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THE NUMBER OF RIBBON SCHUR FUNCTIONS

MARTIN RUBEY

Abstract. We present formulas for the number of distinct ribbon Schur functions
of a given size, and of a given size and height.

1. Introduction

An important basis for the space of homogeneous symmetric functions of degree
n is the set of Schur functions sλ, indexed by partitions λ of n. A larger set of
homogeneous symmetric functions of degree n is the set of skew Schur functions
sλ/µ. These are indexed by skew shapes λ/µ of size n, i.e., pairs of partitions (λ, µ)
such that

• λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) is a partition of n + m,
• µ = (µ1 ≥ µ2 ≥ · · · ≥ µℓ > 0) is a partition of m,
• k, the number of parts of λ, is strictly larger than ℓ, the number of parts of

µ,
• and µi ≤ λi for i ≤ ℓ.

When µ is the empty partition, i.e., ℓ = 0, sλ/µ = sλ. Since the set of Schur functions
is a basis, there must be relations between skew Schur functions. Equalities between
skew functions have been studied by Stephanie van Willigenburg, Peter McNamara,
Vic Reiner and Kristin Shaw [8, 5, 4] and, in the multiplicity-free case, by Christian
Gutschwager [2]. However, so far only partial results and a conjecture are available.

The situation is very different for the subset of ribbon Schur functions, that are
indexed by ribbons, also known as rim hooks or border strips. These are skew shapes
that satisfy λi+1 = µi + 1 for 1 ≤ i < k, where we set µi = 0 for i > ℓ. Here are the
ribbons of size 4:

It can be shown that the space of homogeneous symmetric functions of degree n is
also generated by the set of ribbon Schur functions of size n. For these functions,
Louis J. Billera, Hugh Thomas, and Stephanie van Willigenburg [1] give a criterion
for deciding when they are equal. In this article we use this criterion to count
the number of distinct ribbon Schur functions of a given size, see Theorem 3.4.
Furthermore, letting the height of a ribbon Schur function be the number of parts of
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λ minus one, we also find the generating function for the number of distinct ribbon
Schur functions of a given size by height, see Theorem 4.2.

Note that ribbons λ/µ of size n and height m− 1 can be identified with composi-
tions α of size n and length m by setting αi = λi − µi for all i. Two compositions α
and β are called equivalent, denoted α ∼ β, if and only if the corresponding ribbon
Schur functions are equal.

In the following section we recall a binary operation on compositions from [1], that
makes the set of compositions into a monoid with (almost) unique factorisation.
One of the main theorems of [1] shows that equivalence of compositions is easily
determined given their factorisations.

In Section 3 we present a relatively appealing formula for the number of distinct
ribbon Schur functions of a given size, while in Section 4 we exhibit a (not nearly as
beautiful) formula for the number of distinct ribbon Schur functions of a given size
and height. For more information on symmetric functions we refer to Chapter 7 of
Enumerative Combinatorics 2 [7].

2. Composition of Compositions
and equality of ribbon Schur functions

In this section we collect the definitions and results from [1] that are relevant for
our approach. As mentioned before, the basic objects we will be working with are
compositions:

Definition 2.1. A composition α of a positive integer m, denoted α � m, is a list
of positive integers (a1, a2, . . . , ak) such that a1 + a2 + · · · + ak = m. We refer to
each of the ai as components, and say that α has length l(α) = k and size |α| = m.

Definition 2.2. Let α = (a1, a2, . . . , ak) � m and β = (b1, b2, . . . , bℓ) � n. Then the
concatenation of α and β is the composition

α · β = (a1, . . . , ak, b1, . . . , bℓ) � n + m.

Their near concatenation is

α ⊙ β = (a1, . . . , ak + b1, . . . , bℓ) � n + m.

Writing

α⊙n = α ⊙ α ⊙ · · · ⊙ α
︸ ︷︷ ︸

n

we define the composition of α and β as

α ◦ β = β⊙a1 · β⊙a2 · · · β⊙ak � mn.

The composition α = (a1, a2, . . . , ak) is symmetric if it coincides with its reversal
α∗ = (ak, ak−1, . . . , a1).

The following theorem shows that composition of compositions is a very well
behaved operation indeed:
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Theorem 2.3 ([1], Propositions 3.3, 3.7, 3.8 and 3.9). The set of compositions
together with the operation ◦ is a monoid, i.e., ◦ is associative and has neutral
element (1). Furthermore, |α ◦ β| = |α| |β| and l(α ◦ β) = l(α) + |α| (l(β) − 1).
Finally, (α ◦ β)∗ = α∗ ◦ β∗.

Note that composition of compositions is not commutative. For example, (1, 1) ◦
(2) = (2)⊙1 · (2)⊙1 = (2, 2), but (2) ◦ (1, 1) = (1, 1)⊙2 = (1, 1) ⊙ (1, 1) = (1, 2, 1).

Definition 2.4 ([1], Definition 3.5). If a composition α is written in the form
α1 ◦ α2 ◦ · · · ◦ αk then we call this a factorisation of α. A factorisation α = β ◦ γ is
called trivial if any of the following conditions are satisfied:

(1) one of β and γ is the composition 1,
(2) the compositions β and γ both have length 1,
(3) the compositions β and γ both have all components equal to 1.

A factorisation α1 ◦ α2 ◦ · · · ◦ αk is called irreducible if no αi ◦ αi+1 is a trivial
factorisation, and each αi admits only trivial factorisations. We call a composition
α irreducible, if it has not length 1, not all of its components are equal to 1 and it
admits only trivial factorisations.

We remark that irreducible compositions are not defined in [1]. In particular, the
notion does not coincide with the notion of irreducible factors.

Theorem 2.5 ([1], Theorem 3.6). The irreducible factorisation of any composi-
tion is unique.

It is not surprising that such a theorem is very useful to enumerate the underlying
objects. For experimentation it was also of great help to have a relatively efficient
test for irreducibility, which is exhibited in Definition 4.11 and Lemma 4.15 of [1].1

Finally, equivalence of compositions and therefore equality of ribbon Schur func-
tions is reduced to factorisation by the following theorem. Note that it was well
known before that reversal of compositions yields the same ribbon Schur functions,
see for example Exercise 7.56 in Enumerative Combinatorics 2 [7], which includes
also the natural extension to skew Schur functions.

Theorem 2.6 ([1], Theorem 4.1). Two compositions β and γ satisfy β ∼ γ if
and only if for some k, β = β1 ◦ β2 ◦ · · · ◦ βk and γ = γ1 ◦ γ2 ◦ · · · ◦ γk where, for
each i, either γi = βi or γi = β∗

i .

3. The number of ribbon Schur functions of a given size

Definition 3.1. We order the set of compositions of a given length lexicographically.
Thus, let α = (a1, a2, . . . , ak) and β = (b1, b2, . . . , bk) be two compositions. Then
α < β if and only if as < bs for some s, such that ar = br for all r < s. The
composition α is lexicographic minimal if α ≤ α∗.

In view of Theorem 2.5 and Theorem 2.6, we call a composition normalised, if all
factors in its irreducible factorisation are lexicographic minimal.

1An implementation can be obtained from the author of the present article.
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Thus, to determine the number of distinct ribbon Schur functions, it is sufficient
to count normalised compositions. This is not hard to achieve using a suitable com-
binatorial decomposition. The validity of our decomposition hinges on the following
lemma:

Lemma 3.2. Consider a composition α with irreducible factorisation α1◦α2◦· · ·◦αk.
Then α is symmetric if and only if all αi are symmetric for i ∈ {1, . . . , k}.

If α is asymmetric, then there is an ℓ ∈ {1, . . . , k} such that αℓ is asymmetric,
and αi is symmetric for all i > ℓ. In this situation, α < α∗ if and only if αℓ < α∗

ℓ .

Proof. By the last statement of Theorem 2.3, an irreducible factorisation of the
reversal of α is α∗ = α∗

1 ◦ α∗
2 ◦ · · · ◦ α∗

k. Thus, by Theorem 2.5, if α = α∗, all the
factors αi are symmetric. The reverse direction follows immediately from the last
statement of Theorem 2.3.

Suppose now that α is asymmetric. We have to show that α < α∗ if and only
if αℓ < α∗

ℓ , where ℓ is maximal such that αℓ is asymmetric. Let us first prove for
compositions β, γ and δ:

β ◦ δ < γ ◦ δ if and only if β < γ, whenever l(β) = l(γ).(1)

Indeed, if β = (b1, . . . , br) < γ = (g1, . . . , gr), then there is an index j such that
bj < gj and bi = gi for all i < j. Since β ◦ δ = δ⊙b1 · · · δ⊙br and γ ◦ δ = δ⊙g1 · · · δ⊙gr ,
it suffices to compare δ⊙bj and δ⊙gj .

If δ = (d1) has length 1, we have δ⊙bj = (bjd1) < (gjd1) = δ⊙gj . Let us now
consider the case that δ = (d1, . . . , ds) with s ≥ 2. Then the component with index
1 + bj (l(δ) − 1) of δ⊙bj , i.e., its last component, equals ds. However, since bj < gj,
the component of δ⊙gj with the same index is ds + d1, which is strictly greater than
ds. Hence β ◦ δ < γ ◦ δ. The converse follows by symmetry: given β ◦ δ < γ ◦ δ,
assuming that β > γ leads to a contradiction by what we have just shown.

Next, we prove for compositions β, γ, δ and ǫ:

(2) β ◦ δ < γ ◦ ǫ if and only if δ < ǫ,

whenever l(β) = l(γ), l(δ) = l(ǫ), |δ| = |ǫ| and δ 6= ǫ.

Suppose that δ = (d1, d2, . . . , dr) < ǫ = (e1, e2, . . . , er). It suffices to compare the
first r−1 components of β◦δ and γ◦ǫ, which are d1, d2, . . . , dr−1 and e1, e2, . . . , er−1,
respectively. Let j be minimal such that dj < ej. Since |δ| = |ǫ|, the two composi-
tions cannot differ only in the last component, so j ≤ r−1, which implies β◦δ < γ◦ǫ.
Again, the converse follows by symmetry.

To conclude the proof, we write α = β ◦ αℓ ◦ γ, where ℓ is maximal such that αℓ

is asymmetric – if ℓ = 1 then β = (1), if ℓ = k then γ = (1). Thus, by the last
statement of Theorem 2.3, α∗ = β∗ ◦ α∗

ℓ ◦ γ. By Condition (1) α < α∗ if and only
if β ◦ αℓ < β∗ ◦ α∗

ℓ . By Condition (2), this is the case if and only if αℓ < α∗
ℓ , as

desired. �

In the following lemma we collect the facts we need about Dirichlet generating
functions:
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Lemma 3.3. Let A and B be sets of compositions, let A ·∪B be their disjoint union
and define A ◦ B := {α ◦ β : α ∈ A, β ∈ B}. For any set of compositions A, let
A(s) =

∑

α∈A |α|−s the associated Dirichlet generating function. Then

(A ·∪B)(s) = A(s) + B(s) and

(A ◦ B)(s) = A(s)B(s).

The latter equality is equivalent to the statement, that the coefficient of n−s in (A ◦
B)(s) is an ∗ bn, where an and bn are the coefficients of n−s in A(s) and B(s),
respectively, and an ∗ bn denotes the Dirichlet convolution

∑

d|n adbn/d.

Remark. A full-fledged combinatorial theory of Dirichlet series within the theory
of combinatorial species was developed by Manuel Maia and Miguel Méndez [3].
Although the proofs below are written in the spirit of that theory, they are quite
elementary.

Theorem 3.4. The number of normalised compositions of size n is

2 · 2n−1 ∗ 2⌊
n
2
⌋ ∗

(
2n−1 + 2⌊

n
2
⌋
)−1

,

where an ∗bn denotes the Dirichlet convolution, and the reciprocal is the inverse with
respect to Dirichlet convolution.

Remark. Thus, the numbers of ribbon Schur functions of size 1 to 33 turn out to be:

1, 2, 3, 6, 10, 20, 36, 72, 135, 272, 528, 1052, 2080, 4160, 8244, 16508, 32896, 65770,

131328, 262632, 524744, 1049600, 2098176, 4196200, 8390620, 16781312, 33558291,

67116944, 134225920, 268451240, 536887296, 1073774376, 2147515424.

This is sequence http://oeis.org/A120421 in the on-line encyclopedia of integer
sequences [6].

It may be interesting to compare the number of ribbon Schur functions with the
number of lexicographic minimal compositions. Since |α ◦ β| = |α| · |β|, it is clear
that the numbers coincide when n is prime. For n = 9, there are 136 lexicographic
minimal compositions, but two of them are equivalent. Here are the differences and
their positions up to n = 33:

n : 9 12 15 16 18 20 21 24 25 27 28 30 32 33
difference : 1 4 12 4 22 24 56 152 36 237 112 600 216 992

Proof. Let R be the set of normalised compositions. Let S be the set of symmetric
compositions, P× be the set of (normalised) asymmetric irreducible compositions
and

(3) R1 = P× ◦ S,

i.e., the set of (normalised) compositions whose first factor in the irreducible fac-
torisation is asymmetric, and all remaining factors (if any) are symmetric. We can
then decompose the set of normalised compositions recursively as

(4) R = S ·∪(R ◦ R1),

http://oeis.org/A120421
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since a normalised composition is either symmetric, or can be written in a unique
way as a product of a normalised composition, an asymmetric irreducible factor and
a symmetric composition.

The set R1 can be described in terms of the set of all compositions C and the set
of asymmetric lexicographic minimal compositions L× by Lemma 3.2. Namely,

(5) L× = C ◦ R1,

since an asymmetric composition is lexicographic minimal, if and only if the last
asymmetric factor in its irreducible factorisation is lexicographic minimal.

Finally, we have (again by Lemma 3.2)

2L× = C \ S,

where 2L× is interpreted as the set of asymmetric compositions whose last asym-
metric factor is either lexicographic minimal or lexicographic maximal.

We can now apply Lemma 3.3 to obtain the Dirichlet generating function for the
set of normalised compositions. We have

L×(s) = 1/2 (C(s) − S(s))

R1(s) = L×(s)/C(s)

and therefore

R(s) =
S(s)

1 − R1(s)

=
2C(s)S(s)

2C(s) − (C(s) − S(s))

=
2C(s)S(s)

C(s) + S(s)
.

Since C(s) =
∑

n≥1 2n−1n−s and S(s) =
∑

n≥1 2⌊
n
2
⌋n−s, the claim follows. �

Remark. It is not difficult to obtain more information using the preceding theo-
rem and the decompositions in its proof. In particular, we can easily refine the
count of normalised compositions by taking into account the number of asymmet-
ric irreducible factors. Denoting the number of asymmetric irreducible factors of a
composition ρ by α(ρ) and defining R(s, z) =

∑

ρ∈R |ρ|−szα(s), we find

R(s, z) =
S(s)

1 − zR1(s)
=

2C(s)S(s)

2C(s) − z (C(s) − S(s))
.

Perhaps more interesting, we can determine the generating function for irreducible
compositions by size using the following proposition:

Proposition 3.5. Let P (s) be the Dirichlet generating function for (normalised)
irreducible compositions, P ∗(s) the Dirichlet generating function for symmetric ir-
reducible compositions and R(s) the Dirichlet generating function for normalised
compositions by size.



THE NUMBER OF RIBBON SCHUR FUNCTIONS 7

Furthermore, let S(s) =
∑

n≥1 2⌊
n
2
⌋n−s be the Dirichlet generating function of

symmetric compositions, and ζ(s) =
∑

n≥1 n−s the Riemann zeta function. We then
have

P (s) = 2ζ−1(s) − 1 − R−1(s)(6)

P ∗(s) = 2ζ−1(s) − 1 − S−1(s)(7)

and

P×(s) = S−1(s) − R−1(s).(8)

Remark. Thus, the numbers of (normalised) irreducible compositions of size 1 to 33
are:

0, 0, 1, 2, 8, 10, 34, 56, 126, 234, 526, 972, 2078, 4018, 8186, 16240, 32894, 65164,

131326, 261544, 524530, 1047490, 2098174, 4191680, 8390520, 16772994, 33557508,

67100304, 134225918, 268416590, 536887294, 1073708400, 2147512258.

Note that, whenever n is prime, there are precisely two normalised compositions (or,
equivalently, lexicographic minimal compositions) that are not irreducible, namely
the composition with all components equal to 1 and the composition (n).

For n = 4, the irreducible normalised compositions are (1, 3) and (1, 1, 2). For
n = 6, they are (1, 5), (1, 1, 4), (1, 4, 1), (1, 2, 3), (2, 1, 3), (1, 1, 1, 3), (1, 1, 2, 2),
(1, 1, 3, 1), (2, 1, 1, 2), (1, 1, 1, 1, 2).

Proof. Let E be the set of compositions with at least two components, all equal to 1.
Let K be the set of compositions different from 1 with only one component. Let R be
the set of all normalised compositions. Let RE be the set of normalised compositions
with no factors in the irreducible factorisation having only one component, i.e., all
factors being irreducible compositions or having at least two components, all equal
to 1. Finally, let P be the set of (normalised) irreducible compositions.

By Theorem 2.5, RE is the disjoint union of the sets P , P ◦ RE, E, E ◦ P and
E ◦ P ◦ RE. Passing to (Dirichlet) generating functions, we obtain

(9) RE(s) = E(s) +
(
1 + E(s)

)
P (s)

(
1 + RE(s)

)
.

Similarly, R is the disjoint union of the composition (1) and the sets RE, K, K◦RE

and RE ◦ K ◦ R. Informally, we decompose the set of normalised compositions into
subsets depending on the position of the first factor with only one component in the
irreducible factorisation, if such a factor occurs. Hence

(10) R(s) =
(
1 + K(s)

)(
1 + RE(s)

)
+ RE(s)K(s)R(s).

We can now extract RE(s) from Equation (10) and plug it into Equation (9) to obtain
P (s) in terms of E(s), K(s) and R(s). Observing that E(s) = K(s) = ζ(s) − 1
we obtain Equation (6). Equation (8) can be derived by combining Equations (3)
and (4). Equation (7) then follows from Equations (6) and (8). �
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4. The number of ribbon Schur functions of a given size and length

Apart from the size of a composition, the most natural statistic that comes to mind
is its length. In this section we derive an expression for the number of normalised
compositions with a given size and a given length.

By Theorem 2.3, it is possible to determine the length of a composition of com-
positions, knowing the size and the length of the factors. However, since the length
of a composition of compositions is neither multiplicative or additive, we cannot
expect a result as appealing as in Theorem 3.4.

Let us first collect some elementary results:

Proposition 4.1. Let Cn(x) =
∑

α∈C,|α|=n xl(α) be the ordinary generating func-

tion of all compositions of size n, where x marks length. Similarly, let Sn(x) =
∑

α∈S,|α|=n xl(α) the generating function of symmetric compositions, and L×
n (x) =

∑

α∈L×,|α|=n xl(α) the generating function of asymmetric lexicographic minimal com-
positions. Then

Cn(x) = x(1 + x)n−1,(http://oeis.org/A007318)

Sn(x) =

{

x(1 + x)(1 + x2)(n−2)/2 n even

x(1 + x2)(n−1)/2 n odd,
(http://oeis.org/A051159)

L×
n (x) = 1/2 (Cn(x) − Sn(x)) .(http://oeis.org/A034852)

Theorem 4.2. Let Rn(x) =
∑

ρ∈R,|ρ|=n xl(ρ) be the ordinary generating function of

normalised compositions of size n, where x marks length. Similarly, let R1
n(x) =

∑

ρ∈R1,|ρ|=n xl(ρ) be the ordinary generating function of (normalised) compositions
whose first factor in the irreducible factorisation is asymmetric, and all remaining
factors (if any) are symmetric. Then we have

R1
n(x) =

∑

k≥0
1=d0|d1|...|dk|n

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kL×
n/dk

(xdk)
k−1∏

i=0

Cdi+1/di
(xdi)/xdi(11)

and

Rn(x) =
∑

k≥0
d1|d2|...|dk+1=n

di 6= di+1 for i ∈ {1, . . . , k}

Sd1
(x)

k∏

i=1

R1
di+1/di

(xdi)/xdi .(12)

Proof. We reuse the decompositions from the proof of Theorem 3.4. From Equa-
tion (5), we obtain the equality of sets (subscripts denoting the size of the compo-
sitions we are restricting our attention to)

L×
n =

⋃̇

d|n
Cd ◦ R1

n/d.

http://oeis.org/A007318
http://oeis.org/A051159
http://oeis.org/A034852
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Since l(α ◦ β) = l(α) − |α| + |α| l(β), it follows that

(13) L×
n (x) =

∑

d|n

Cd(x)x−dR1
n/d(x

d).

Equation (11) then follows from Equation (15) in Lemma 4.3 below, with An(x) =
L×

n (x), Bn(x) = Cn(x)/xn and Dn(x) = R1
n(x).

Similarly, from Equation (4), we obtain the equality of sets

Rn = Sn ·∪
⋃̇

d|n,d6=n
Rd ◦ R1

n/d,

and therefore

(14) Rn(x) = Sn(x) +
∑

d|n,d6=n

Rd(x)x−dR1
n/d(x

d).

Equation (12) then follows from Equation (16) in Lemma 4.3 below, with An(x) =
Rn(x), Bn(x) = Sn(x) and Dn(x) = R1

n(x)/x. �

Remark. Note that for actually computing the generating function for normalised
compositions using a computer, Equations (13) and (14) may be easier to implement
than the ‘explicit’ expressions given in the statement of the theorem.

Again, we can refine the count be marking the number of asymmetric irreducible
factors with an additional variable z: every summand in Equation (12) has to be
multiplied by zk, since every composition in R1

n contains exactly one asymmetric
irreducible factor.

Lemma 4.3. Suppose that B1(x) = 1 and

An(x) =
∑

d|n

Bd(x)Dn/d(x
d).

Then we have

(15) Dn(x) =
∑

k≥0
1=d0|d1|...|dk|n

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kAn/dk
(xdk)

k−1∏

i=0

Bdi+1/di
(xdi).

Given
An(x) = Bn(x) +

∑

d|n,d6=n

Ad(x)Dn/d(x
d),

we have

(16) An(x) =
∑

k≥0
d1|d2|...|dk+1=n

di 6= di+1 for i ∈ {1, . . . , k}

Bd1
(x)

k∏

i=1

Ddi+1/di
(xdi).

Proof. We prove the statements by induction on n. For n = 1, the hypothesis is
A1(x) = B1(x)D1(x) = D1(x), and the right hand side of Equation (15) indeed
evaluates to A1(x).
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Now suppose that Equation (15) holds for n < N . Then

DN(x) = AN(x) −
∑

1<d|N

Bd(x)DN/d(x
d)

= AN(x) −
∑

1<d|N

Bd(x)
∑

k≥0
1=d0|d1|...|dk|N/d

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kAN/(dkd)(x
dkd)

k−1∏

i=0

Bdi+1/di
(xdid).

Substituting d′
i+1 = did we obtain

DN(x) = AN(x) −
∑

1<d|N

Bd(x)
∑

k≥0
d=d′

1
|d′

2
|...|d′

k+1
|N

d′i 6= d′i+1
for i ∈ {1, . . . , k}

(−1)kAN/(d′
k+1

)(x
d′

k+1)
k∏

i=1

Bd′i+1
/d′i

(xd′i)

= AN(x) −
∑

k≥0
1=d′

0
|d′

1
|...|d′

k+1
|N

d′i 6= d′i+1
for i ∈ {0, . . . , k}

(−1)kAN/(d′
k+1

)(x
d′

k+1)
k∏

i=0

Bd′i+1
/d′i

(xd′i).

The final expression is equivalent to the claimed Equation (15), since AN(x) is
precisely the summand corresponding to the chain 1 = d′

0|N .
Equation (16) can be shown using the same strategy; the calculations are actually

a bit easier. �
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