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SYMMETRIC AND ANTISYMMETRIC
VECTOR-VALUED JACK POLYNOMIALS

CHARLES F. DUNKL

Abstract. Polynomials with values in an irreducible module of
the symmetric group can be given the structure of a module for the
rational Cherednik algebra, called a standard module. This algebra
has one free parameter and is generated by differential-difference
(“Dunkl”) operators, multiplication by coordinate functions and
the group algebra. By specializing Griffeth’s (arχiv:0707.0251)
results for the G(r, p,N) setting, one obtains norm formulae for
symmetric and antisymmetric polynomials in the standard module.
Such polynomials of minimum degree have norms which involve
hook-lengths and generalize the norm of the alternating polyno-
mial.

1. Introduction

Hook-lengths of nodes in Young tableaux appear in a variety of dif-
ferent settings. Griffeth [6] introduced Jack polynomials whose values
lie in irreducible modules of the family G (r, p,N) of complex reflection
groups. This class of polynomials forms an orthogonal basis for the
associated standard module of the rational Cherednik algebra. In this
paper we specialize his results to the symmetric group and show how
the norms of two special symmetric and antisymmetric polynomials
in the standard module depend on the hook-lengths of the partition
associated to the representation. These norm formulae prove a neces-
sity condition for aspherical parameter values. This condition was first
found by Gordon and Stafford [5].

For N ≥ 2, x = (x1, . . . , xN) ∈ RN and let N := {0, 1, 2, 3, . . .}.
For a, b ∈ N and a ≤ b let [a, b] = {a, a+ 1, . . . , b} (an interval of
integers). The cardinality of a set E is denoted by #E. For α ∈ NN (a

composition) let |α| :=
∑N

i=1 αi, x
α :=

∏N
i=1 x

αi
i , a monomial of degree

|α|. The spaces of polynomials, respectively homogeneous, polynomials
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are

P := spanF
{
xα : α ∈ NN

}
,

Pn := spanF
{
xα : α ∈ NN , |α| = n

}
, n ∈ N,

where F is a field ⊃ Q. Consider the symmetric group SN as the group
of permutations of [1, N ]. The group acts on polynomials by linear
extension of (xw)i = xw(i), w ∈ SN , 1 ≤ i ≤ N , that is, wf (x) :=
f (xw) , f ∈ P . For α ∈ NN let (wα)i = αw−1(i), then w (xα) = xwα.
Also SN is a finite reflection group whose reflections are the trans-

positions (i, j); x (i, j) =
(
. . . ,

i
xj, . . . ,

j
xi, . . .

)
. The simple reflections

si := (i, i+ 1) , 1 ≤ i < N , generate SN .
Say λ ∈ NN is a partition if λi ≥ λi+1 for all i. Denote the set of

partitions by NN,+. Suppose τ is a partition of N , that is, |τ | = N ;
then there is an associated Ferrers diagram, namely the set of lattice
points {(i, j) ∈ N2 : 1 ≤ i ≤ ` (τ) , 1 ≤ j ≤ τi}, also denoted by τ ; the
length of τ is ` (τ) := max {i : τi > 0}. The conjugate partition τ ′ is
the partition whose diagram is the transpose of the diagram of τ (that
is, τ ′m = # {i : τi ≥ m}). For a node (or point) (i, j) ∈ τ the arm-length
is arm (i, j) := τi − j, the leg-length is leg (i, j) := τ ′j − i, and the hook-
length is h (i, j) := arm (i, j) + leg (i, j) + 1. We will use arm (i, j; τ)
etc. if it is necessary to specify the partition.

To each partition τ of N there is an associated irreducible SN -module
Vτ . We analyze the space M (τ) of Vτ -valued polynomials under the
action of differential-difference (“Dunkl”) operators. There is a canon-
ical symmetric bilinear (the contravariant) form 〈·, ·〉 on this space. We
will construct distinguished polynomials f sτ , f

a
τ ∈M (τ), with f sτ being

symmetric and faτ being antisymmetric, such that

〈f sτ , f sτ 〉 = c0
∏

(i,j)∈τ

(1− h (i, j)κ)leg(i,j) ,

〈faτ , faτ 〉 = c1
∏

(i,j)∈τ

(1 + h (i, j)κ)arm(i,j) ;

and c0, c1 ∈ Q are constants depending on τ , and the Pochhammer
symbol is

(t)n :=
n∏
i=1

(t+ i− 1) , n ∈ N.

This result generalizes the situation of the trivial representation of SN ;
in this case τ = (N) , f sτ = 1, faτ =

∏
1≤i<j≤N

(xi − xj) and 〈faτ , faτ 〉 =

c1
∏N

i=2 (1 + iκ)i−1 (see Opdam [10]).
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Section 2 collects the needed information about representations of
SN . The Dunkl operators and their action on monomials are discussed
in Section 3. The (nonsymmetric) Jack polynomials are constructed
in Section 4; this material is the specialization of Griffeth’s results
for G (r, p,N) to SN = G (1, 1, N) and some of the proofs are in the
Appendix. Our main results on symmetric and antisymmetric poly-
nomials are contained in Section 5. There is the description of an
orthogonal basis and the detailed exposition of the special polynomials
whose norms involve the hook-lengths. In fact these are the symmetric
and antisymmetric polynomials of minimum degree. In the standard
module M (τ) the orthogonal basis of symmetric (respectively antisym-
metric) Jack polynomials is labeled by the column-strict (respectively
row-strict) tableaux of shape τ .

2. Representations of SN
Let Y (τ) be the set of reversed standard Young tableaux (RSYT)

of shape τ , namely, an assignment of the numbers 1, 2, . . . , N to each
node of τ such that entries decrease in each row and in each column.
(Note: we use reversed tableaux because they provide a direct way of
expressing eigenvalues of the operators defining the nonsymmetric Jack
polynomials, see (4.1).) The node of T containing i is denoted T (i)
and the row and column of this node are denoted by rw (i, T ) , cm (i, T )
respectively, i ∈ [1, N ]. The content of T (i) is c (i, T ) := cm (i, T ) −
rw (i, T ). Thus c (N, T ) = 0 for each T . The well-known hook-length
formula asserts that #Y (τ) = N !/

∏
(i,j)∈τ

h (i, j). Following Murphy

[8] define an action of SN on the # (Y (τ))-dimensional vector space
Vτ := spanF {vT : T ∈ Y (τ)} as follows:

Proposition 1. Suppose T ∈ Y (τ) and

bi (T ) := 1/ (c (i, T )− c (i+ 1, T ))

for 1 ≤ i < N then:

(1) if bi (T ) = 1 (when rw (i, T ) = rw (i+ 1, T )) then sivT = vT ;
(2) if bi (T ) = −1 (when cm (i, T ) = cm (i+ 1, T )) then

sivT = −vT ;
(3) if 0 < bi (T ) ≤ 1

2
(when rw (i, T ) < rw (i+ 1, T ) and

cm (i, T ) > cm (i+ 1, T )then

sivT = bi (T ) vT + vsiT ,

sivsiT =
(
1− bi (T )2) vT − bi (T ) vsiT ;
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(4) if −1
2
≤ bi (T ) < 0 (when rw (i, T ) > rw (i+ 1, T ) and

cm (i, T ) < cm (i+ 1, T )) then

sivT = bi (T ) vT +
(
1− bi (T )2) vsiT ,

and

sivsiT = vT − bi (T ) vsiT .

In cases (3) and (4) the tableau siT is obtained by interchanging the
entries i, i+ 1. Furthermore in case (3) sif0 = f0 and sif1 = −f1 for

f0 = (bi (T ) + 1) vT + vsiT ,

f1 = (bi (T )− 1) vT + vsiT .

There is an ordering on tableaux such that T > siT in case (4).

Corollary 1. Let f =
∑

T∈Y (τ) kTvT with the coefficients kT ∈ Q and

sif = ±f for some i ∈ [1, N − 1]. Then

(1) T, siT ∈ Y (τ) implies ksiT = rkT for some r 6= 0;
(2) sif = f and cm (i, T ) = cm (i+ 1, T ) implies kT = 0;
(3) sif = −f and rw (i, T ) = rw (i+ 1, T ) implies kT = 0.

Statement (1) means that ksiT and kT are either both nonzero or
both zero.

Definition 1. The Jucys-Murphy elements (in the group algebra QSN)
are

ωi :=
N∑

j=i+1

(i, j) , i ∈ [1, N ] .

There are commutation relations: ωiωj = ωiωj for all i, j; ωisj = sjωi
for j 6= i−1, i; siωi−ωi+1si = 1 (see Vershik and Okounkov [9, Sec. 4] for
the representations of the algebra generated by {ωi, ωi+1, si}). Murphy
proved the following:

Theorem 1. Suppose T ∈ Y (τ) and i ∈ [1, N ] then ωivT = c (i, T ) vT .

Let 〈·, ·〉0 be a SN -invariant positive-definite bilinear form on Vτ ,
(the form is unique up to a multiplicative constant) then each ωi is
self-adjoint and hence the vectors vT are pairwise orthogonal, being
eigenvectors with different eigenvalues. Denote ‖v‖20 = 〈v, v〉0. For

given T and i as in case (4) we have ‖vT‖20 = b (i, T )2 ‖vT‖20 + ‖vsiT‖
2
0

(since si is an isometry) and thus ‖vsiT‖
2
0 =

(
1− b (i, T )2) ‖vT‖20. There

is one formula for ‖vT‖20 in [8, Thm. 4.1]. The following is based on the
content vector of T (that is, (c (1, T ) , . . . , c (N, T ))) :
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Definition 2. For T ∈ Y (τ) let

‖vT‖2c =
∏

1≤i<j≤N, c(i,T )≤c(j,T )−2

(c (i, T )− c (j, T ))2 − 1

(c (i, T )− c (j, T ))2 .

For example, let N = 4, τ = (3, 1) and for convenience label tableaux

by sequences of rows; then
∥∥v[(4,2,1),(3)]

∥∥2

c
= 1,

∥∥v[(4,3,1),(2)]

∥∥2

c
= 3

4
,∥∥v[(4,3,2),(1)]

∥∥2

c
= 2

3
.

Lemma 1. Suppose {gij (T ) : 1 ≤ i < j ≤ N} is a collection of func-
tions on Y (τ) such that

(1) gij (T ) = gij (smT ) for all i, j with {i, j} ∩ {m,m+ 1} = ∅,
(2) gi,m (T ) = gi,m+1 (smT ) and gi,m+1 (T ) = gi,m (smT ) for i < m,
(3) gm,j (T ) = gm+1,j (smT ) and gm+1,j (T ) = gm,j (smT ) for j >

m+ 1, whenever m ∈ [1, N − 1] and {T, smT} ⊂ Y (τ) , then∏
1≤i<j≤N gij (T )∏

1≤i<j≤N gij (smT )
=

gm,m+1 (T )

gm,m+1 (smT )
.

The proof is a straightforward calculation.

Proposition 2. Suppose 0 < bi (T ) ≤ 1
2

for T ∈ Y (τ) and some

i ∈ [1, N − 1] then ‖vsiT‖
2
c =

(
1− bi (T )2) ‖vT‖2c. Thus ‖·‖c is an SN -

invariant norm.

Proof. By hypothesis c (i, T ) ≥ c (i+ 1, T ) + 2 and

c (i, siT ) = c (i+ 1, T ) , c (i+ 1, siT ) = c (i, T ) .

All factors in the ratio ‖vsiT‖
2
c / ‖vT‖

2
c except

(
1−

(
1

c(i+1,T )−c(i,T )

)2
)

in the numerator cancel out, by Lemma 1. �

Henceforth we drop the subscript “c” and use “0” for the form. Next
we consider invariance properties for certain subgroups of SN , specifi-
cally the stabilizer subgroups of the monomials xλ, where λ ∈ NN,+.

Definition 3. For 1 ≤ a < b ≤ N let

S[a,b] := {w ∈ SN : i /∈ [a, b] =⇒ w (i) = i} ,
the subgroup of permutations of [a, b], generated by {si : a ≤ i < b}.

We look for elements f of Vτ which are symmetric or antisymmetric
for a group S[a,b], or the equivalent properties: sif = f , respectively,
sif = −f , for a ≤ i < b. The idea is to find the expansions of∑

w∈S[a,b] wvT , or
∑

w∈S[a,b] sgn (w) wvT , in the basis {vS : S ∈ Y (τ)}
for given T ∈ Y (τ).
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Definition 4. For T ∈ Y (τ) and a subgroup H of SN let VT (H) =
span {wvT : w ∈ H} and let Y (T ;H) = {T ′ ∈ Y (τ) : vT ′ ∈ VT (H)}.

In the case H = S[a,b] there are two extremal elements of Y (T ;H),
namely T0 with the property cm (i, T0) ≥ cm (i+ 1, T0) for a ≤ i < b,
and T1 with the property rw (i, T0) ≥ rw (i+ 1, T0) (it is possible that
T0 = T1). To produce T0 one applies a sequence of transformations of
type (4) (in Proposition 1) (type (3) for T1). If cm (i1, T ) = cm (i2, T )
for some i1, i2 ∈ [a, b] (suppose i1 > i2 then any entry j in this column of
T between i1 and i2 has to satisfy i1 > j > i2) then T0 has cm (i, T0) =
cm (i+ 1, T0) for some i ∈ [a, b− 1]. Similarly if rw (i1, T ) = rw (i2, T )
for some i1, i2 ∈ [a, b] then T1 has rw (i, T1) = rw (i+ 1, T1) for some
i ∈ [a, b− 1].

2.1. Subgroup symmetric vectors. First consider the invariant
(symmetric) situation. Corollary 1 and the properties of T0 imply
the following necessary condition for VT

(
S[a,b]

)
to contain a nontrivial

S[a,b]-invariant.
Say T satisfies condition [a, b]cm if the entries a, a + 1, . . . , b are in

distinct columns of T , that is, a ≤ i < j ≤ m implies cm (i, T ) 6=
cm (j, T ). Fix some T satisfying this condition and consider the sub-
space VT

(
S[a,b]

)
. Let T0 ∈ Y

(
T ;S[a,b]

)
satisfy cm (i, T ) > cm (j, T )

for a ≤ i < j ≤ b (equality is ruled out by hypothesis). It is pos-
sible that i and i + 1 are in the same row of T0 for some i ∈ [a, b]
(in which case #Y

(
T ;S[a,b]

)
< (b− a+ 1)! = #S[a,b]). For a ≤ i <

b we have rw (i, T0) ≤ rw (i+ 1, T0), thus a ≤ i < j ≤ b implies
c (j, T0) − c (i, T0) ≤ −2 or j = i + 1 and rw (i+ 1, T0) = rw (i, T0);
indeed suppose the latter condition does not hold then if j > i+ 1

c (j, T0)− c (i, T0) = (cm (j, T0)− cm (i, T0)) + (rw (i, T0)− rw (j, T0))

≤ cm (j, T0)− cm (i, T0) ≤ i− j ≤ −2,

or j = i+ 1 and

c (i+ 1, T0)− c (i, T0)

= (cm (i+ 1, T0)− cm (i, T0)) + (rw (i, T0)− rw (i+ 1, T0))

≤ −1− 1 = −2.

Definition 5. Suppose T ∈ Y (τ) satisfies condition [a, b]cm then let

P0 (T ; a, b) :=
∏

a≤i<j≤b, cm(i,T )<cm(j,T )

c (j, T )− c (i, T )

1 + c (j, T )− c (i, T )
.
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The denominator can not vanish, for suppose i < j, cm (i, T ) <
cm (j, T ), and T (i) = T0 (i1) , T (j) = T0 (i2) with i1 < i2 (this fol-
lows from cm (i2, T ) < cm (i1, T )) then c (i, T ) − c (j, T ) = c (i2, T0) −
c (i1, T0) ≤ −2 , and rw (i, T ) = rw (i2, T0) 6= rw (j, T ) = rw (i1, T0).
For notational convenience we use the fact Y

(
T ;S[a,b]

)
= Y

(
T0;S[a,b]

)
(and let T be variable, henceforth).

Proposition 3. Let f =
∑

T∈Y (T0;S[a,b]) P0 (T ; a, b) vT then wf = f for

all w ∈ S[a,b].

Proof. Suppose a ≤ i < b then let

A =
{
T ∈ Y

(
T0;S[a,b]

)
: rw (i, T ) = rw (i+ 1, T )

}
and

B =
{
T ∈ Y

(
T0;S[a,b]

)
: rw (i, T ) < rw (i+ 1, T )

}
.

Then

f =
∑
T∈A

P0 (T ; a, b) vT +
∑
T∈B

(P0 (T ; a, b) vT + P0 (siT ; a, b) vsiT ) .

Fix T ∈ B and compute P0 (T ; a, b) /P0 (siT ; a, b) using Lemma 1; set

gmn (T ) = 1 if cm (m,T ) ≥ cm (n, T ) and gmn (T ) = c(n,T )−c(m,T )
1+c(n,T )−c(m,T )

if

cm (m,T ) < cm (n, T ). Then gi,i+1 (T ) = 1 and

gi,i+1 (siT ) =
c (i+ 1, siT )− c (i, siT )

1 + c (i+ 1, siT )− c (i, siT )
=

1

1− bi (siT )
=

1

1 + bi (T )
.

Thus P0 (T ; a, b) /P0 (siT ; a, b) = 1 + bi (T ) and sif = f by Proposi-
tion 1. �

Corollary 2. Let n0 = #
{
w ∈ S[a,b] : wvT0 = vT0

}
, then

‖f‖20 =
(b− a)!

n0

P0 (T1; a, b) ‖vT0‖
2
0 .

Proof. If T, T ′ ∈ Y (τ) and T ′ is obtained from T by a sequence of
steps of type (3) in Proposition 1 then T ′ = wT for some w ∈ SN
and vT ′ = wvT +

∑
j bjvSj , where bj ∈ Q and [S1 = T, S2, . . .] is the

list of intermediate steps. Let f1 =
∑

w∈S[a,b]
wvT0 thus f1 = cf for some

constant c. In the expansion of f1 in the basis
{
vT : T ∈ Y

(
T0;S[a,b]

)}
the coefficient of vT1 is n0, because T0, T1 have the property described
above and vT1 is extremal in Y

(
T0;S[a,b]

)
(heuristically the “bubble

sort” is used; first apply (b− 1, b) (b− 2, b− 1) . . . (a, a+ 1) to T0; this
moves b to the column with highest possible number; then repeat the
process with S[a,b−1], or S[a,b−k] if b− k + 1, . . . , b are now in the same
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row, and so on). The coefficient of vT1 in f is P0 (T1; a, b). Thus c =
n0

P0(T1;a,b)
in f . Finally

〈f, f〉0 =
1

c
〈f1, f〉0 =

1

c

∑
w∈S[a,b]

〈wvT0 , f〉0

=
(b− a)!

c
〈vT0 , f〉0 =

(b− a)!

c
〈vT0 , vT0〉 .

This completes the proof. �

It is straightforward to extend these methods to the case H =
S[a1,b1] × S[a2,b2] × . . .S[an,bn] where 1 ≤ a1 < b1 < a2 < b2 < . . . <
an < bn ≤ N . This requires a tableau T0 ∈ Y (τ) satisfying condition
[ai, bi]cm for 1 ≤ i ≤ n. Then

f =
∑

T∈Y (T0;H)

n∏
i=1

P0 (T ; ai, bi) vT

is the unique H-invariant element of VT0 (H).

2.2. Subgroup antisymmetric vectors. We turn to the problem
of antisymmetric vectors in VT (H). The previous arguments transfer
almost directly by transposing tableaux and inserting minus signs at
appropriate places.

Say T satisfies condition [a, b]rw if the entries a, a+1, . . . , b are in dis-
tinct rows of T , that is, a ≤ i < j ≤ m implies rw (i, T ) 6= rw (j, T ). Fix
some T satisfying this condition and consider the subspace VT

(
S[a,b]

)
.

Let T0 ∈ Y
(
T ;S[a,b]

)
satisfy cm (i, T ) ≥ cm (j, T ) for a ≤ i < j ≤ b.

Definition 6. Suppose T ∈ Y (τ) satisfies condition [a, b]cm then let

P1 (T ; a, b) :=
∏

a≤i<j≤b, cm(i,T )<cm(j,T )

c (j, T )− c (i, T )

1− c (j, T ) + c (i, T )
.

As before we use the basic set Y
(
T0;S[a,b]

)
to produce an anti-

symmetric vector. Note P1 (T0; a, b) = 1.

Proposition 4. Let f =
∑

T∈Y (T0;S[a,b]) P1 (T ; a, b) vT then sif = −f
for a ≤ i < b and wf = sgn (w) f for all w ∈ S[a,b]. Let n0 =

#
{
w ∈ S[a,b] : wvT0 = ±vT0

}
then ‖f‖2 = (b−a)!

n0
|P1 (T1; a, b)| ‖vT0‖

2.

Proof. Suppose a ≤ i < b then let

A =
{
T ∈ Y

(
T0;S[a,b]

)
: cm (i, T ) = cm (i+ 1, T )

}
and

B =
{
T ∈ Y

(
T0;S[a,b]

)
: cm (i, T ) > cm (i+ 1, T )

}
;
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T ∈ A implies sivT = −vT . Then

f =
∑
T∈A

P1 (T ; a, b) vT +
∑
T∈B

(P1 (T ; a, b) vT + P1 (siT ; a, b) vsiT ) .

Fix T ∈ B and compute P1 (T ; a, b) /P1 (siT ; a, b) using Lemma 1; set

gmn (T ) = 1 if cm (m,T ) ≥ cm (n, T ) and gmn (T ) = c(n,T )−c(m,T )
1−c(n,T )+c(m,T )

if

cm (m,T ) < cm (n, T ). Then gi,i+1 (T ) = 1 and

gi,i+1 (siT ) =
c (i+ 1, siT )− c (i, siT )

1− c (i+ 1, siT ) + c (i, siT )

=
1

−1− bi (siT )
=

1

bi (T )− 1
.

Thus P0 (T ; a, b) /P0 (siT ; a, b) = bi (T ) − 1 and sif = −f by Proposi-
tion 1. The norm formula follows from the proof of Corollary 2 with
some small modifications to take care of sign-changes. �

There are corresponding statements for H = S[a1,b1] × . . . × S[an,bn],
using disjoint intervals. The branching theorem for the restriction of
irreducible representations of SN to those of the parabolic subgroups
(like H) implicitly appears in the previous discussion, in connection
with the conditions [a, b]cm and [a, b]rw.

3. Dunkl operators

Let κ be a transcendental (formal parameter) and set F = Q (κ).
Consider the space P ⊗ Vτ = spanF

{
xαvT : α ∈ NN , T ∈ Y (τ)

}
, poly-

nomials p (x) on RN with values in Vτ . The space is an SN -module
with the action w (xαvT ) = xwα (wvT ) for w ∈ SN , extended to all of
P ⊗ Vτ by linearity. For p ∈ P and u ∈ Vτ and 1 ≤ i ≤ N let

(3.1) Di (p (x)u) :=
∂

∂xi
p (x)u+ κ

N∑
j=1,j 6=i

p (x)− p (x (i, j))

xi − xj
(i, j)u.

The definition is extended to P⊗Vτ by linearity. ThenDiDj = DjDi for
1 ≤ i, j ≤ N . The proof is a straightforward adaptation of the original
proof for scalar polynomials p (x) (see [3, Ch. 4]). There are important
commutators (appearing in the definition of the rational Cherednik
algebra, the algebra generated by FSN and {xi,Di : i ∈ [1, N ]}):

Dixj − xjDi = −κ (i, j) , i 6= j(3.2)

Dixi − xiDi = 1 + κ
∑
j 6=i

(i, j) .
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Definition 7. The space P ⊗ Vτ equipped with the action of FSN and
{xi,Di : i ∈ [1, N ]} is a standard module of the rational Cherednik al-
gebra and is denoted by M (τ). For n ∈ N the linear subspace Pn ⊗ Vτ
is denoted by Mn (τ).

The representation theory of rational Cherednik algebras is described
in the survey [11] by Rouquier. For p (x) ∈ P ⊗ Vτ set

Uip (x) = Di (xip (x))− κ
i−1∑
j=1

(i, j) p (x) , 1 ≤ i ≤ N.

The operators Ui also commute pairwise. They have a triangularity
property (a special case of a result of Griffeth [6] for the complex re-
flection groups G (r, p,N)). There is an important function on compo-
sitions:

Definition 8. For α ∈ NN and 1 ≤ i ≤ N let

r (α, i) := # {j : αj > αi}+ # {j : 1 ≤ j ≤ i, αj = αi}
be the rank function.

A consequence of the definition is that r (α, i) < r (α, j) is equivalent
to αi > αj, or αi = αj and i < j. For any α the function i 7→ r (α, i) is
one-to-one on {1, 2, . . . , N}. Let wα denote the inverse function, thus
r (α,wα (i)) = i. Further α is a partition if and only if r (α, i) = i for
all i. In general (w−1

α α)i = αwα(i) for 1 ≤ i ≤ N , and thus w−1
α α is a

partition, denoted by α+. For example, let α = (1, 0, 4, 2, 4) then

[r (α, i)]5i=1 = [4, 5, 1, 3, 2] ,

[wα (i)]5i=1 = [3, 5, 4, 1, 2] ,

α+ = (4, 4, 2, 1, 0) .

The order on compositions is derived from the dominance order.

Definition 9. For α, β ∈ NN the partial order α � β (α dominates β)

means that α 6= β and
∑j

i=1 αi ≥
∑j

i=1 βi for 1 ≤ j ≤ N ; and α B β
means that |α| = |β| and either α+ � β+ or α+ = β+ and α � β.

For example (5, 1, 4) B (1, 5, 4) B (4, 3, 3), while (1, 5, 4) and (6, 2, 2)
are not comparable in B. There are some results useful in analyzing
Uixαu. Let ε (i) be the ith standard basis vector in NN , for 1 ≤ i ≤ N .
By [3, Lemma 8.2.3] the following hold for α ∈ NN :

(1) if αi > αj and i < j then (i, j)α C α;
(2) α+ D α;
(3) if 1 ≤ s < αi − αj then α+ B (α− s (ε (i)− ε (j)))+.
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The following is a consequence of these relations and an easy com-
putation.

Lemma 2. For α ∈ NN and i 6= j let Bijx
α :=

xix
α − xj (i, j)xα

xi − xj
,

then

(1) if αi = αj then Bijx
α = xα;

(2) if αi > αj then

Bijx
α = xα + (i, j)xα +

αi−αj−1∑
s=1

xα−s(ε(i)−ε(j))

and α+ B (α− s (ε (i)− ε (j)))+ for 1 ≤ s ≤ αi − αj − 1;
(3) if αi < αj then

Bijx
α = −

αj−αi−1∑
s=1

xα−s(ε(j)−ε(i))

and α+ B (α− s (ε (j)− ε (i)))+ for 1 ≤ s ≤ αj − αi − 1.

The following proposition can be elegantly stated in terms of con-
jugates of Jucys-Murphy elements. Recall the conjugation relation
w (i, j)w−1 = (w (i) , w (j)).

Definition 10. For α ∈ NN and 1 ≤ i ≤ N let ωαi := wαωr(α,i)w
−1
α ,

where wα is the inverse of r (α, ·). Equivalently ωαi =
∑

r(α,j)>r(α,i)

(i, j).

To justify the second equation observe that

wαωr(α,i)w
−1
α =

∑
r(α,i)<j

(wα (r (α, i)) , wα (j)) =
∑

r(α,i)<j

(i, wα (j))

and r (α,wα (j)) = j.

Proposition 5. Suppose α ∈ NN , u ∈ Vτ and 1 ≤ i ≤ N then

Uixαu = xα [(αi + 1)u+ κωαi u] + κ
∑
βCα

xβuβ,

where each uβ = 0 or ± (i, j)u for some j.

Proof. Let qα denote elements of span
{
xβ : β C α

}
. In the case 1 ≤

j < i the coefficient of κ (i, j)u is Bijx
α− (i, j)xα which equals (1) 0 if

αi = αj, (2) xα + qα if αi > αj, (3) − ((i, j)xα + qα) if αj > αi, so that
(i, j)α C α. In the case i < j ≤ N the coefficient of κ (i, j)u is Bijx

α

which equals (1) xα if αi = αj, (2) xα + (i, j)xα + qα if αi > αj, so that
(i, j)α C α, (3) qα if αi < αj. Thus κxα (i, j)u appears in Uixαu exactly
when αi > αj or αi = αj and j > i, that is, r (α, j) > r (α, i). �
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Following Griffeth we define an order on the pairs
{

(α, u) : α ∈ NN
}

:
(α, u1) B (β, u2) means that α B β. For this order the leading term of
Uixαu is xα (αi + 1 + κωαi )u.

4. Nonsymmetric Jack polynomials

This section presents the structure of the simultaneous eigenvectors
of {Ui : 1 ≤ i ≤ N} in M (τ). These are vector-valued generalizations
of the nonsymmetric Jack polynomials (see [3, Ch. 8]). The operators
Ui are self-adjoint with respect to the contravariant form, which is
described as follows:

The contravariant form 〈·, ·〉 on M (τ) is the canonical symmetric
SN -invariant bilinear form, extending the form 〈·, ·〉0 on Vτ , : such that

〈xif, g〉 = 〈f,Dig〉 , i ∈ [1, N ] , f, g ∈M (τ) .

An existence proof can be based on the operator

N∑
i=1

xiDi + κ
∑

1≤i<j≤N

(i, j)

and induction. The important properties of the form are:

(1) if f ∈ Pm ⊗ Vτ , g ∈ Pn ⊗ Vτ and m 6= n then 〈f, g〉 = 0;
(2) if w ∈ SN then 〈wf,wg〉 = 〈f, g〉 for all f, g ∈M (τ), if 1 ≤ i <

j ≤ N then 〈(i, j) f, g〉 = 〈f, (i, j) g〉;
(3) if i ∈ [1, N ] and f, g ∈M (τ) then 〈Dixif, g〉 = 〈f,Dixig〉.

We use ‖f‖2 to denote 〈f, f〉 although the form may not be positive-
definite . For a specific value κ ∈ Q the kernel of the form, that is,
{f : 〈g, f〉 = 0,∀g ∈M (τ)}, is called the radical of M (τ) and denoted
Jκ (τ), and the quotient module M (τ) /Jκ (τ) is denoted Lκ (τ). Values
of κ such that Jκ (τ) 6= (0) are called singular values.

If λ ∈ NN,+ then the leading term in Uixλu is xλ (λi + 1 + κωi)u;
this suggests that eigenvectors of ωi have good properties under the
action of Ui. For compositions the coordinates have to be appropriately
permuted. From (5) we see that for T ∈ Y (τ) and α ∈ NN the
leading term in UixαwαvT is (αi + 1 + κc (r (α, i) , T ))xαwαvT , because
ωαi wαvT = wαωr(α,i)vT = c (r (α, i) , T )wαvT . For any n ∈ N the set{
xαwαvT : α ∈ NN , |α| = n, T ∈ Y (τ)

}
is a basis of Mn (τ) on which

the operators Ui act in a triangular manner (with respect to B). For
α ∈ NN , T ∈ Y (τ), let

(4.1) ξi (α, T ) = αi + 1 + κc (r (α, i) , T ) , i ∈ [1, N ] .

For any β 6= α and |β| = |α| there is at least one i such that αi 6= 0
and αi 6= βi thus ξi (α, T ) 6= ξi (β, T

′) for any T, T ′ ∈ Y (τ) (and
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generic κ). (The restriction to αi 6= 0 is needed in the next section; if
|α| = |β| and αi 6= 0 implies αi = βi then α = β.) Thus there exists
a basis of simultaneous eigenvectors of {Ui : i ∈ [1, N ]}. The following
is the specialization to SN of Griffeth’s construction [6, Thm. 5.2] of
nonsymmetric Jack polynomials.

Proposition 6. For α ∈ NN , T ∈ Y (τ) there exists a unique element
ζα,T of M (τ) such that Uiζα,T = ξi (α, T ) ζα,T for 1 ≤ i ≤ N and

ζα,T (x) = xαwαvT +
∑
βCα

xβuβα,

where uβα ∈ Vτ .

Existence of this set of simultaneous eigenvectors of {Ui : i ∈ [1, N ]}
follows from the triangular property, the commutativity, and the sepa-
ration properties of the eigenvalues (α, T ) 7→ [ξi (α, T )]Ni=1.

Because each Ui is self-adjoint for 〈·, ·〉 we have 〈ζα,T , ζβ,T ′〉 = 0 when
α 6= β or T 6= T ′.

We consider the action of SN on the polynomials ζα,T . As usual
there are explicit formulae for the action of si = (i, i+ 1) based on the
commutations Ujsi = siUj for j 6= i, i+ 1 and siUisi = Ui+1 + κ. These
are special cases of [6, Thm. 5.3], however we use the nonnormalized
basis for Vτ rather than the orthonormal one used there (so coefficients
in Q (κ) suffice). As in [6] let σi denote the formal operator si+

κ
Ui+1−Ui ;

suppose f ∈M (τ) and Ujf = λjf for 1 ≤ j ≤ N (with λj ∈ Q (κ) and
λi 6= λi+1) then Ujσif = λjσif for j 6= i, i + 1 and Uiσif = λi+1σif ,
Ui+1σif = λiσif (where σif = sif + κ

λi+1−λif . Specifically there are

two main cases αi 6= αi+1 and αi = αi+1. For α ∈ NN and T ∈ Y (τ)
let

bi (α, T ) =
κ

ξi (α, T )− ξi+1 (α, T )

=
κ

αi − αi+1 + κ (c (r (α, i) , T )− c (r (α, i+ 1) , T ))
.

The proof of the following is in the Appendix.

Proposition 7. Suppose α ∈ NN and αi > αi+1 for some i < N . Then

siζα,T = bi (α, T ) ζα,T +
(
1− bi (α, T )2) ζsiα,T ,

siζsiα,T = ζα,T − bi (α, T ) ζsiα,T ;

‖ζα,T‖2 =
(
1− bi (α, T )2) ‖ζsiα,T‖2 .

Remark 1. A necessary condition for the form 〈·, ·〉 to be positive-
definite now becomes apparent: bi (α, T )2 < 1 for all i, α, T . The
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“trivial” cases are τ = (N) and τ = (1, . . . , 1) for which κ > − 1
N

and κ < 1
N

are necessary and sufficient, respectively. Otherwise let

hτ := τ1 + ` (τ)−1, the maximum hook-length of τ , then − 1
hτ
< κ < 1

hτ

implies bi (α, T )2 < 1 for all i, α, T . Note that 1 ≤ i, j ≤ N, T ∈ Y (τ)
implies |c (i, T )− c (j, T )| ≤ hτ − 1.

Etingof, Stoica and Griffeth [4, Thm. 5.5] found the complete de-
scription of the set of values of κ for which Lκ (τ) provides a unitary
representation of the rational Cherednik algebra. We can find an ex-
pression for ‖ζα,T‖2 in terms of ‖ζα+,T‖2, following the approach used
in [3, Thm. 8.5.8].

Definition 11. For α ∈ NN , T ∈ Y (τ) and ε = ± let

Eε (α, T ) =
∏

1≤i<j≤N
αi<αj

(
1 +

εκ

αj − αi + κ (c (r (α, j) , T )− c (r (α, i) , T ))

)
,

and let E2 (α, T ) = E+ (α, T ) E− (α, T ) .

Definition 12. For α ∈ NN let

inv (α) := # {(i, j) : 1 ≤ i < j ≤ N,αi < αj} ,
the number of inversions in α.

Proposition 8. Suppose α ∈ NN , T ∈ Y (τ) , ε = ± and αi+1 > αi for
some i ∈ [1, N − 1] then Eε (siα, T ) /Eε (α, T ) = 1 + εbi (α, T ).

Proof. Using an argument similar to that of Lemma 1 we have

Eε (siα, T )

Eε (α, T )

= 1 +
εκ

(siα)i+1 − (siα)i + κ (c (r (siα, i+ 1) , T )− c (r (siα, i) , T ))

= 1 + εbi (α, T ) ,

because r (siα, i+ 1) = r (α, i) and r (siα, i) = r (α, i+ 1) . �

Corollary 3. Suppose α ∈ NN , T ∈ Y (τ) then

‖ζα,T‖2 = E2 (α, T )−1 ‖ζα+,T‖2 .
Proof. Argue by induction on inv (α). If the formula is valid for some
α with αi > αi+1 then by Proposition 7

‖ζsiα,T‖
2 =

(
1− bi (α, T )2)−1 ‖ζα,T‖2

=
(
1− bi (α, T )2)−1 E2 (α, T )−1 ‖ζα+,T‖2

= E2 (siα, T )−1 ‖ζα+,T‖2 .
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This completes the induction. �

Consider the case αi = αi+1 and let I = r (α, i) so that r (α, i+ 1) =
I + 1 and bi (α, T ) = (c (I, T )− c (I + 1, T ))−1 = bI (T ) (see Proposi-
tion 1). Furthermore

siwα = wα
(
w−1
α (i) , w−1

α (i+ 1)
)

= wα (I, I + 1) = wαsI .

The transformation properties depend on the positions of I and I + 1
in T .

Proposition 9. Suppose α ∈ NN , T ∈ Y (τ) and αi = αi+1 for some
i < N . For I = r (α, T ) the following hold:

(1) if bI (T ) = 1 then siζα,T = ζα,T ,
(2) if bI (T ) = −1 then siζα,T = −ζα,T ,
(3) if −1

2
≤ bI (T ) < 0 then

siζα,T = bI (T ) ζα,T +
(
1− bI (T )2) ζα,sIT ,

(4) if 0 < bI (T ) ≤ 1
2

then siζα,T = bI (T ) ζα,T + ζα,sIT .

Proof. It suffices to consider the action of si on the leading term of
ζα,T . Indeed six

αwαvT = xαwα (sIvT ) and we use the equations from
Proposition 1. �

Note that in case (3) ‖ζα,T‖2 =
(
1− bI (T )2) ‖ζα,sIT‖2 (and the re-

ciprocal in case (4)). The closed formula for the norm is proven by
means of induction and a raising operator involving a cyclic shift and
multiplication by xN . The details are in the Appendix.

The following result is due to Griffeth [6, Thm. 6.1] for the gen-
eral setting of G (r, 1, N). There is a slight change due to our use of
nonnormalized vectors vT and reversed standard tableaux.

Theorem 2. Suppose λ ∈ NN,+ and T ∈ Y (τ) then

‖ζλ,T‖2 = ‖vT‖20
N∏
i=1

(1 + κc (i, T ))λi

×
∏

1≤i<j≤N

λi−λj∏
l=1

(
1− κ2

(l + κ (c (i, T )− c (j, T )))2

)
.
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5. Symmetric and Antisymmetric Polynomials

We consider symmetric and antisymmetric linear combinations of
{ζα,T}. Recall

bi (α, T ) =
κ

αi − αi+1 + κ (c (r (α, i) , T )− c (r (α, i+ 1) , T ))
,

bi (T ) =
1

c (i, T )− c (i+ 1, T )
,

for α ∈ NN , T ∈ Y (τ) , i ∈ [1, N − 1]. Here is a description of si-
invariant polynomials for a given i:

(1) ζα,T + (1− bi (α, T )) ζsiα,T , for αi > αi+1;
(2) (bI (T ) + 1) ζα,T + ζα,sIT , for αi = αi+1, I = r (α, i) and 0 <

bI (T ) ≤ 1
2
;

(3) ζα,T , for αi = αi+1, I = r (α, i) and bI (T ) = 1 (rw (I, T ) =
rw (I + 1, T )).

The antisymmetric polynomials for si (sif = −f) are

(1) ζα,T − (1 + bi (α, T )) ζsiα,T , for αi > αi+1;
(2) (bI (T )− 1) ζα,T + ζα,sIT , for αi = αi+1, I = r (α, i) and 0 <

bI (T ) ≤ 1
2
;

(3) ζα,T , for αi = αi+1, I = r (α, i) and bI (T ) = −1 (cm (I, T ) =
cm (I + 1, T )).

Now we construct invariants. In any orbit span {wζα,T : w ∈ SN}
there must be a polynomial with leading term xα

+
so it suffices to

consider the situation ζλ,T for partitions λ. We collect concepts for use
in the sequel.

Notation 1. For λ ∈ NN,+ let Wλ = {w ∈ SN : wλ = λ}, the stabilizer
subgroup of λ. Thus

Wλ = S[a1,b1] × S[a2,b2] × . . .S[an,bn],

where 1 ≤ a1 < b1 < a2 < b2 < . . . < an < bn ≤ N (this means λa1 =
λb1 > λb1+1 and so forth). These intervals depend on λ but we will not
incorporate this into the notation. Let λR = (λN , λN−1, . . . , λ1) ∈ NN ,
the reverse of λ. The permutation wλR is defined by (wλR)−1 (i) =
r
(
λR, i

)
, i ∈ [1, N ] (Definition 10).

Generally wλR 6= w0 where w0 is the longest permutation given
by w0 (i) = N + 1 − i (example: λ = (3, 2, 2, 1) then [wλR (i)]4i=1 =
[4, 2, 3, 1]). The composition λR is the unique minimum for the order
“�” on {α : α+ = λ}. For α+ = λ and T ∈ Y (τ) the leading term
of ζα,T is xαwαvT (where w−1

α (i) = r (α, i)) and the minimality of λR

implies that the expansion of ζλR,T has no term of the form xαu with
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u ∈ Vτ when α 6= λR, α+ = λ. From the expressions in (2) above we
see that the subgroup Wλ is an important part of the analysis. The
formulae developed in Section 2 will be used. The method is an analog
of the one for scalar nonsymmetric Jack polynomials, introduced by
Baker and Forrester [1].

Definition 13. For λ ∈ NN,+ and T ∈ Y (τ) define the tableau bλ, T c
to be the assignment of λ1, λ2, . . . , λN to the nodes of the Ferrers dia-
gram of τ so that the entry at T (i) is λi, i ∈ [1, N ]. Thus the entries
of bλ, T c are weakly increasing (≤) in each row and in each column.
The set of T ′ satisfying bλ, T ′c = bλ, T c is exactly Y (T ;Wλ).

5.1. Case: #Y (T ;Wλ) = 1. We begin with the situation of sym-
metrizing ζλ,T when #Y (T ;Wλ) = 1, that is, vT is Wλ-invariant so that
each interval [ai, bi] is contained in a row of T ,( 1 ≤ i ≤ n (rw (j, T ) =
rw (bi, T ) for 1≤ i ≤ n and ai ≤ j ≤ bi). Then

∑
w∈SN wζλ,T =∑

α+=λAαζα,T with coefficients to be determined.

Theorem 3. Suppose λ ∈ NN,+ and T ∈ Y (τ) such that w ∈ Wλ

implies wvT = vT then the polynomial fλ,T defined by

f sλ,T =
∑
α+=λ

E− (α, T ) ζα,T ,

is SN -invariant and∥∥f sλ,T∥∥2
=

N !

#Wλ

1

E+ (λR, T )
‖ζλ,T‖2 .

Proof. Fix i ∈ [1, N − 1] and let

A =
{
α : α+ = λ, αi = αi+1

}
,

B =
{
α : α+ = λ, αi > αi+1

}
.

Write

f sλ,T =
∑
α∈A

E− (α, T ) ζα,T +
∑
α∈B

(E− (α, T ) ζα,T + E− (siα, T ) ζsiα,T ) .

Suppose α ∈ A then r (i+ 1, α) = r (i, α) + 1 thus the values r (i, α)
and r (i+ 1, α) belong to some interval [aj, bj] (where S[aj ,bj ] is a factor
of Wλ) and are adjacent entries in some row of T , hence siζα,T =
ζα,T . Next let α ∈ B then the corresponding term in the sum is

E− (α, T )
(
ζα,T + E−(siα,T )

E−(α,T )
ζsiα,T

)
. Using the techniques of Lemma 1 we
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find that

E− (siα, T )

E− (α, T )

= 1− κ

(siα)i+1 − (siα)i + κ (c (r (siα, i+ 1) , T )− c (r (siα, i) , T ))

= 1− κ

αi − αi+1 + κ (c (r (α, i) , T )− c (r (α, i+ 1) , T ))

= 1− bi (α, T ) ,

and thus the term for α in the sum over B is si-invariant. Consider
g =

∑
w∈SN wζλR,T ; since g is SN -invariant it must equal a constant

multiple γ of f sλ,T . To find γ consider the coefficients of xλvT in f sλ,T and

g. The leading term of ζλR,T is xλ
R
wλR (vT ) . The coefficient in f sλ,T is 1

(by definition of ζλ,T ). The term xλvT appears in wζλR,T with coefficient
1 exactly when w = w1w

−1
λR

for w1 ∈ Wλ. Thus g = (#Wλ) f
s
λ,T and∥∥f sλ,T∥∥2

=
1

#Wλ

〈
g, f sλ,T

〉
=

1

#Wλ

∑
w∈SN

〈
wζλR,T , f

s
λ,T

〉
=

N !

#Wλ

〈
ζλR,T , f

s
λ,T

〉
=

N !

#Wλ

E−
(
λR, T

) ∥∥ζλR,T∥∥2

=
N !E−

(
λR, T

)
(#Wλ) E2 (λR, T )

‖ζλ,T‖2 .

This completes the proof. �

Continuing with the case #Y (T ;Wλ) = 1 we turn to the correspond-
ing antisymmetric function involving ζλ,T such that vT is antisymmetric
for Wλ. That is each interval [ai, bi] (appearing in Wλ) is contained in
a column of T , ai ≤ j ≤ bi implies cm (j, T ) = cm (bi, T )). The number
of inversions inv (α) takes the place of the sign of a permutation in
order to allow λ to have some repeated values.

Theorem 4. Suppose λ ∈ NN,+ and T ∈ Y (τ) such that si ∈ Wλ

implies sivT = −vT then the polynomial faλ,T defined by

faλ,T =
∑
α+=λ

(−1)inv(α) E+ (α, T ) ζα,T ,

is SN -alternating, and∥∥faλ,T∥∥2
=

N !

#Wλ

1

E− (λR, T )
‖ζλ,T‖2 .
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Proof. Fix i ∈ [1, N − 1] and let

A =
{
α : α+ = λ, αi = αi+1

}
,

B =
{
α : α+ = λ, αi > αi+1

}
.

Note α ∈ B implies inv (siα) = inv (α) + 1. Write

faλ,T =
∑
α∈A

(−1)inv(α) E+ (α, T ) ζα,T

+
∑
α∈B

(−1)inv(α) (E+ (α, T ) ζα,T − E+ (siα, T ) ζsiα,T ) .

Suppose α ∈ A then r (i+ 1, α) = r (i, α) + 1 thus the values r (i, α)
and r (i+ 1, α) belong to some interval [aj, bj] (where S[aj ,bj ] is a factor
of Wλ) and are adjacent entries in some column of T , hence siζα,T =
−ζα,T . Next let α ∈ B then the corresponding term in the sum is

(−1)inv(α) E+ (α, T )
(
ζα,T − E+(siα,T )

E+(α,T )
ζsiα,T

)
, a scalar multiple of ζα,T −

(1 + bi (α, T )) ζsiα,T , by an argument similar to the previous theorem.
This term satisfies sif = −f . Thus sif

a
λ,T = −faλ,T . Consider g =∑

w∈SN sgn (w)wζλR,T ; since g is SN -alternating it must equal a con-

stant multiple γ of faλ,T . To find γ consider the coefficients of xλvT in
faλ,T and g. The coefficient in faλ,T is 1 (by definition of ζλ,T ). The term

xλvT appears in wζλR,T exactly when w = w1w
−1
λR

for w1 ∈ Wλ. Let

ε = sgn (wλR) = (−1)inv(λR), because the length of wλR is inv
(
λR
)
).

Furthermore

sgn
(
w1w

−1
λR

)
w1w

−1
λR
ζλR,T = sgn

(
w1w

−1
λR

)
w1w

−1
λR

(
xλ

R

wλRvT

)
+ h1

= ε sgn (w1)w1

(
xλvT

)
+ h2

= εxλvT + h2,

where h1 and h2 are terms of lower order, that is, of the form
∑

βCλ x
βuβ

with uβ ∈ Vτ . Thus g = ε (#Wλ) fλ,T and∥∥faλ,T∥∥2
=

ε

#Wλ

〈
g, faλ,T

〉
=

ε

#Wλ

∑
w∈SN

sgn (w)
〈
wζλR,T , f

a
λ,T

〉
=

ε

#Wλ

∑
w∈SN

sgn (w)
〈
ζλR,T , w

−1faλ,T
〉

=
εN !

#Wλ

〈
ζλR,T , f

a
λ,T

〉
=

εN !

#Wλ

(−1)inv(λR) E+
(
λR, T

) ∥∥ζλR,T∥∥2

=
N !E+

(
λR, T

)
(#Wλ) E2 (λR, T )

‖ζλ,T‖2 .
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This completes the proof. �

5.2. Case: #Y (T ;Wλ) > 1. Let T0 ∈ Y (τ) such that T0 satisfies
condition [ai, bi]cm for each factor S[ai,bi] of Wλ and ai ≤ j1 < j2 ≤
bi implies cm (j1, T0) > cm (j2, T0). This condition is equivalent to
the tableau bλ, T0c being column-strict (the entries strictly increase in
each column, see [7, p. 5], such tableaux are also called semistandard
Young tableaux) and T0 has a certain extremal property among all
T ∈ Y (T0;Wλ). Let

f sλ,T0
=
∑
α+=λ

∑
T∈Y (T0;Wλ)

n∏
j=1

P0 (T ; aj, bj) E− (α, T ) ζα,T ,

uλ,T0 =
∑

T∈Y (T0;Wλ)

n∏
j=1

P0 (T ; aj, bj) vT ∈ Vτ .

The term involving xλ is h0 =
∑

T∈Y (T0;Wλ)

n∏
j=1

P0 (T ; aj, bj) ζλ,T , thus

the leading term in f sλ,T0
is xλuλ,T0 . From the transformation rules

in Proposition 9 it follows that ‖h0‖2 = ‖ζλ,T0‖
2 ‖uλ,T0‖

2
0 / ‖vT0‖

2
0 (see

Corollary 2). Also h0 is Wλ-invariant. In the symbol faλ,T0
one could

replace T0 by any T ∈ Y (T0;Wλ); then
∏n

j=1 P0 (T ; aj, bj) = 1 and

T ∈ Y (T0;Wλ) implies T = T0.

Theorem 5. wf sλ,T0
= f sλ,T0

for all w ∈ SN and

∥∥f sλ,T0

∥∥2
=

N !

#Wλ

‖uλ,T0‖
2
0

E+ (λR, T0) ‖vT0‖
2
0

‖ζλ,T0‖
2 .

Proof. Let F (α, T ) =
∏n

j=1 P0 (T ; aj, bj) E− (α, T ). Fix i ∈ [1, N − 1]
and collect the terms of f sλ,T0

into three parts. Let

L =
{

(α, T ) : α+ = λ, T ∈ Y (T0;Wλ)
}

A = {(α, T ) ∈ L : αi = αi+1, rw (r (α, i) , T ) = rw (r (α, i) + 1, T )} ,
B = {(α, T ) ∈ L : αi > αi+1} ,
C = {(α, T ) ∈ L : αi = αi+1, rw (r (α, i) , T ) < rw (r (α, i) + 1, T )} .
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The first part is
∑

(α,T )∈AF (α, T ) ζα,T and in this case siζα,T = ζα,T .
The second part is∑

(α,T )∈B

(F (α, T ) ζα,T + F (siα, T ) ζsiα,T )

=
∑

(α,T )∈B

F (α, T )

(
ζα,T +

F (siα, T )

F (α, T )
ζsiα,T

)
.

Just as in Proposition 1 F(siα,T )
F(α,T )

= 1− bi (α, T ), and hence this sum is

si-invariant. For use in C let I (α) = rw (α, i). Then the third part is∑
(α,T )∈C

(
F (α, T ) ζα,T + F

(
α, sI(α)T

)
ζα,sI(α)T

)

=
∑

(α,T )∈C

F
(
α, sI(α)T

)( F (α, T )

F
(
α, sI(α)T

)ζα,T + ζα,sI(α)T

)
.

To show that each term is si-invariant we must show

F (α, T )

F
(
α, sI(α)T

) = bI(α) + 1.

Fix such a term. The equality αi = αi+1 implies [I (α) , I (α) + 1] ⊂
[ai, bi] for some i. Thus∏n

j=1 P0 (T ; aj, bj)∏n
j=1 P0

(
sI(α)T ; aj, bj

) =
P0 (T ; ai, bi)

P0

(
sI(α)T ; ai, bi

) = 1 + bI(α) (T ) .

Finally consider E− (α, T ) /E−
(
α, sI(α)T

)
; let

glj (T ) = 1− κ

αj − αl + κ (c (r (α, j) , T )− c (r (α, l) , T ))

if l < j and αl < αj, and glj (T ) = 1 otherwise. Then r (α, j) /∈
{I (α) , I (α) + 1} implies that

c (r (α, j) , T ) = c
(
r (α, j) , sI(α)T

)
,

also

c (r (α, i) , T ) = c
(
r (α, i+ 1) , sI(α)T

)
and

c (r (α, i+ 1) , T ) = c
(
r (α, i) , sI(α)T

)
.

Thus gl,i (T ) = gl,i+1

(
sI(α)T

)
and gl,i

(
sI(α)T

)
= gl,i+1 (T ) for 1 ≤ l < i

with similar relations for gij and gi+1,j when i+ 1 < j ≤ N . Also

gi,i+1 (T ) = 1 = gi,i+1

(
sI(α)T

)
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thus

E− (α, T ) =
∏

1≤l<j≤N

glj (T ) = E−
(
α, sI(α)T

)
.

Hence sif
s
λ,T0

= f sλ,T0
.

To compute
∥∥f sλ,T0

∥∥2
consider

∑
w∈SN

whR where

hR :=
∑

T∈Y (T0;Wλ)

n∏
j=1

P0 (T ; aj, bj) ζλR,T .

By the argument used above for type (4), we have

E−
(
λR, T

)
= E−

(
λR, T0

)
for all T ∈ Y (T0;Wλ). Thus the term for α = λR in f sλ,T0

is

E−
(
λR, T0

)
hR and the leading term in hR is xλ

R
wλRuλ,T0 . Similarly

to the proof of Theorem 3 we conclude
∑

w∈SN
whR = (#Wλ) f

s
λ,T0

and

(#Wλ)
∥∥f sλ,T0

∥∥2
= N !

〈
hR, f

s
λ,T0

〉
= N !E−

(
λR, T0

)
‖g‖2 ;

thus

‖g‖2 =

∥∥ζλR,T0

∥∥2 ‖uλ,T0‖
2
0

‖vT0‖
2
0

=
‖ζλ,T0‖

2 ‖uλ,T0‖
2
0

E2 (λR, T0) ‖vT0‖
2
0

.

�

Corollary 4. Suppose λ, µ ∈ NN,+ and T1, T2 ∈ Y (τ) such that bλ, T1c
and bµ, T2c are column-strict. If λ 6= µ or T2 /∈ Y (T1;Wλ) then〈
f sλ,T1

, f sµ,T2

〉
= 0.

Let T0 ∈ Y (τ) such that T0 satisfies condition [ai, bi]rw for each factor
S[ai,bi] of Wλ and ai ≤ j1 < j2 ≤ bi implies cm (j1, T0) ≤ cm (j2, T0).
This condition is equivalent to the tableau bλ, T c being row-strict (the
entries strictly increase in each row), and T0 having a certain extremal
property. Let

faλ,T0
=
∑
α+=λ

(−1)inv(α)
∑

T∈Y (T0;Wλ)

n∏
j=1

P1 (T ; aj, bj) E+ (α, T ) ζα,T ,

uλ,T0 =
∑

T∈Y (T0;Wλ)

n∏
j=1

P1 (T ; aj, bj) vT ∈ Vτ .
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The term involving xλ is h0 =
∑

T∈Y (T0;Wλ)

n∏
j=1

P1 (T ; aj, bj) ζλ,T , thus the

leading term in faλ,T0
is xλuλ,T0 . From the transformation rules in Propo-

sition 9 it follows that ‖h0‖2 = ‖ζλ,T0‖
2 ‖uλ,T0‖

2 / ‖vT0‖
2 (see Proposi-

tion 4). Also h0 is Wλ-antisymmetric.

Theorem 6. wfaλ,T0
= sgn (w) faλ,T0

for all w ∈ SN and∥∥faλ,T0

∥∥2
=

N !

#Wλ

‖uλ,T0‖
2
0

E− (λR, T0) ‖vT0‖
2
0

‖ζλ,T0‖
2 .

Proof. Let F (α, T ) =
∏n

j=1 P1 (T ; aj, bj) E+ (α, T ). Fix i ∈ [1, N − 1]
and collect the terms of faλ,T0

into three parts. Let

L =
{

(α, T ) : α+ = λ, T ∈ Y (T0;Wλ)
}

A = {(α, T ) ∈ L : αi = αi+1, cm (r (α, i) , T ) = cm (r (α, i) + 1, T )} ,
B = {(α, T ) ∈ L : αi > αi+1} ,
C = {(α, T ) ∈ L : αi = αi+1, cm (r (α, i) , T ) < cm (r (α, i) + 1, T )} .

�

The proof that each of the following satisfies sif = −f is analogous
to the proof of the previous theorem:∑

(α,T )∈A

(−1)inv(α)F (α, T ) ζα,T ,∑
(α,T )∈B

(−1)inv(α) (F (α, T ) ζα,T −F (siα, T ) ζsiα,T )

=
∑

(α,T )∈B

(−1)inv(α)F (α, T )

(
ζα,T −

F (siα, T )

F (α, T )
ζsiα,T

)
,

∑
(α,T )∈C

(−1)inv(α)
(
F (α, T ) ζα,T + F

(
α, sI(α)T

)
ζα,sI(α)T

)

=
∑

(α,T )∈C

(−1)inv(α)F
(
α, sI(α)T

)( F (α, T )

F
(
α, sI(α)T

)ζα,T + ζα,sI(α)T

)
.

In the second equationF(siα,T )
F(α,T )

= 1 + bi (α, T ). In the third equation

I = r (α, i) and F(α,T )

F(α,sI(α)T)
= bI(α)− 1. The proof for the norm formula

is also analogous, based on
∑

w∈SN whR where

hR =
∑

T∈Y (T0;Wλ)

n∏
j=1

P1 (T ; aj, bj) ζλR,T .
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Note sgn (wλR) = (−1)inv(λR).

Remark 2. The polynomials in Theorems 5 and 6 form orthogonal
bases for the symmetric and antisymmetric polynomials, respectively,
in M (τ).

5.3. Minimum degree polynomials. For a given partition τ of N
there are unique symmetric and antisymmetric polynomials of mini-
mum degree in the standard moduleM (τ). We now establish the key
results concerning the norms of these polynomials. It is obvious that
the column-strict tableau bλ, T c with minimum |λ| has the entries 0 in
row #1, 1 in row #2 and so on (consider the minimum entries in each
column). Denote this partition by δs (τ) and the unique possible T by
T s (the entries N,N − 1, . . . , 2, 1 are entered row-by-row in the Ferrers
diagram of τ). Example: let τ = (5, 3, 2) then

T s =
10 9 8 7 6
5 4 3
2 1

, bδs (τ) , T sc =
0 0 0 0 0
1 1 1
2 2

,

and δs (τ) = (2, 2, 1, 1, 1, 0, 0, 0, 0, 0).
Similarly the row-strict tableau bλ, T c with minimum |λ| has the en-

tries 0 in column #1, 1 in column #2 and so on (consider the minimum
entries in each row). Denote this partition by δa (τ) and the unique
possible T by T a (the entries N,N − 1, . . . , 2, 1 are entered column-
by-column in the Ferrers diagram of τ). Example: let τ = (5, 3, 2)
then

T a =
10 7 4 2 1
9 6 3
8 5

, bδa (τ) , T ac =
0 1 2 3 4
0 1 2
0 1

,

and δa (τ) = (4, 3, 2, 2, 1, 1, 1, 0, 0, 0). The sum of the hook-lengths of τ
equals |δs (τ)|+ |δa (τ)|+N (see [7, Ex. 2, p. 11]).

Let f sτ = f sδs(τ),T s and faτ = faδa(τ),Ta . These polynomials are actually

independent of κ; there is no composition α such that α C δs (τ) and
α+ 6= δs (τ) which can occur in a symmetric polynomial, due to the
minimality of δs (τ). A similar argument applies to δa (τ). To compute
the norms ‖f sτ ‖

2 and ‖faτ ‖
2 we use the special properties of δs (τ) to

write simplified formulae. To use the formulae in Theorems 2 and 3
note that δa (τ)j = i − 1 when j appears in row #i of T s, and the
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corresponding contents of T s are 1− i, . . . , τi − i. Let L = ` (τ) and

P1 (τ) =
L∏
i=2

τi∏
j=1

(1 + κ (j − i))i−1 ,

P2 (τ) =
∏

1≤i<j≤L

τi∏
j1=1

τj∏
j2=1

j−i∏
r=1

(
1− κ2

(r + κ (j2 − j1 − j + i))2

)
,

P3 (τ) =
∏

1≤i<j≤L

τi∏
j1=1

τj∏
j2=1

(
1 +

κ

j − i+ κ (j2 − j1 − j + i)

)
;

Hs (τ) =
∏

(i,j)∈τ

(1− κh (i, j))leg(i,j) .

Then
∥∥ζδs(τ),T s∥∥2

= ‖vT s‖2 P1 (τ)P2 (τ) and E+
(
δs (τ)R , T s

)
= P3 (τ).

Theorem 7. Suppose τ is a partition then
P1 (τ)P2 (τ)

P3 (τ)
= Hs (τ).

Proof. We use induction on the last part τL. The induction begins
with τ = (N) where each product equals 1. Let σ = (τ1, τ2, . . . , τL − 1)
and assume the formula is valid for σ. (It is possible that τL = 1 and
` (σ) = L−1). The nodes in σ and τ have the same hook-lengths except
for the nodes (i, L) with 1 ≤ i < L and (L, j) with 1 ≤ j ≤ τL. The
latter have zero leg-length and do not contribute to Hs (σ) or Hs (τ).
Then for 1 ≤ i < L

arm (i, L;σ) = arm (i, L; τ) = τi − τL
leg (i, L;σ) + 1 = leg (i, L; τ) = L− i
h (i, L;σ) + 1 = h (i, L; τ) = 1 + τi − τL + L− i,

and thus

Hs (τ)

Hs (σ)
=

L−1∏
i=1

(1− κ (τi − τL + L− i+ 1))L−i
(1− κ (τi − τL + L− i))L−i−1

.

Firstly,

P1 (τ)

P1 (σ)
= (1 + κ (τL − L))L−1 ;

secondly

P2 (τ)

P2 (σ)
=

L−1∏
i=1

pi (τ) ,



26 CHARLES F. DUNKL

where

pi (τ)

=
L−i∏
r=1

τi∏
j=1

(
(r + κ (τL − L+ i)− (j − 1)κ)

(r + κ (τL − L+ i)− jκ)

· (r + κ (τL − L+ i)− (j + 1)κ)

(r + κ (τL − L+ i)− jκ)

)

=
L−i∏
r=1

(r + κ (τL − L+ i)) (r + κ (τL − L+ i)− (τi + 1)κ)

(r + κ (τL − L+ i)− κ) (r + κ (τL − L+ i)− τiκ)

=
(1 + κ (τL − L+ i))L−i (1 + κ (τL − τi − L+ i− 1))L−i
(1 + κ (τL − L+ i− 1))L−i (1 + κ (τL − τi − L+ i))L−i

;

a telescoping product argument is used to produce the third line from
the second.

Thirdly,

P3 (σ)

P3 (τ)
=

L−1∏
i=1

τi∏
j1=1

(
L− i+ κ (τL − j1 − L+ i)

L− i+ κ (τL + 1− j1 − L+ i)

)

=
L−1∏
i=1

L− i+ κ (τL − τi − L+ i)

L− i+ κ (τL − L+ i)
.

Combining these products and by use of

L− i+ κ (τL − τi − L+ i)

(1 + κ (τL − τi − L+ i))L−i
=

1

(1 + κ (τL − τi − L+ i))L−i
,

(1 + κ (τL − L+ i))L−i
L− i+ κ (τL − L+ i)

= (1 + κ (τL − L+ i))L−i−1 ,

we obtain

P1 (τ)P2 (τ)P3 (σ)Hs (σ)

P1 (σ)P2 (σ)P3 (τ)Hs (τ)

= (1 + κ (τL − L))L−1

L−1∏
i=1

(1 + κ (τL − L+ i))L−i−1

(1 + κ (τL − L+ i− 1))L−i

= 1.

The last step is easy: replace i by i − 1 in the numerator (and now
2 ≤ i ≤ L) and cancel. This completes the induction. �
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Theorem 8. Suppose τ is a partition of N then

‖f sτ ‖
2 =

N !∏`(τ)
i=1 τi!

‖vT s‖20
∏

(i,j)∈τ

(1− κh (i, j))leg(i,j) .

Proof. The formulae of Theorem 5 and the previous theorem imply this
result. The stabilizer subgroup Wδs(τ) acts on the rows of τ and has
order τ1!τ2! . . .. �

Theorem 9. Suppose τ is a partition of N then

‖faτ ‖
2 =

N !∏τ1
i=1 τ

′
i !
‖vTa‖20

∏
(i,j)∈τ

(1 + κh (i, j))arm(i,j) .

Proof. Apply Theorems 3, 6 and the formula in Theorem 8 to the conju-
gate τ ′ of τ and with κ replaced by −κ. Then leg (j, i; τ ′) = arm (i, j; τ)
for (i, j) ∈ τ . Note however that ‖vT s‖20 / ‖vTa‖

2
0 is computed by use of

Proposition 4. �

As example we use τ = (5, 3, 2) again. The hook-lengths and norms
are

7 6 4 2 1
4 3 1
2 1

,

‖f sτ ‖
2 = c0 (1− 7κ)2 (1− 6κ)2 (1− 4κ)2 (1− 3κ) ,

‖faτ ‖
2 = c1 (1 + 7κ)4 (1 + 6κ)3 (1 + 4κ)2

2 (1 + 3κ) (1 + 2κ)2 .

Analogously to the M ((N)) (trivial representation) result, each hook-
length m appears in m − 1 factors (mκ+ r) involving each nonzero
residue class modm. In the example for m = 6 we obtain 6κ− 2, 6κ−
1, 6κ + 1, 6κ + 2, 6κ + 3. We conjecture that the singular values for
M (τ) form a subset of

{
n
m

: m = h (i, j) , (i, j) ∈ τ, n
m
/∈ Z
}

(κ0 ∈ Q is a
singular value if there exists nonzero f ∈M (τ) such that Di (κ0) f = 0
for all i ∈ [1, N ]; that is, the generic κ is specialized to κ0; the condition
is equivalent to Jκ0 (τ) 6= (0)). As yet there is insufficient evidence for
speculation about any further restrictions.

5.4. Aspherical values. S. Griffeth (personal communication, grate-
fully acknowledged) points out that Theorem 8 provides a new proof
for one of the parts of the Gordon-Stafford Theorem [5, Cor. 3.13]; an-
other proof was found by Bezrukavnikov and Etingof [2, Cor. 4.2]; note
that these papers use c = −κ as parameter. An aspherical module
of the rational Cherednik algebra is one containing no nonzero SN -
invariant. If some quotient module of a standard module is aspherical
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for a numerical value κ0 of κ then κ0 is called an aspherical value. The-
orem 8 shows that any aspherical value is in

{
m
n

: 1 ≤ m < n ≤ N
}

(this is one component of the Gordon-Stafford theorem, which deals
with the problem of Morita equivalence of rational Cherednik algebras
for parameters κ and κ − 1). Suppose M0 is a proper submodule of
M (τ) for κ = κ0 ∈ Q (that is, a specific numerical value). This means
that M0 is closed under multiplication by xi and the action of Di for
i ∈ [1, N ] and under the action of SN . Then f ∈M0 implies 〈g, f〉 = 0
for all g ∈ M (τ) (M0 is a submodule of the radical Jκ0 (τ), the maxi-
mal submodule.). Indeed, by the definition of the contravariant form,

〈xαu, f〉 = 〈u,Dαf (x) |x=0〉0 for α ∈ NN , u ∈ Vτ (and Dα =
∏N

i=1D
αi
i ).

If f ∈ Pn ⊗ Vτ and |α| = n then Dαf (x) ∈ Vτ . If also f ∈ M0 then
Dαf (x) = 0, or else M0 = M (τ). If M (τ) /M0 is aspherical then
f sτ ∈M0 and κ = κ0 is a zero of

∏
(i,j)∈τ (1− κh (i, j))leg(i,j).

6. Appendix

This contains proofs of the specializations of Griffeth’s results in
the G (r, 1, N)-context, which were stated in Section 3. Here is the
restatement and proof of Proposition 7

Proposition 10. Suppose α ∈ NN and αi > αi+1 for some i < N .
Then siζα,T = bi (α, T ) ζα,T +

(
1− bi (α, T )2) ζsiα,T , siζsiα,T = ζα,T −

bi (α, T ) ζsiα,T ; and ‖ζα,T‖2 =
(
1− bi (α, T )2) ‖ζsiα,T‖2.

Proof. The condition αi 6= αi+1 implies r (siα, i) = r (α, i+ 1) and
r (siα, i+ 1) = r (α, i), thus ξi (siα, T ) = ξi+1 (α, T ) and ξi+1 (siα, T ) =
ξi (α, T ) (and ξj (siα, T ) = ξj (α, T ) for j 6= i, i + 1). Since the eigen-
values determine the eigenvectors uniquely we have that

siζα,T − bi (α, T ) ζα,T = aζsiα,T ,

siζsiα,T + bi (α, T ) ζsiα,T = a′ζα,T ,

for some scalars a, a′. The fact that s2
i = 1 implies aa′ = 1− bi (α, T )2.

We show that a′ = 1 by finding the leading term in siζsiα,T ,
namely xαsiwsiαvT . It remains to show that wsiα = siwα, that is,
r (siα, siwα (j)) = j for all j. If w−1

α (j) 6= i, i+1 then r (siα, siwα (j)) =
r (α,wα (j)) = j. If w−1

α (j) = i then r (siα, siwα (j)) = r (siα, i+ 1) =
r (α, i) = j. The case w−1

α (j) = i + 1 follows similarly. The second
displayed equation shows that ‖siζsiα,T‖

2 = ‖ζsiα,T‖
2 = ‖a′ζα,T‖2 −

bi (α, T )2 ‖ζsiα,T‖
2. �
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The proof of the norm formula of Theorem 2 uses a raising operator.
From the commutators 3.2 we obtain:

UixNf = xN (Ui − κ (i, N)) f, 1 ≤ i < N,

UNxNf = xN (1 +DNxN) f.

Let θN = s1s2 . . . sN−1 thus θN (N) = 1 and θN (i) = i+1 for 1 ≤ i < N
(a cyclic shift). Then

UixNf = xN
(
θ−1
N Ui+1θN

)
f, 1 ≤ i < N,

UNxNf = xN
(
1 + θ−1

N U1θN
)
f.

If f satisfies Uif = λif for 1 ≤ i ≤ N then

Ui
(
xNθ

−1
N f
)

= λi+1

(
xNθ

−1
N f
)

for 1 ≤ i < N and

UN
(
xNθ

−1
N f
)

= (λ1 + 1)
(
xNθ

−1
N f
)
.

For α ∈ NN let φ (α) := (α2, α3, . . . , αN , α1 + 1), then xNθ
−1
N xα = xφ(α).

Proposition 11. Suppose α ∈ NN , T ∈ Y (τ), then

ζφ(α),T = xNθ
−1
N ζα,T .

Proof. By straightforward arguments it follows that r (φ (α) , i) =
r (α, i+ 1) for 1 ≤ i < N and r (φ (α) , N) = r (α, 1),
that is, r (φ (α) , i) = r (α, θN (i)) for all i. This is equivalent to
r
(
φ (α) , θ−1

N (wα (j))
)

= r (α,wα (j)) = j for all j, or wφ(α) = θ−1
N wα.

The leading term xαwαvT of ζα,T is mapped to xφ(α)wφ(α)vT by f 7→
xNθ

−1
N f . Note that Uiζφ(α),T = (αi+1 + 1 + κc (r (φ (α) , i) , T )) ζφ(α),T

for 1 ≤ i < N and UNζφ(α),T = (α1 + 2 + κc (r (φ (α) , N) , T )) ζφ(α),T .
Thus xNθ

−1
N ζα,T and ζφ(α),T have the same eigenvalues for {Ui} and the

same coefficient of xφ(α).Hence xNθ
−1
N ζα,T = ζφ(α),T . �

Corollary 5.
∥∥ζφ(α),T

∥∥2
= (α1 + 1 + κc (r (α, 1) , T )) ‖ζα,T‖2.

Proof. Indeed∥∥ζφ(α),T

∥∥2
=
〈
θ−1
N ζα,T ,DNxNθ−1

N ζα,T
〉

=
〈
θ−1
N ζα,T , θ

−1
N D1x1ζα,T

〉
= 〈ζα,T ,U1ζα,T 〉

= ξ1 (α, T ) ‖ζα,T‖2 .
�

The following is a restatement and proof of Theorem (2) (Griffeth
[6, Thm. 6.1]).
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Theorem 10. Suppose λ ∈ NN,+ and T ∈ Y (τ) then

‖ζλ,T‖2 = ‖vT‖20
N∏
i=1

(1 + κc (i, T ))λi

×
∏

1≤i<j≤N

λi−λj∏
l=1

(
1− κ2

(l + κ (c (i, T )− c (j, T )))2

)
.

Proof. Argue by induction. Suppose λ1 = λ2 = . . . = λm > λm+1. Let

β = (λ1, . . . , λm−1, λm+1, . . . , λN , λ1) ,

α = (λ1 − 1, λ1, . . . , λm−1, λm+1, . . . , λN) ,

µ = (λ1, . . . , λm−1, λ1 − 1, λm+1, . . . , λN) .

Thus β = φ (α) and

‖ζβ,T‖2 = (λ1 + κc (m,T )) ‖ζα,T‖2

= (λ1 + κc (m,T )) E2 (α, T )−1 ‖ζµ,T‖2 ,
‖ζλ,T‖2 = E2 (β, T ) ‖ζβ,T‖2 .

We have

Eε (α, T ) =
m∏
j=2

(
1 +

εκ

1 + κ (c (j − 1, T )− c (m,T ))

)
,

Eε (β, T ) =
N∏

j=m+1

(
1 +

εκ

λ1 − λj + κ (c (m,T )− c (j, T ))

)
.

The validity of the formula for ‖ζµ,T‖2 thus implies the validity for

‖ζλ,T‖2 (that is, the value of ‖ζλ,T‖2 / ‖ζµ,T‖2 from the formula agrees

with (λ1 + κc (m,T ))
E2 (β, T )

E2 (α, T )
). �
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