entries NN — 1,...,2,1 are entered column-
by-column in the Ferrers diagram of 7). Example: let 7 = (5,3,2)
then

—_

0
9
8

and 6% (1) = (4,3,2,2,1,1,1,0,0,0). The sum of the hook-lengths of 7
equals [6° (7)| + [6* (T)| + N (see [7, Ex. 2, p. 11]).

Let f: = f;s(T)?Ts and f¢ = fga(f),Ta- These polynomials are actually
independent of k; there is no composition « such that o <t 6% (1) and
at # §° (1) which can occur in a symmetric polynomial, due to the
minimality of §° (7). A similar argument applies to §* (7). To compute
the norms ||f5||* and ||f%||* we use the special properties of * () to
write simplified formulae. To use the formulae in Theorems 2 and 3
note that 0, (7')]. = i — 1 when j appears in row #i of T°, and the
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corresponding contents of 7% are 1 — 4, ..., 7, —i. Let L =/¢(7) and
L ;
=[[I]O+xG =),
i=2 j=1

ST o)

1<i<j<L j1=1 jo=1r=1 K(Je—J1—J+i

= 11 ﬁ H (1+j—z+n(g2—jl—3+2)>;

1<i<j<L j1=1 jo=1

H* (7_) _ H (1 — kh (%]))leg(i,j) ’

(4,9)€T

Then ||(§S(T)7Ts 2 =

>Py (1) Py (1) and &, (55 ()", TS> = P (7).

P(r)P(1) .
Pg(T) _H ( )

Proof. We use induction on the last part 7,. The induction begins
with 7 = (V) where each product equals 1. Let o0 = (7q,72,...,7, — 1)
and assume the formula is valid for . (It is possible that 7, = 1 and
¢(0) = L—1). The nodes in ¢ and 7 have the same hook-lengths except
for the nodes (i, L) with 1 < i < L and (L,j) with 1 < j < 7. The
latter have zero leg-length and do not contribute to H* (o) or H® (7).
Then for 1 <i< L

||UTS

Theorem 7. Suppose T is a partition then

arm (i, L;0) = arm (i, L;7) = 7, — 71,
leg (i, L;0)+1=1leg(i,L;7) =L —1
h(i,L;o)+1=h(i,L;7) =147 —71,+ L —1,

and thus
(1) ]ﬁl—m (=1 +L—i+1)),_
(o) 1 (1—r( TZ—TL—FL—Z))Lzl.
Firstly,
1 (7)
=(1 —L ;
Pl (O') ( +t K (TL ))L—l )
secondly

212

Futo ~ Lm0
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where
pi (T)
S (r4 k(= L+d)— (—1)K)
_HH< (r+ k(L — L+1) — jK)
(rt+r(m—L+9) - (G+1)k)
(r+k(rp, — L+1) — jr)

HT—l—/i (p —L+1)(r+k(rp—L+i)—(rn+1)kK)
e (r4+x(rp—L+1i)—k)(r+rk(rp —L+1) —TiK)
A+ r(—L+i), A+k(m—m—L+i—1), ,
Ut r(p—L+i-1)) (I+w(r—n—L+d),,

2

a telescoping product argument is used to produce the third line from
the second.
Thirdly,

Pi(o) Trix [ L—i+r(mm—j—L+i)
Ps (1) _HH <L—Z’+I€(7‘L—|—1—j1—L+i)>

i=1 j1=1

_Ll—[lL—z'm(rL—ri—Lﬂ')
1 L—it k(L —L+1)
Combining these products and by use of
L—i+r(rp—7—L+i) 1
(1+k(rp,—7—L+14)), l+k(rp—m—L+14),

(I+r(re—L+1),_, ,
P (1 .y .
L—itn(m—L+y el it

—1

we obtain
Pl(T)P2<T)P3<O'
Py (o) Py(0) Py (1) H® (

B
»
s

\]

)

(1+I€TL— LIH

=1

1+k TL—L+Z))L i—1
(1+k(rp—L+i-1)),_

= 1.

The last step is easy: replace ¢ by ¢ — 1 in the numerator (and now
2 <i < L) and cancel. This completes the induction. OJ
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Theorem 8. Suppose T is a partition of N then

N!
s 2 2 . .
£ = = lrllo I (= kR ()i -

L=y ! (ig)er

Proof. The formulae of Theorem 5 and the previous theorem imply this
result. The stabilizer subgroup Wss(;) acts on the rows of 7 and has
order 71! .. .. O

Theorem 9. Suppose T is a partition of N then

N!
a2 2 ..
172117 = = llorally TT (0 + 62 5))armes) -

T
H¢,1 v (ij)eT

Proof. Apply Theorems 3, 6 and the formula in Theorem 8 to the conju-
gate 7' of 7 and with & replaced by —k. Then leg (j,4;7') = arm (¢, j; 7)
for (i,7) € 7. Note however that ||vps Hg / HUTaH?) is computed by use of
Proposition 4. l

As example we use 7 = (5, 3,2) again. The hook-lengths and norms
are

4 21
1

Y

DO =~ =
—w

I£21° = co (1 — Tk), (1 — 6k), (1 — 4k)* (1 — 3k),
1P = e (1+ Tr), (1+ 6k)5 (1+ 4k); (1+ 3k) (1+ 2k)".

Analogously to the M ((N)) (trivial representation) result, each hook-
length m appears in m — 1 factors (mkx + r) involving each nonzero
residue class mod m. In the example for m = 6 we obtain 6x — 2, 6Kk —
1,6k + 1,6k + 2,6k + 3. We conjecture that the singular values for
M (1) form asubset of {2 : m = h(i,j),(i,j) € 7,2 ¢ L} (ko € Qisa
singular value if there exists nonzero f € M (7) such that D; (ko) f =0
for all i € [1, N]; that is, the generic « is specialized to kg; the condition
is equivalent to Jy, (1) # (0)). As yet there is insufficient evidence for
speculation about any further restrictions.

5.4. Aspherical values. S. Griffeth (personal communication, grate-
fully acknowledged) points out that Theorem 8 provides a new proof
for one of the parts of the Gordon-Stafford Theorem [5, Cor. 3.13]; an-
other proof was found by Bezrukavnikov and Etingof [2, Cor. 4.2]; note
that these papers use ¢ = —k as parameter. An aspherical module
of the rational Cherednik algebra is one containing no nonzero Sy-
invariant. If some quotient module of a standard module is aspherical
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for a numerical value kg of k then kg is called an aspherical value. The-
orem 8 shows that any aspherical value is in {% 1<m<n<N }
(this is one component of the Gordon-Stafford theorem, which deals
with the problem of Morita equivalence of rational Cherednik algebras
for parameters x and k — 1). Suppose M, is a proper submodule of
M (1) for k = kg € Q (that is, a specific numerical value). This means
that Mj is closed under multiplication by z; and the action of D; for
i € [1, N] and under the action of Sy. Then f € M, implies (g, f) =0
for all g € M (1) (M, is a submodule of the radical J,, (7), the maxi-
mal submodule.). Indeed, by the definition of the contravariant form,
(xu, f) = (u, D*f (x) |4=0), for « € NN u € V; (and D* = 1Y, D).
If feP,®V; and |a| = n then D*f (z) € V,. If also f € My then
Df(z) = 0, or else My = M (7). If M (7)/M, is aspherical then

ff e My and Kk = Ky is a zero of H(z‘,j)eT (1 — kh (i,j))leg(i,j).

6. APPENDIX

This contains proofs of the specializations of Griffeth’s results in
the G (r,1, N)-context, which were stated in Section 3. Here is the
restatement and proof of Proposition 7

Proposition 10. Suppose o € NV and o; > ;1 for some i < N.
Then Sz‘Ca,T = (OC,T) Ca,T + (1 — b (OZ,T)2) gsioz,T7 SiCsia,T = Ca,T -
bi (o, T) Coars and [|Carl|* = (1= bi (o, T)) [|¢ssarll”

Proof. The condition «; # «;y1 implies r (s;a,1) = r(a,i+ 1) and
r(sia,i+ 1) =71 (a,i), thus & (s;a,T) = €41 (o, T) and &4 (830, T) =
& (a,T) (and & (s;0,T) = & (o, T) for j # 4,4+ 1). Since the eigen-
values determine the eigenvectors uniquely we have that

SiCa,r — b; (o, T) Ca,r = aCs;0,T)

SiCsia,T +b; (Oé, T) Csia,T = a/Ca,Ta
for some scalars a,a’. The fact that s? = 1 implies aa’ = 1 — b; (a, T)Q.
We show that o = 1 by finding the leading term in s;(sa7,
namely z%s;ws,,vr. It remains to show that w,, = s;w,, that is,
r(si, siwg (7)) = j forall 5. Ifw; ! (§) # 4, i+1 then r (s;a, s;we (J)) =
r(a,we (7)) = 4. I w, b (j) =i then 7 (s;a, s;w4 (7)) = 7 (s;0,1 + 1) =
r(a,i) = j. The case w,'(j) = i+ 1 follows similarly. The second
displayed equation shows that ||$Z-C$ia,TH2 = ||§sz-oc7T”2 = ||0L/Q”(17T||2 —
bi (@, T)* [|Coyanrl|*. O
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The proof of the norm formula of Theorem 2 uses a raising operator.
From the commutators 3.2 we obtain:

UNINf:JIN <1+DN$N) f

Let Oy = $152...5y-1 thus Oy (V) =1land Oy (i) =i+1for1 <i < N
(a cyclic shift). Then

Uznf =zn (05 Ui0y) f, 1 <i <N,

Unvznf =N (1 + 9;,12/{1(91\;) f
If f satisfies U;f = N\, f for 1 < i < N then

Ui (zn0y' f) = N (2n0y' f)
for 1 <i< N and
Uy (mNQX,If) =\ +1) (xNQX,If) )
For a € NV let ¢ (o) := (g, a3, . . ., ay, a1 + 1), then ay0y e = 29,
Proposition 11. Suppose « € NV T € Y (1), then
Co(a),T = $N9X/1Ca,T-

Proof. By straightforward arguments it follows that r (¢ («),7) =
r(a,i+1) for 1 < ¢ < N and 7(¢(a),N) = r(a1),
that is, (¢ («),7) = r(a,0y(z)) for all &. This is equivalent to
r ((b (Oé) 70;]1 (wa (]))) =T (avwa (])) = .7 for all j: O We(a) = 9;]1“]04-
The leading term x“w,vr of (4 is mapped to xd’(“)w(b(a)v;p by f —
Oy f. Note that UiCpa)r = (g1 + 1+ re(r (o (a),1),T)) Coa),r
for 1 <i < N and UnCpa)r = (a1 +2+ ke (r (o (o) ,N),T)) Cota)r-
Thus zx0x'Car and Co(a),r have the same eigenvalues for {{;} and the
same coefficient of 2%(*) Hence zn0y' (o = Co(a).1- O
Corollary 5. ||Cywr||” = (1 + 1+ re (r (@, 1), T)) [|ar].
Proof. Indeed
||C¢(a),TH2 = <9]<[1Ca,Ta DNxNQJTT1Ca,T>
= (08" G, O8' D11 Carr) = (Cars Unarr)
=& (a, T) [|Garrl* -
]

The following is a restatement and proof of Theorem (2) (Griffeth
(6, Thm. 6.1]).
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Theorem 10. Suppose A € NV and T € Y (1) then

N
2= |lor| H (1+ ke (i, 7)),

< I H( zH(c(i,g—cU,T))f)'

1<i<j<N I=1

Proof. Argue by induction. Suppose \y = Xo = ... = A\, > A1 Let
b= (/\1,...,)\m_l,)\m+1,...,)\N,)\1),
a=A =LA, A1 Aty -5 AN
=M, A A = L A, AN)
Thus # = ¢ () and
1¢o,211* = (A1 + e (m, 7)) [[Garll®
= (A1 +we (m, T)) & (a0, T) 7 [|Gur
1o ll® = €28, T) 1 Grll”

”

We have
Me EK
]HQ( 1+r( (j—1,T)—c(m,T>>>’
N eR
E (B, T) :jzl;IJrl (1+ M=\ + 5 (c(m,T) —C(J7T))) '

The validity of the formula for HC‘M,TH2 thus implies the validity for
|Gl (that s, the value of ||y r||? /[|Cur]|? from the formula agrees

with (A + ke (m,T)) Z EﬁaT;)_ O
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