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GENERALIZED DUMONT–FOATA POLYNOMIALS AND

ALTERNATIVE TABLEAUX

MATTHIEU JOSUAT-VERGÈS

Abstract. Dumont and Foata introduced in 1976 a three-variable symmetric
refinement of Genocchi numbers, which satisfies a simple recurrence relation.
A six-variable generalization with many similar properties was later considered
by Dumont. It generalizes a lot of known integer sequences, and its ordinary
generating function can be expanded as a Jacobi continued fraction. We give
here a new combinatorial interpretation of the six-variable polynomials in terms
of the alternative tableaux introduced by Viennot. A powerful tool to enumerate
alternative tableaux is the so-called “matrix Ansatz,” and using this we show that
our combinatorial interpretation naturally leads to a new proof of the continued
fraction expansion.

1. Introduction

The unsigned Genocchi numbers {G2n}n≥1 can be defined through their gener-
ating function:

(1.1)
∞

∑

n=1

G2n

x2n

(2n)!
= x · tan

(x

2

)

.

They are related with even Bernoulli numbers B2n by G2n = 2(4n − 1)|B2n|, and
they have a wide range of combinatorial properties [4, 10, 12, 14]. In the context
of previous work by Carlitz, Riordan and Stein, an extension of these integers was
proposed by Dumont and Foata [5]. It is defined by the recurrence F1(x, y, z) = 1
and

(1.2) Fn(x, y, z) = (x + y)(x + z)Fn−1(x + 1, y, z)− x2Fn−1(x, y, z).

They show that the polynomial Fn is symmetric in x, y, and z, with non-negative
coefficients, and such that Fn(1, 1, 1) = G2n+2. Another nice property is that the
generating function

∑∞
n=1 Fnt

n can be expanded as a J-fraction (we will be more
precise right below). Gessel and Zeng [7] showed that Fn+1 is the nth moment of
some orthogonal polynomials known as continuous dual Hahn polynomials, which
are an important sequence in the Askey-Wilson hierarchy [8].
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A further generalization of Genocchi numbers with many similar properties was
defined by Dumont in terms of some combinatorial objects called escaliers [4]. It is
a sequence of six-variable polynomials Γn(x, y, z, x̄, ȳ, z̄), or just Γn for short. They
can be characterized by a recurrence relation which generalizes (1.2), and has been
obtained independently by Randrianarivony [10] and Zeng [14]. For brevity, let Γ+

n

denote Γn(x + 1, y, z, x̄ + 1, ȳ, z̄).

Definition 1.1. The generalized Dumont–Foata polynomials are defined by Γ1 = 1
and

(1.3) Γn = (x + z̄)(y + x̄)Γ+
n−1 +

(

x(ȳ − y) + x̄(z − z̄)− xx̄
)

Γn−1.

Quite a lot of known integer sequences appear as specializations of Γn [10, 11,
14]: Genocchi numbers, median Genocchi numbers, Euler numbers, median Eu-
ler numbers, Springer numbers. The polynomial Γn generalizes Fn since we have
Γn(x, y, z, x, y, z) = Fn(x, y, z).

Dumont [4] conjectured that we have the following J-fraction for
∑

Γnt
n:

(1.4)
∞

∑

n=1

Γnt
n =

t

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

,

where the parameters bn and λn are defined by:

bn = (x + n)(ȳ + n) + (y + n)(z̄ + n) + (z + n)(x̄ + n)− n(n + 1),

λn = n(x̄ + y + n− 1)(ȳ + z + n− 1)(z̄ + x + n− 1).
(1.5)

This was proved independently by Randrianarivony [10] and Zeng [14] (and of
course this implies the J-fraction expansion for

∑

Fntn). More precisely, Randri-
anarivony’s method consists in the study of a Stieltjes tableau and Zeng’s method
consists in calculations of Hankel determinants.

The main goal of this article is to give a new combinatorial interpretation of Γn

in terms of alternative tableaux [9, 13] and six statistics on them, and obtain as
a consequence a new proof of the continued fraction expansion (1.4). Alternative
tableaux were introduced by Viennot [13] in the context of a model of statistical
physics called Partially Asymmetric Simple Exclusion Process (PASEP) and previ-
ous work of Corteel and Williams [2]. The “matrix Ansatz” first appeared in [3], as
a way to obtain the stationary distribution of the PASEP. In the combinatorial con-
text, it is a method to enumerate these alternative tableaux in terms of operators
satisfying certain relations. We will also describe an analog of the matrix Ansatz to
enumerate escaliers, which are the combinatorial objects used by Dumont to define
Γn in [4].
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This article is organized as follows. In Section 2 we give definitions and known
facts about alternative tableaux and the matrix Ansatz. In Section 3 we prove
the new combinatorial interpretation of Γn in terms of alternative tableaux using
the recurrence (1.3). Section 4 contains our new proof of the continued fraction
expansion (1.4). In Section 5, we describe the analog of the matrix Ansatz to
enumerate escaliers.

2. Alternative tableaux

Throughout this article we use the French convention for Young diagrams, and
Young diagrams may contain rows or columns of size 0. Any Young diagram is
characterized by its upper-right boundary, which is a sequence of unit steps going
left or going down. We will encode this sequence by a word in the two letters D

and E, so that D corresponds to the step → and E corresponds to the step ↓. For
example, DDEDE is the Young diagram with two rows of respective lengths 2 and
3.

Definition 2.1. Let λ be a Young diagram. An alternative tableau of shape λ is a
filling of λ such that each cell is either empty, contains an arrow ← or an arrow ↓,
and each arrow has a clear view to the boundary. More precisely, all cells below a
↓ in the same column (or to the left of a ← in the same row) are empty. A column
(respectively row) of an alternative tableau is free if it contains no ↓ (respectively no
←). We denote by fr(T ) (respectively fc(T )) the number of free rows (respectively
free columns) of T . See Figure 1 for examples. We use here the notation with
arrows as introduced by Nadeau [9].

↓ ↓
←

←

←
←

↓ ↓
←
←

←
↓

←
←
←

↓
↓

Figure 1. Examples of alternative tableaux.

Alternative tableaux of a given shape can be enumerated via a method called
matrix Ansatz. This method appeared in the context of a model of statistical
physics (the partially asymmetric simple exclusion process), where it is used to
derive the stationary probabilities of any state of the process.

Proposition 2.2 (Corteel, Williams [2]). Let 〈W | be a row vector, |V 〉 a

column vector, and D and E matrices such that:

(2.1)
〈W |V 〉 = 1, 〈W |E = x̄〈W |, D|V 〉 = y|V 〉, and DE − ED = D + E.
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Let w be a word in the two letters D and E, then we have

(2.2) 〈W |w|V 〉 =
∑

T

x̄fr(T )yfc(T )

where the sum is over alternative tableaux T of shape w.

The result of Corteel and Williams was actually stated in terms of permutation

tableaux, which are slightly different objects. The above — equivalent — statement
in terms of alternative tableaux can be found in Viennot [13] and Nadeau [9], as
well as the bijection between permutation tableaux and alternative tableaux. We
have chosen to use alternative tableaux in this work because of their symmetry.
Indeed, there is an elementary involution on alternative tableaux which is conjuga-

tion. To conjugate a tableau, take the reflection of the whole picture with respect
to the South-West to North-East axis symmetry (in particular, the ← and ↓ are
exchanged). See [9] for details.

Note that relations (2.1) ensure that 〈W |w|V 〉 is well-defined and can be com-
puted explicitly. Indeed, we can use DE − ED = D + E to obtain some coeffi-
cients ci,j such that w =

∑

i,j ci,jE
iDj , and from the other relations we can obtain

〈W |w|V 〉. We refer to [2, 1] for more details.

Although not necessary to compute 〈W |w|V 〉 for a given word w, it is useful to
have explicit matrices satisfying the PASEP matrix Ansatz. It can be checked [3]
that the following N× N-matrices:
(2.3)

D =















y 1 (0)

y + 1 2

y + 2 3

y + 3
.. .

(0)
. . .















, E =















x̄ (0)

y + x̄ x̄ + 1

y + x̄ + 1 x̄ + 2

y + x̄ + 2 x̄ + 3

(0)
. . .

. . .















,

satisfy DE − ED = D + E. They are essentially a particular case of matrices
defined by Derrida et al. [3] in the context of the PASEP. As for the vectors, we
can take 〈W | = (1, 0, 0, . . . ) and |V 〉 = (1, 0, 0, . . . )∗, and all relations in (2.1) are
satisfied.

3. The new combinatorial interpretation of Γn

It is known [13] that G2n+2 is the number of alternative tableaux whose shape is
the staircase with n rows and columns, i.e., the Young diagram corresponding to the
word (DE)n. In [1], we have given three statistics on staircase alternative tableaux
to give a combinatorial interpretation of Fn(x, y, z). These are: the number of free
rows, the number of free columns, and the number of corners containing ← or ↓.
Here, we give six statistics for the more general case of Γn. Another difference is



GENERALIZED DUMONT–FOATA POLYNOMIALS AND ALTERNATIVE TABLEAUX 5

that, in [1], the combinatorial interpretation was derived from the J-fraction for
∑

Fntn, but here we use the recurrence relation (1.3) to prove the result.

Definition 3.1. A column (respectively row) of an alternative tableau is empty if
it contains no ↓ nor ←. Let T be an alternative tableau. We denote by:

• emr(T ), the number of empty rows in T ,
• fnc(T ), the number of free non-empty columns in T ,
• dco(T ), the number of corners containing a ↓ in T ,
• fnr(T ), the number of free non-empty rows in T ,
• emc(T ), the number of empty columns in T ,
• lco(T ), the number of corners containing a ← in T .

Moreover, let Tn be the set of alternative tableaux whose shape is the staircase
Young diagram with n rows and n columns.

For example, the rightmost tableau in Figure 1 is in T5, and the six statistics
that we have just defined are 2, 2, 2, 0, 1, 0, respectively. The main new result of
this article is the following.

Theorem 3.2. For any n ≥ 1, we have

(3.1) Γn(x, y, z, x̄, ȳ, z̄) =
∑

T∈Tn−1

xemr(T )yfnc(T )zdco(T )x̄fnr(T )ȳemc(T )z̄lco(T ).

Proof. Both sides are equal to 1 when n = 1, so it suffices to show that the right-
hand side satisfies the recurrence relation (1.3). We distinguish six kinds of tableaux
in the set Tn−1, according to the content of their leftmost column and upper left
corner. Assuming that the theorem is true for n − 1, we will show that these six
kinds of tableaux have generating functions which add up to the right-hand side of
(1.3). This is summarized in the following table.

The leftmost
column is:

The upper left corner contains:

↓ ← nothing

empty × × Case 4

xȳΓn−1

free
non-empty

× Case 2 Case 5

yz̄Γ+
n−1 xy(Γ+

n−1 − Γn−1)

non-free
Case 1 Case 3 Case 6

x̄zΓn−1 x̄z̄(Γ+
n−1 − Γn−1) xx̄(Γ+

n−1 − Γn−1)
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For example we will show that the tableaux of the fourth kind (case 4), i.e., those
having an empty leftmost column, have generating function xȳΓn−1. The three cells
containing a × in this table do not correspond to any tableaux.

←
←
↓
↓

↓

←
←
↓
↓

←

←
←
↓
↓

←
←
↓
↓

Figure 2. Recursive construction of staircase alternative tableaux.

• Case 1. When the upper-left corner contains a ↓, there is no other arrow in the
leftmost column. This corresponds to the first picture in Figure 2. In this first
kind of tableaux, the topmost row is free non-empty, and the upper left corner
contains a ↓, so this gives a factor x̄z. After removing the leftmost column,
there can remain any tableau in Tn−2, hence the factor Γn−1. So the first kind
of tableaux gives indeed the term x̄zΓn−1.
• Case 2. There is a factor yz̄ since we assume that there is a← in the upper left
corner, and that the leftmost column is free and non-empty. These tableaux can
be obtained the following way: consider any tableau T in Tn−2, add a column
to its left with a ← in the topmost cell of the added column. We color some of
the other cells in the added column in gray as in the second picture in Figure 2,
such that a cell is colored if there is no ← to its right. Then, decide whether
each gray cell is empty or contains a ←. All tableaux of the second kind can
be obtained in this way, and the gray cells are in correspondence with the free
rows of T . At the level of generating functions, this amounts to substituting x

by x + 1 and x̄ by x̄ + 1. Indeed, an empty (respectively free non-empty) row
remains so if we add nothing in the gray cell, but becomes non-free if we add a
←.
• Case 3. This corresponds to the second picture in Figure 2, but with the
assumption that there is a ↓ in one of the gray cells. Let us consider the set
S of tableaux of the second kind such that there is at least a ← in some gray
cell. This set has generating function yz̄(Γ+

n−1−Γn−1); indeed, we have already
yz̄Γ+

n−1 for all the tableaux of the second kind, and the term −yz̄Γn−1 removes
the cases where all gray cells are empty. Then there is a bijection between
this set S and the tableaux of the third kind. Indeed, let T ∈ S, consider the
bottommost ← in the leftmost column of T , and replace this ← by a ↓. In
this way, we obtain exactly the tableaux of the third kind. Replacing the ←
by ↓ gives a factor x̄y−1 at the level of generating functions. Thus we obtain
x̄z̄(Γ+

n−1 − Γn−1) for the third kind of tableaux.
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• Case 4. This is similar to case 1, and it corresponds to the third picture in
Figure 2. Here, removing the first column gives a factor xȳ since we assume
that the leftmost column is empty, and hence the upper row is empty. There
can remain any tableau in Tn−2, hence the factor Γn−1. Thus we obtain xȳΓn−1

for the fourth kind of tableaux.
• Case 5. This corresponds to the fourth picture in Figure 2, with the assumption
that the gray cells contain no ↓ and at least a ←. Here the gray cells are
obtained exactly as in case 2 above. Proceeding similar to case 3 above, we
obtain xy(Γ+

n−1 − Γn−1) for the fifth kind of tableaux.
• Case 6. There is a bijection between the fifth kind and the sixth kind of
tableaux, similar to the bijection used in case 3. From a tableau of the fifth
kind, consider the bottommost← in the leftmost column, and replace it by a ↓.
Replacing the ← by ↓ gives a factor x̄y−1 at the level of generating functions.
Thus we obtain xx̄(Γ+

n−1 − Γn−1) for the sixth kind of tableaux.

Adding the six terms in the above table, we get the right-hand side of (1.3). This
shows that the right-hand side of (3.1) satisfies the same recurrence as Γn and
completes the proof. �

As previously mentioned, there is a simple bijection between alternative tableaux
and permutation tableaux, and it is possible to derive a combinatorial interpretation
of Γn in terms of permutation tableaux, but the result is much more natural with
the alternative tableaux. In particular, the conjugation of alternative tableaux
provides an easy way to prove a symmetry property of Γn, which has been first
given by Randrianarivony [10] and Zeng [14].

Proposition 3.3 ([10, 14]). For any permutation σ = u, v, w of x, y, z we have:

• if σ has positive sign, then Γn(u, v, w, ū, v̄, w̄) = Γn(x, y, z, x̄, ȳ, z̄),
• if σ has negative sign, then Γn(u, v, w, ū, v̄, w̄) = Γn(x̄, ȳ, z̄, x, y, z).

In particular, Fn(x, y, z) = Γn(x, y, z, x, y, z) is symmetric in x, y, and z.

Proof. From the recurrence relation (1.3), we have

(3.2) Γ(x, y, z, x̄, ȳ, z̄) = Γ(x̄, z̄, ȳ, x, z, y).

From the combinatorial interpretation in (3.1) and using the conjugation of alter-
native tableaux, we have

(3.3) Γ(x, y, z, x̄, ȳ, z̄) = Γ(ȳ, x̄, z̄, y, x, z).

All symmetries given in the statement of the proposition can be obtained by com-
bining (3.2) and (3.3). �

It is rather curious that one symmetry is obvious from the combinatorial inter-
pretation, and the other from the recurrence relation. In the model in terms of
escaliers (see Section 5), only one symmetry is obvious, and this both from the
combinatorial interpretation and the recurrence relation. Note that any symmetry
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of a generating function necessarily appears in the coefficients of its expansion as a
J-fraction, and indeed it is straightforward to check that the coefficients bn and λn

defined in (1.5) have the same symmetries as Γn.

4. The continued fraction expansion

In this section, we show that Γn can be calculated via the matrix Ansatz, and
we derive as a consequence a new proof of the continued fraction expansion for
∑

Γnt
n. We consider the matrix

(4.1) M = ED + (z̄ + x− x̄)D + (z + ȳ − y)E + (ȳ − y)(x− x̄)I,

where D, E are defined in (2.3), and I is the identity matrix. It turns out that
we can exploit Proposition 2.2 to obtain the following matrix representation of our
polynomials Γn+1.

Proposition 4.1. For any n ≥ 0, we have

(4.2) Γn+1(x, y, z, x̄, ȳ, z̄) = 〈W |Mn|V 〉.

To prove this, we need a few helpful definitions and lemmas.

Definition 4.2. Let T ∗
n be the set of pairs (T, X), where T ∈ Tn and X is a subset

of the empty rows and columns of T . Such a pair (T, X) is called an extended

tableau, and it will be represented the following way: from a picture of T , each row
or column in X is distinguished by a dashed line going through it. See Figure 3 for
some examples. Given U = (T, X) ∈ T ∗

n , we define

• hr(U) as the number of dashed rows,
• hc(U) as the number of dashed columns.

For any statistic “stat” on alternative tableaux and U = (T, X) ∈ T ∗
n , we define

stat(U) = stat(T ). For any extended tableau U , we define the weight w(U) as

w(U) = x̄emr(U)−hr(U)yfnc(U)zdco(U)x̄fnr(U)yemc(U)−hc(U)z̄lco(U)(x− x̄)hr(U)(ȳ − y)hc(U)

= yfc(U)−hc(U)zdco(U)x̄fr(U)−hr(U)z̄lco(U)(x− x̄)hr(U)(ȳ − y)hc(U),

(4.3)

the last equality following from emr(T ) + fnr(T ) = fr(T ) and emc(T ) + fnc(T ) =
fc(T ) for any alternative tableau T .

←

← ↓ ↓

←

←
↓ ↓

Figure 3. Example of two extended alternative tableaux.
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Lemma 4.3. We have:

(4.4)
∑

U∈T ∗

n

w(U) =
∑

T∈Tn

xemr(T )yfnc(T )zdco(T )x̄fnr(T )ȳemc(T )z̄lco(T ).

Proof. In the sum
∑

U∈T ∗

n

w(U), we have distinguished two kinds of empty rows

(dashed or non-dashed) with respective weights x − x̄ and x̄ instead of one kind
of empty row with weight x. Similarly we have distinguished two kinds of empty
columns (dashed or non-dashed) with respective weights ȳ− y and y instead of one
kind of empty column with weight ȳ. By an elementary argument, it is clear that
these distinctions do not change the generating function. �

Definition 4.4. Let (T, X) be an extended tableau in T ∗
n . The profile of (T, X) is

the sequence (i1, . . . , in), where:

• ik = 1 if the kth corner of T is empty,
• ik = 2 if the kth corner of T contains a ←,
• ik = 3 if the kth corner of T is in a dashed row but not in a dashed column,
• ik = 4 if the kth corner of T contains a ↓,
• ik = 5 if the kth corner of T is in a dashed column but not in a dashed row,
• ik = 6 if the kth corner of T is in a dashed column and in a dashed row.

Here the corners are numbered from the upper left to the lower right. For example,
the first extended tableau in Figure 3 has profile (1, 5, 1, 4, 6), and the second one
has profile (5, 2, 3, 1, 4).

Lemma 4.5. Let M1, . . . , M6 be the matrices

(4.5)
M1 = ED, M2 = z̄D, M3 = (x− x̄)D,

M4 = zE, M5 = (ȳ − y)E, M6 = (ȳ − y)(x− x̄)I.

For any (i1, . . . , in) ∈ {1, . . . , 6}n, we have

(4.6)
∑

U

w(U) = 〈W |Mi1 · · ·Min |V 〉,

where the sum is over extended tableaux U of profile (i1, . . . , in).

Proof. Let w be the word obtained from i1 . . . in through the substitution 1 7→ ED,
2 7→ D, 3 7→ D, 4 7→ E, 5 7→ E, 6 7→ ǫ (ǫ being the empty word). The main
point is that there is a bijection φ between elements in T ∗

n of profile (i1, . . . , in)
and alternative tableaux of shape w. Indeed, to build an extended tableau, once
the contents of the corners are specified, it remains only to choose an alternative
tableau of a smaller shape. More precisely, the bijection can be constructed in the
following way:

• for each empty corner of the extended tableau, remove the corresponding cell
in the Young diagram,
• shrink each dashed row or column,
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• for each corner of the extended tableau containing a← (respectively ↓), shrink
the row (respectively column) containing it.

See Figure 4 for an example, where we give the image of the two extended tableaux
in Figure 3.

←

←↓
←
↓

Figure 4. Images of extended tableaux by the map φ.

The weight of an extended tableau U of profile (i1, . . . , in) is the product

yazbx̄cz̄d(x− x̄)e(ȳ − y)f ,

where:

• a is the number of non-dashed free columns in U ,
• b = dco(U) is the number of 4’s in (i1, . . . , in),
• c is the number of non-dashed free rows in U ,
• d = lco(U) is the number of 2’s in (i1, . . . , in),
• e = hr(U) is the number of 3’s plus the number of 6’s in (i1, . . . , in),
• f = hc(U) is the number of 5’s plus the number of 6’s in (i1, . . . , in).

An important property of the bijection φ is that the free rows (respectively columns)
of φ(U) are in correspondence with non-dashed free rows (respectively columns) of
U . It follows that

(4.7)
∑

U

w(U) = zbz̄d(x− x̄)e(ȳ − y)f
∑

T

x̄fr(T )yfc(T ),

where the first sum is over extended tableau of profile (i1, . . . , in) and the second is
over alternative tableau of shape w.

Now, examine the product Mi1 · · ·Min . The factors D and E in this product
readily give the word w, and the other factors readily give zbz̄d(x− x̄)e(ȳ− y)f , so:

(4.8) 〈W |Mi1 · · ·Min |V 〉 = zbz̄d(x− x̄)e(ȳ − y)f〈W |w|V 〉.

Using Proposition 2.2, the result follows from (4.7) and (4.8). �

Now we can prove Proposition 4.1.

Proof. Since M =
∑6

i=1 Mi, the expansion of Mn is also the sum of all products
Mi1 · · ·Min , where (i1, . . . , in) runs through the set {1, . . . , 6}n. Hence,

(4.9) 〈W |Mn|V 〉 =
∑

(i1,...,in)∈{1,...,6}n

〈W |Mi1 · · ·Min |V 〉.
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Using Equation (4.6) in Lemma 4.5, this gives

(4.10) 〈W |Mn|V 〉 =
∑

U∈T ∗

n−1

w(U).

Using Equation (4.4) in Lemma 4.3 and Theorem 3.2, this is equal to Γn+1. �

From the definitions of D and E in (2.3), the matrix M defined in (4.1) can be
calculated explicitly, and we obtain the following result.

Proposition 4.6. The matrix M = (Mi,j)i,j∈N is tridiagonal, and for any i ≥ 0 we

have

(4.11) Mi,i = bi and Mi,i+1Mi+1,i = λi+1,

where bi and λi are defined in (1.5).

Proof. We have

Mi,i = Ei,iDi,i + Ei,i−1Di−1,i + (z̄ + x− x̄)Di,i + (z + ȳ − y)Ei,i + (ȳ − y)(x− x̄)

= (x̄ + i)(y + i) + (y + x̄ + i− 1)i + (z̄ + x− x̄)(y + i)

+ (z + ȳ − y)(x̄ + i) + (ȳ − y)(x− x̄)

= xȳ + yz̄ + zx̄ + i
(

x̄ + ȳ + z̄ + x + y + z
)

+ i(2i− 1) = bi.

We have also

Mi,i+1 = Ei,iDi,i+1 + (z̄ + x− x̄)Di,i+1

= (x̄ + i)(i + 1) + (z̄ + x− x̄)(i + 1) = (x + z̄ + i)(i + 1),

and

Mi+1,i = Ei+1,iDi,i + (z + ȳ − y)Ei+1,i = (y + x̄ + i)(y + i) + (z + ȳ − y)(y + x̄ + i)

= (x̄ + y + i)(z + ȳ + i).

Hence, Mi,i+1Mi+1,i = λi+1. It is straightforward to check that the other coefficients
in M are 0, and this completes the proof. �

As a direct consequence of Propositions 4.1 and 4.6, let us give a new proof of
the continued fraction expansion given in (1.4). First, note that 〈W |Mn|V 〉 is the
top-left coefficient (Mn)0,0 of the matrix Mn. This coefficient can be obtained by
expanding the product Mn, and we obtain

(4.12) 〈W |Mn|V 〉 =
∑

i1,...,in−1≥0

M0,i1Mi1,i2 · · ·Min−2,in−1
Min−1,0.

Since the matrix M is tridiagonal, we can restrict the sum to the case where two
successive indices differ by at most 1, i.e., |ij − ij+1| ≤ 1 for any j ∈ {0, . . . , n− 1},
where i0 = in = 0. These indices thus define the successive heights of a Motzkin
path. Then (4.12) shows that Γn+1 can be seen as the generating function of
Motzkin paths of n steps, with a weight bi for a level step at height i, and a weight
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λi for a stepր between height i−1 and i. By a standard argument [6] this implies
the continued fraction given in (1.4).

5. The matrix Ansatz for escaliers

In the previous section, we have applied the link between alternative tableaux and
matrices D and E satisfying DE −ED = D + E to obtain the continued fraction.
In this section, we consider escaliers, which are the combinatorial objects used by
Dumont [4] to define Γn. We will show that these objects can be enumerated by a
similar method, but with matrices B and A satisfying BA− AB = A + I.

We will denote a Young diagram by a word in B and A in the same way as we
did with D and E (B and A, respectively, correspond to steps → and ↓ along the
North-East boundary of the Young diagram).

Definition 5.1. A surjective pretableau is a partial filling of a Young diagram with
×’s, such that there is at least one × in each row and at most one × in each column.
A surjective tableau is a surjective pretableau such that there is exactly one × in
each column. An escalier (of size n) is a surjective tableau of shape (BBA)n. See
Figure 5 for some examples.

×
×
×
×

×

×
×
×
×
×
×

Figure 5. Examples of surjective pretableaux of shape (BBA)4.

The definition of Γn by Dumont [4] is given in terms of escaliers of size n and
six statistics on them. There is an obvious bijection between escaliers of size n and
surjective pretableau of shape (BBA)n−1 (remove the bottom row of the escalier),
so that Dumont’s definition is equivalent to the following (as mentioned in the
introduction, this is also known to be equivalent with Definition 1.1).

Definition 5.2. A co-corner of the Young diagram (BBA)n is a cell which is the
left neighbor of a corner (for example the upper-left cell is a co-corner). Let Sn be
the set of surjective pretableau of shape (BBA)n. A column is empty if it contains
no ×. A × is doubled if there is another × in the same row. We denote by:

• mi(T ), the number of empty columns of odd index,
• fd(T ), the number of corners containing a doubled ×,
• snd(T ), the number of co-corners containing a non-doubled ×,
• mp(T ), the number of empty columns of even index,
• fnd(T ), the number of corners containing a non-doubled ×,
• sd(T ), the number of co-corners containing a doubled ×,
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Finally, Γn can be defined as

(5.1) Γn =
∑

T∈Sn−1

xmi(T )yfd(T )zsnd(T )x̄mp(T )ȳfnd(T )z̄sd(T ).

For example, the values of the six statistics on the first surjective pretableau in
Figure 5 are 1, 1, 1, 2, 1, and 0. As for the second one, the values are 0, 1, 2,
2, 0, and 1. The fact that these objects also follow the recurrence (1.3) is seen
by distinguishing several kinds of elements in Sn−1 according to the content of the
bottom row [10, 14].

The analog of the matrix Ansatz for escaliers is given in the following proposition.
The proof is similar to the case of alternative tableaux, and various examples of
this kind of results were given in [1].

Proposition 5.3. Let 〈W | be a row vector, |V 〉 a column vector, and A and B

matrices such that:

(5.2) 〈W |V 〉 = 1, 〈W |A = 0, B|V 〉 = 0, BA−AB = A + I.

Let w be a word in the two letters B and A. Then the number of surjective tableaux

of shape w is 〈W |w|V 〉.

Proof. This is done by an induction on the number of cells in the Young diagram.
If there is no cell, then w = AiBj for some i and j, so 〈W |w|V 〉 equals 0 if i > 0
or j > 0 and 1 otherwise. Since there is at least a × in each row and column of
a surjective tableau, there is no such tableau of shape AiBj if i > 0 or j > 0, but
we do have the “empty” surjective tableau in the “empty Young diagram” when
i = j = 0.

Next, consider a word w which is not in the form AiBj . This means that we can
factorize it into w = w1BAw2, and the factor BA corresponds to a corner of the
Young diagram. We can distinguish three kinds of surjective tableaux of shape w,
depending on the content of this corner.

• If the corner is empty, we can remove it and obtain any surjective tableaux of
shape w1ABw2. By the induction hypothesis, their number is 〈W |w1ABw2|V 〉.
• If the corner contains a doubled ×, we can delete the corner and its column, and
obtain any surjective tableau of shape w1Aw2. Their number is 〈W |w1Aw2|V 〉.
• If the corner contains a non-doubled ×, we can remove the corner and its row
and column, and obtain any surjective tableau of shape w1w2. Their number is
〈W |w1w2|V 〉.

It follows that the number of surjective tableaux of shape w is

〈W |w1ABw2|V 〉+ 〈W |w1Aw2|V 〉+ 〈W |w1w2|V 〉 = 〈W |w1BAw2|V 〉 = 〈W |w|V 〉,

and this completes the induction step. �
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It is easily checked that the N× N-matrices

(5.3) B =













0 1 (0)

1 2

2 3

3
. . .

(0)
. . .













, A =













0 (0)

1 0

1 0

1 0

(0)
. . .

. . .













,

satisfy BA−AB = A+I. We keep the definition of 〈W | and |V 〉 as in the previous
sections, since this also ensures that we have 〈W |A = 0 and B|V 〉 = 0.

To see how to use this result in the case of Γn, let us begin with the particular
case y = z = ȳ = z̄ = 1. We know that the number of surjective tableaux of shape
(BBA)n is 〈W |(BBA)n|V 〉. If we want to count surjective pretableaux, we have to
authorize empty columns, and this is done by replacing B by B + I. Indeed, in the
expansion of the product 〈W |((B + I)(B + I)A)n|V 〉, the choice of B or I in some
factor corresponds to the choice of leaving a column empty or not. So the number
of surjective pretableaux of shape (BBA)n is 〈W |((B+I)(B+I)A)n|V 〉. If we want
to follow the empty columns of odd (respectively even) index by the parameter x

(respectively x̄), it suffices to mark the terms I, and we obtain Γn+1(x, 1, 1, x̄, 1, 1) =
〈W |((B + xI)(B + x̄I)A)n|V 〉.

As for the general case, in the same way that we have obtained Proposition 4.1
from the combinatorial interpretation in terms of alternative tableaux, we can ob-
tain the following from the combinatorial interpretation in terms of escaliers.

Proposition 5.4. For any n ≥ 0, we have Γn+1 = 〈W |Nn|V 〉 where N is the

matrix

(5.4) N = A(B+xI)(B+ x̄I)+yz̄(A+I)+(zI + z̄A)(B+ x̄I)+(ȳI +yA)(B+xI).

As in the previous section, we need some helpful definitions and lemmas.

Definition 5.5. The profile of T ∈ Sn is the sequence (i1, . . . , in), where

• ik = 1 if the kth co-corner and kth corner are empty,
• ik = 2 if the kth co-corner and kth corner both contain a ×,
• ik = 3 if the kth co-corner contains a non-doubled ×,
• ik = 4 if the kth co-corner contains a doubled × and the kth corner is empty,
• ik = 5 if the kth corner contains a non-doubled ×,
• ik = 6 if the kth corner contains a doubled × and the kth co-corner is empty.

For example, the two surjective pretableaux in Figure 5 have profiles (5, 6, 3, 1)
and (3, 3, 6, 4), respectively.

Lemma 5.6. We define the matrices N1 = A(B + xI)(B + x̄I), N2 = yz̄(A + I),
N3 = z(B + x̄I), N4 = z̄A(B + x̄I), N5 = ȳ(B + xI), N6 = yA(B + xI). For any
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(i1, . . . , in) ∈ {1, . . . , 6}n, we have

(5.5)
∑

T

xmi(T )yfd(T )zsnd(T )x̄mp(T )ȳfnd(T )z̄sd(T ) = 〈W |Ni1 · · ·Nin|V 〉,

where the sum is over T ∈ Sn of profile (i1, . . . , in).

Proof. We follow the same scheme as in Proposition 4.5, and use Proposition 5.3.
Here, the surjective pretableaux of a given profile are in bijection with surjective
tableaux of a particular shape. Rather than giving a formal detailed proof, we
sketch how to understand the matrices N1 through N6, having in mind the proof
of Proposition 5.3 and the way surjective tableaux are built recursively.

• The kth co-corner and kth corner correspond to the kth factor BBA in the
word (BBA)n. If these are empty (i.e., ik = 1), we can remove the two cells and
replace the factor BBA by ABB. With the terms xI and x̄I as seen before, we
see that this case correspond to the matrix N1 = A(B + xI)(B + x̄I).
• If ik = 2, i.e., the kth co-corner and kth corner both contain a ×, we can
remove the two columns containing these ×’s, and remove the factor BB in
BBA. But we need to distinguish two cases, depending on whether there is a
third × in the same row or not, and if there is not, we also remove the row. This
gives a factor A + I, and there is a weight yz̄ because of the doubled × in the
corner and co-corner. Hence this case correspond to the matrix N2 = yz̄(A+I).
• If ik = 3, i.e., the kth co-corner contains a non-doubled ×, we can remove its
row and column, so the kth factor BBA becomes a B + x̄I. There is a weight
z for the non-doubled × in the co-corner. Hence this case gives the matrix
N3 = z(B + x̄I).
• If ik = 4, the difference with the previous case is that the × in the kth co-corner
is doubled, so we do not remove its row. So there remains a factor A, and there
is a weight z̄ instead of z. Hence this case gives the matrix N4 = z̄A(B + x̄I).
• If ik = 5, this is similar to the case when ik = 3. But the weight is ȳ instead
of z for the non-doubled × in the corner, and there remains a column of odd
index so this gives a factor B + xI instead of B + x̄I. Hence this case gives the
matrix N5 = ȳ(B + xI).
• If ik = 6, this is similar to the case when ik = 4. But the weight is y instead of
z̄ for the doubled × in the corner, and there remains a column of odd index so
this gives a factor B + xI instead of B + x̄I. Hence this case gives the matrix
N6 = yA(B + xI).

When we form the product Ni1 · · ·Nin , it is clear that the matrix Nik will impose
the conditions on the kth co-corner and corner, and hence 〈W |Ni1 · · ·Nin|V 〉 is the
generating function for elements in Sn of profile (i1, . . . , in). �

Now we can prove Proposition 5.4.
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Proof. We have N =
∑6

i=1 Ni, hence, using Lemma 5.6, we have

〈W |Nn|V 〉 =
∑

(i1,...,in)∈{1,...,6}n

〈W |Ni1 · · ·Nin |V 〉

=
∑

T∈Sn

xmi(T )yfd(T )zsnd(T )x̄mp(T )ȳfnd(T )z̄sd(T ) = Γn+1.

This completes the proof. �

From the definitions of B and A in (5.3), the matrix N defined in (5.4) can be
calculated explicitly, and we obtain the following result.

Proposition 5.7. The matrix N = (Ni,j)i,j∈N is tridiagonal, and for any i ≥ 0 we

have Ni,i = bi and Ni,i+1Ni+1,i = λi+1.

Proof. Straightforward calculations show that Ni,j = 0 if |i− j| > 1, Ni,i = bi, and

(5.6) Ni,i+1 = (i + 1)(z + ȳ + i), Ni+1,i = (x + z̄ + i)(y + x̄ + i).

This gives indeed Ni,i+1Ni+1,i = λi+1. �

As in the case of alternative tableaux in the previous section, the previous two
propositions mean that the continued fraction expansion given in (1.4) can be
derived from the combinatorial interpretation in terms of escaliers and the matrix
Ansatz for escaliers given in Proposition 5.3.

Remark 5.8. Observe that N 6= M since the non-diagonal coefficients are not
the same, but the two matrices are equal after a permutation of the variables
(x, y, z, x̄, ȳ, z̄). However, there is a priori no simple way to link the matrices Mi

with the matrices Ni, so we tend to think that, despite the similarities in the
method, there are two really different ways to obtain the continued fraction from a
combinatorial model using the matrix Ansatz approach.

It is natural to ask if there is a bijection between Tn and Sn preserving the six
statistics for Γn. From the fact that the recurrence relation can be verified on both
sets, in theory it might be possible to describe such a bijection recursively. It would
be quite interesting to give a better answer to this question by providing a direct
bijection between our alternative tableaux and Dumont’s escaliers.

Conclusion

Our main result is the new combinatorial interpretation of Γn in terms of alter-
native tableaux. We obtain two new proofs of Dumont’s conjecture, with the same
method applied to the two different combinatorial interpretations of Γn. What is
interesting about these proofs is that they fit into the general framework developed
in [1], linking J-fractions, operators satisfying certain commutation relations, and
combinatorial objects.
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