Asymptotics for reflectable lattice walks in a Weyl chamber of type B

Thomas Feierl

ALGORITHMS INRIA Paris-Rocquencourt

<ロト <四ト <注ト <注ト = 三

arXiv:math.CO/0906.4642

Introduction

Three examples The model

Exact enumeration

Asymptotics Determinants and asymptotics

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Random turns model of vicious walkers

In general: *k* walkers on $\mathbb{N} \times \mathbb{N}$ with steps from the set $\{\rightarrow, \nearrow, \searrow\}$. At each step exactly one walker makes a step from the set $\{\nearrow, \searrow\}$. Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in $0 < x_1 < \cdots < x_k$ with steps of the form $(0, \ldots, 0, 1, 0, \ldots, 0)$.

Figure: Correspondence between a walk in $0 < x_1 < x_2$ from (1,2) to (3,6) and two vicious walkers from $(0,0) \rightarrow (8,2)$ and $(0,1) \rightarrow (8,5)$

Random turns model of vicious walkers

In general: *k* walkers on $\mathbb{N} \times \mathbb{N}$ with steps from the set $\{\rightarrow, \nearrow, \searrow\}$. At each step exactly one walker makes a step from the set $\{\nearrow, \searrow\}$. Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in $0 < x_1 < \cdots < x_k$ with steps of the form $(0, \ldots, 0, 1, 0, \ldots, 0)$.

Figure: Correspondence between a walk in $0 < x_1 < x_2$ from (1,2) to (3,6) and two vicious walkers from $(0,0) \rightarrow (8,2)$ and $(0,1) \rightarrow (8,5)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Lock step model of vicious walkers

In general: k walkers on $\mathbb{N} \times \mathbb{N}$ with steps from the set $\{\nearrow, \searrow\}$. Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in $0 < x_1 < \cdots < x_k$ with steps of the form $(\pm 1, \ldots, \pm 1)$.

Figure: Correspondence between a walk in $0 < x_1 < x_2$ from (1, 2) to (1, 7) and two vicious walkers from $(0, 0) \rightarrow (8, 0)$ and $(0, 1) \rightarrow (8, 6)$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Lock step model of vicious walkers

In general: k walkers on $\mathbb{N} \times \mathbb{N}$ with steps from the set $\{\nearrow, \searrow\}$. Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in $0 < x_1 < \cdots < x_k$ with steps of the form $(\pm 1, \ldots, \pm 1)$.

Figure: Correspondence between a walk in $0 < x_1 < x_2$ from (1, 2) to (1, 7) and two vicious walkers from $(0, 0) \rightarrow (8, 0)$ and $(0, 1) \rightarrow (8, 6)$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

(k+1)-non-crossing tangled diagrams on the set $\{1, 2, \ldots, n\}$ correspond to walks of length n in $0 < x_1 < \cdots < x_k$ with either steps from the set

 $\{\mathbf{0}\} \cup \mathcal{A} \cup \mathcal{A}^2$ (with isolated points)

or with steps from the set

 $\mathcal{A} \cup \mathcal{A}^2$ (without isolated points),

where $\mathcal{A} = \{\nearrow, \searrow\}^k$.

The model

We consider lattice walks on a regular lattice $\mathcal{L} \subset \mathbb{R}^k$ that are confined to the region

$$\mathcal{W}^0 = \{ (x_1, \ldots, x_k) \in \mathcal{L} : 0 < x_1 < \cdots < x_k \}.$$

The walks are required to be reflectable. (This restricts \mathcal{L} as well as the steps the walks may consist of.)

The model

We consider lattice walks on a regular lattice $\mathcal{L} \subset \mathbb{R}^k$ that are confined to the region

$$\mathcal{W}^0 = \{ (x_1, \ldots, x_k) \in \mathcal{L} : 0 < x_1 < \cdots < x_k \}.$$

The walks are required to be reflectable. (This restricts \mathcal{L} as well as the steps the walks may consist of.)

Some notation

$$\mathcal{W}^{0} = \left\{ (x_{1}, \dots, x_{k}) \in \mathbb{R}^{k} : 0 < x_{1} < \dots < x_{k} \right\}$$
$$\mathcal{W} = \left\{ (x_{1}, \dots, x_{k}) \in \mathbb{R}^{k} : 0 \leq x_{1} \leq \dots \leq x_{k} \right\}$$
Let $\left\{ \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)} \right\}$ denote the canonical basis in \mathbb{R}^{k} , and set
$$\Delta = \left\{ \mathbf{b}^{(j+1)} - \mathbf{b}^{(j)} : 1 \leq j < k \right\} \cup \left\{ \mathbf{b}^{(1)} \right\}.$$

The set Δ is a *root system* of the reflection group of type B_k generated by the reflections in the hyperplanes

$$x_{j+1} - x_j = 0$$
 for $1 \le j < k$ and $x_1 = 0$.

Some notation

$$\begin{split} \mathcal{W}^0 &= \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k \ : \ 0 < x_1 < \dots < x_k \right\} \\ \mathcal{W} &= \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k \ : \ 0 \le x_1 \le \dots \le x_k \right\} \\ \text{Let } \left\{ \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)} \right\} \text{ denote the canonical basis in } \mathbb{R}^k \text{, and set} \\ \Delta &= \left\{ \mathbf{b}^{(j+1)} - \mathbf{b}^{(j)} \ : \ 1 \le j < k \right\} \cup \left\{ \mathbf{b}^{(1)} \right\}. \end{split}$$

The set Δ is a *root system* of the reflection group of type B_k generated by the reflections in the hyperplanes

$$x_{j+1} - x_j = 0$$
 for $1 \le j < k$ and $x_1 = 0$.

Some notation

$$\mathcal{W}^0 = \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k : 0 < x_1 < \dots < x_k \right\}$$
$$\mathcal{W} = \left\{ (x_1, \dots, x_k) \in \mathbb{R}^k : 0 \le x_1 \le \dots \le x_k \right\}$$
Let $\left\{ \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(k)} \right\}$ denote the canonical basis in \mathbb{R}^k , and set
$$\Delta = \left\{ \mathbf{b}^{(j+1)} - \mathbf{b}^{(j)} : 1 \le j < k \right\} \cup \left\{ \mathbf{b}^{(1)} \right\}.$$

The set Δ is a *root system* of the reflection group of type B_k generated by the reflections in the hyperplanes

$$x_{j+1} - x_j = 0$$
 for $1 \le j < k$ and $x_1 = 0$.

Atomic step sets and composite step sets

Definition

Let $\mathcal{A} \subseteq \mathbb{R}^k$ be a finite set and denote by \mathcal{L} the \mathbb{Z} -lattice spanned by \mathcal{A} . Then the set \mathcal{A} is said to be an atomic step set if and only if

- If $\mathbf{a} \in \mathcal{A}$ then $r_{\alpha}(\mathbf{a}) \in \mathcal{A}$ for all $\alpha \in \Delta$.
- ▶ If $\mathbf{u} \in \mathcal{W}^0 \cap \mathcal{L}$ and $\mathbf{a} \in \mathcal{A}$ then $\mathbf{u} + \mathbf{a} \in \mathcal{W}$.

Definition

A finite set S consisting of finite sequences of elements of an atomic step set is said to be an composite step set if and only if

$$(\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(m)})\in\mathcal{S}\implies (r_{lpha}(\mathbf{a}^{(1)}),\ldots,r_{lpha}(\mathbf{a}^{(j)}),\mathbf{a}^{(j+1)},\ldots,\mathbf{a}^{(m)})\in\mathcal{S}$$

for all $\alpha \in \Delta$ and $j = 1, \ldots, m$.

Atomic step sets and composite step sets

Definition

Let $\mathcal{A} \subseteq \mathbb{R}^k$ be a finite set and denote by \mathcal{L} the \mathbb{Z} -lattice spanned by \mathcal{A} . Then the set \mathcal{A} is said to be an atomic step set if and only if

- If $\mathbf{a} \in \mathcal{A}$ then $r_{\alpha}(\mathbf{a}) \in \mathcal{A}$ for all $\alpha \in \Delta$.
- ▶ If $\mathbf{u} \in \mathcal{W}^0 \cap \mathcal{L}$ and $\mathbf{a} \in \mathcal{A}$ then $\mathbf{u} + \mathbf{a} \in \mathcal{W}$.

Definition

A finite set S consisting of finite sequences of elements of an atomic step set is said to be an composite step set if and only if

$$(\mathbf{a}^{(1)},\ldots,\mathbf{a}^{(m)})\in\mathcal{S}\implies (r_lpha(\mathbf{a}^{(1)}),\ldots,r_lpha(\mathbf{a}^{(j)}),\mathbf{a}^{(j+1)},\ldots,\mathbf{a}^{(m)})\in\mathcal{S}$$

for all $\alpha \in \Delta$ and $j = 1, \ldots, m$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statement of the problem

Let $\boldsymbol{u},\boldsymbol{v}\in\mathcal{W}^0\cap\mathcal{L}.$ We are interested in

▶ $P_n^+(\mathbf{u} \to \mathbf{v})$, the generating function of *n*-step walks from \mathbf{u} to \mathbf{v} confined to \mathcal{W}^0 .

What is the asymptotic behaviour of $P_n^+(\mathbf{u} \to \mathbf{v})$ as $n \to \infty$?

Statement of the problem

Let $\boldsymbol{u},\boldsymbol{v}\in\mathcal{W}^0\cap\mathcal{L}.$ We are interested in

▶ $P_n^+(\mathbf{u} \to \mathbf{v})$, the generating function of *n*-step walks from \mathbf{u} to \mathbf{v} confined to \mathcal{W}^0 .

What is the asymptotic behaviour of $P_n^+(\mathbf{u} \to \mathbf{v})$ as $n \to \infty$?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Known results

► Krattenthaler et al.: The number of vicious walkers in the lock step model starting at (0,0), (0,2), ..., (2, 2k - 2) and ending in (2n,0), (2n,2), ..., (2n,2k - 2) is asymptotically equal to

$$4^{kn}2^{k^2-k}\pi^{-k/2}n^{-k^2-k/2}\prod_{j=1}^k(2j-1)!$$

 Chen, Zeilberger et al.: The number of k-noncrossing tangled diagrams behaves like

const
$$\cdot n^{-(k-1)^2+(k-1)/2} (4(k-1)^2+2(k-1)+1)^n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Asymptotics for $P_n^+(\mathbf{u} \rightarrow \mathbf{v})$

Theorem Let \mathcal{M} we denote the set of maximal points of $(\varphi_1, \ldots, \varphi_k) \mapsto |S(e^{i\varphi_1}, \ldots, e^{i\varphi_k})|.$ We have the asymptotics

$$P_n^+(\mathbf{u} \to \mathbf{v}) = |\mathcal{M}|S(1, \dots, 1)^n \left(\frac{2}{\pi}\right)^{k/2} \left(\frac{S(1, \dots, 1)}{nS''(1, \dots, 1)}\right)^{k^2+k/2} \\ \times \frac{\left(\prod_{1 \le j < m \le k} (v_m^2 - v_j^2)(u_m^2 - u_j^2)\right) \left(\prod_{j=1}^k v_j u_j\right)}{\left(\prod_{j=1}^k (2j-1)!\right)} \left(1 + O(n^{-1/4})\right)$$

as $n \to \infty$ in the set $\{n : P_n^+(\mathbf{u} \to \mathbf{v}) > 0\}$.

Theorem (Gessel, Zeilberger)

$$P_n^+(\mathbf{u} \rightarrow \mathbf{v}) = \sum_{r \in B_k} (-1)^{l(r)} P_n(r(\mathbf{u}) \rightarrow \mathbf{v}).$$

Theorem (Gessel, Zeilberger)

$$P_n^+(\mathbf{u} \rightarrow \mathbf{v}) = \sum_{r \in B_k} (-1)^{l(r)} P_n(r(\mathbf{u}) \rightarrow \mathbf{v}).$$

Theorem (Gessel, Zeilberger)

$$P_n^+(\mathbf{u} \rightarrow \mathbf{v}) = \sum_{r \in B_k} (-1)^{l(r)} P_n(r(\mathbf{u}) \rightarrow \mathbf{v}).$$

Theorem (Gessel, Zeilberger)

$$P_n^+(\mathbf{u} \rightarrow \mathbf{v}) = \sum_{r \in B_k} (-1)^{l(r)} P_n(r(\mathbf{u}) \rightarrow \mathbf{v}).$$

The step generating function

We associate

$$\mathbf{s} = (\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}) \in \mathcal{S} \qquad \longleftrightarrow \qquad w(\mathbf{s})\mathbf{z}^{\delta \mathbf{s}},$$

where $\delta \mathbf{s} = \mathbf{a}^{(1)} + \cdots + \mathbf{a}^{(k)}$. The step generating function $S(z_1, \ldots, z_k)$ is defined by

$$S(z_1,\ldots,z_k)=\sum_{\mathbf{s}\in\mathcal{S}}w(\mathbf{s})\mathbf{z}^{\delta\mathbf{s}}.$$

The generating function for *n*-step walks $\mathbf{u} \rightarrow \mathbf{v}$ is given by

$$P_n(\mathbf{u} \to \mathbf{v}) = [\mathbf{z}^{\mathbf{v}}] (\mathbf{z}^{\mathbf{u}} S(z_1, \ldots, z_k)^n) = [z_1^{v_1 - u_1} \ldots z_k^{v_k - u_k}] S(z_1, \ldots, z_k)^n.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The step generating function

We associate

$$\mathbf{s} = (\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(m)}) \in \mathcal{S} \qquad \longleftrightarrow \qquad w(\mathbf{s})\mathbf{z}^{\delta \mathbf{s}},$$

where $\delta \mathbf{s} = \mathbf{a}^{(1)} + \cdots + \mathbf{a}^{(k)}$. The step generating function $S(z_1, \ldots, z_k)$ is defined by

$$S(z_1,\ldots,z_k)=\sum_{\mathbf{s}\in\mathcal{S}}w(\mathbf{s})\mathbf{z}^{\delta\mathbf{s}}.$$

The generating function for *n*-step walks $\mathbf{u} \rightarrow \mathbf{v}$ is given by

$$P_n(\mathbf{u} \to \mathbf{v}) = [\mathbf{z}^{\mathbf{v}}] (\mathbf{z}^{\mathbf{u}} S(z_1, \ldots, z_k)^n) = [z_1^{v_1 - u_1} \ldots z_k^{v_k - u_k}] S(z_1, \ldots, z_k)^n.$$

The step generating function - Properties

Lemma (Grabiner and Magyar) For type B_k , the only reflectable sets are

$$\left\{\pm \mathbf{b}^{(1)}, \pm \mathbf{b}^{(2)}, \dots, \pm \mathbf{b}^{(k)}\right\} \quad and \quad \left\{\sum_{j=1}^{k} \varepsilon_{j} \mathbf{b}^{(j)} : \varepsilon_{j} \in \{\pm 1\}\right\}.$$

1

$$P\left(\sum_{j=1}^{k}\left(z_{j}+rac{1}{z_{j}}
ight)
ight) \qquad or \qquad P\left(\prod_{j=1}^{k}\left(z_{j}+rac{1}{z_{j}}
ight)
ight).$$

The step generating function - Properties

Lemma (Grabiner and Magyar) For type B_k , the only reflectable sets are

$$\left\{\pm \mathbf{b}^{(1)}, \pm \mathbf{b}^{(2)}, \dots, \pm \mathbf{b}^{(k)}\right\} \quad and \quad \left\{\sum_{j=1}^{k} \varepsilon_{j} \mathbf{b}^{(j)} : \varepsilon_{j} \in \{\pm 1\}\right\}.$$

1

Corollary

The composite step generating function $S(z_1, \ldots, z_k)$ is either equal to

$$P\left(\sum_{j=1}^{k}\left(z_{j}+\frac{1}{z_{j}}\right)\right)$$
 or $P\left(\prod_{j=1}^{k}\left(z_{j}+\frac{1}{z_{j}}\right)\right)$.

for some polynomial P with non-negative coefficients.

An exact counting formula

Lemma

For any two lattice points $u,v\in\mathcal{W}^0\cap\mathcal{L}$ we have

$$P_n^+(\mathbf{u} \to \mathbf{v}) = \frac{1}{(2i)^2 \pi^k k!} \\ \times \int_{|z_1|=\cdots=|z_k|=1} \det \left(z_j^{u_m} - z_j^{-u_m} \right) \det_{1 \le j,m \le k} \left(z_j^{v_m} - z_j^{-v_m} \right) \\ \times S(z_1, \dots, z_k)^n \left(\prod_{j=1}^k \frac{dz_j}{iz_j} \right).$$

An exact counting formula - Proof

The reflection principle gives us for $P_n^+(\mathbf{u} \to \mathbf{v})$ the expression

$$\sum_{\substack{\sigma \in \mathfrak{S}_k \\ \varepsilon_1, \dots, \varepsilon_k \in \{-1, +1\}}} \left(\prod_{j=1}^k \varepsilon_j\right) \operatorname{sgn}\left(\sigma\right) \left[z_1^{\nu_1 - \varepsilon_1 u_{\sigma(1)}} \dots z_k^{\nu_k - \varepsilon_k u_{\sigma(k)}}\right] S(z_1, \dots, z_k)^n,$$

which, by virtue of Cauchy's formula, turns into

$$\frac{1}{(2\pi i)^k}\int \cdots \int |z_1|=\cdots=|z_k|=1$$

$$\times S(z_1,\ldots,z_k)^n \left(\prod_{j=1}^k rac{dz_j}{z_j^{v_j+1}}
ight).$$

An exact counting formula - Proof

The reflection principle gives us for $P_n^+(\mathbf{u} \to \mathbf{v})$ the expression

$$\sum_{\substack{\sigma \in \mathfrak{S}_k \\ \varepsilon_1, \dots, \varepsilon_k \in \{-1, +1\}}} \left(\prod_{j=1}^k \varepsilon_j\right) \operatorname{sgn}\left(\sigma\right) \left[z_1^{v_1 - \varepsilon_1 u_{\sigma(1)}} \dots z_k^{v_k - \varepsilon_k u_{\sigma(k)}}\right] S(z_1, \dots, z_k)^n,$$

which, by virtue of Cauchy's formula, turns into

$$\begin{split} \frac{1}{(2\pi i)^k} & \int \cdots \int \limits_{|z_1|=\cdots=|z_k|=1} \left(\sum_{\substack{\sigma \in \mathfrak{S}_k \\ \varepsilon_1, \dots, \varepsilon_k \in \{-1, +1\}}} \operatorname{sgn}\left(\sigma\right) \prod_{j=1}^k z_j^{\varepsilon_j u_{\sigma(j)}} \right) \\ & \times S(z_1, \dots, z_k)^n \left(\prod_{j=1}^k \frac{dz_j}{z_j^{v_j+1}} \right) \end{split}$$

.

An exact counting formula - Proof

The reflection principle gives us for $P_n^+(\mathbf{u} \to \mathbf{v})$ the expression

$$\sum_{\substack{\sigma \in \mathfrak{S}_k \\ \varepsilon_1, \dots, \varepsilon_k \in \{-1, +1\}}} \left(\prod_{j=1}^k \varepsilon_j\right) \operatorname{sgn}\left(\sigma\right) \left[z_1^{\nu_1 - \varepsilon_1 u_{\sigma(1)}} \dots z_k^{\nu_k - \varepsilon_k u_{\sigma(k)}}\right] S(z_1, \dots, z_k)^n,$$

which, by virtue of Cauchy's formula, turns into

$$\frac{1}{(2\pi i)^k} \int \cdots \int_{\substack{1 \le j, m \le k}} \det \left(z_j^{u_m} - z_j^{-u_m} \right) \\ \times S(z_1, \dots, z_k)^n \left(\prod_{j=1}^k \frac{dz_j}{z_j^{v_j+1}} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Asymptotics

The substitution $z_j \mapsto e^{i \varphi_j}$ gives us

$$P_n^+(\mathbf{u}\to\mathbf{v}) = \frac{1}{\pi^k k!} \int_{-\pi}^{\pi} \dots \int_{-\pi}^{\pi} \det_{1\leq j,m\leq k} (\sin(u_m\varphi_j)) \det_{1\leq j,m\leq k} (\sin(v_m\varphi_j)) \times S(e^{i\varphi_1},\dots,e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j.$$

We are interested in asymptotics as $n \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Asymptotics

The substitution $z_j \mapsto e^{i \varphi_j}$ gives us

$$P_n^+(\mathbf{u} \to \mathbf{v}) = \frac{1}{\pi^k k!} \int_{-\pi}^{\pi} \dots \int_{-\pi}^{\pi} \det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) \det_{1 \le j, m \le k} (\sin(v_m \varphi_j)) \times S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j.$$

We are interested in asymptotics as $n \to \infty$.

Example: 2-noncrossing tangled diagrams

For 2-noncrossing tangled diagrams, the integral derived on the previous two pages is given by $(\mathbf{a} = (1))$

$$P_n^+(\mathbf{a} \to \mathbf{a}) = \int_{-\pi}^{\pi} \sin(\varphi)^2 \left(1 + 2\cos(\varphi) + 4\cos(\varphi)^2\right)^n d\varphi.$$

Saddlepoint asymptotics

Hence, we know that $\mathcal M,$ the set of maximal points of

$$(\varphi_1,\ldots,\varphi_k)\mapsto |S(e^{i\varphi_1},\ldots,e^{i\varphi_k})|$$

is a subset of $\{0, \pi\}^k$. Further, it is seen that

$$P_n^+(\mathbf{u}\to\mathbf{v})\approx\frac{|\mathcal{M}|}{k!}\int\limits_{-\varepsilon}^{\varepsilon}\dots\int\limits_{-\varepsilon}^{\varepsilon}\det_{1\leq j,m\leq k}\left(\sin(u_m\varphi_j)\right)\det_{1\leq j,m\leq k}\left(\sin(v_m\varphi_j)\right)\times S(e^{i\varphi_1},\dots,e^{i\varphi_k})^n\prod_{j=1}^kd\varphi_j,$$

where we choose $\varepsilon = \varepsilon(n) = n^{-5/12}$.

Saddlepoint asymptotics

Hence, we know that $\mathcal M,$ the set of maximal points of

$$(\varphi_1,\ldots,\varphi_k)\mapsto |S(e^{i\varphi_1},\ldots,e^{i\varphi_k})|$$

is a subset of $\{0, \pi\}^k$. Further, it is seen that

$$P_n^+(\mathbf{u}\to\mathbf{v})\approx\frac{|\mathcal{M}|}{k!}\int\limits_{-\varepsilon}^{\varepsilon}\dots\int\limits_{-\varepsilon}^{\varepsilon}\det_{1\leq j,m\leq k}\left(\sin(u_m\varphi_j)\right)\det_{1\leq j,m\leq k}\left(\sin(v_m\varphi_j)\right)\times S(e^{i\varphi_1},\dots,e^{i\varphi_k})^n\prod_{j=1}^kd\varphi_j,$$

where we choose $\varepsilon = \varepsilon(n) = n^{-5/12}$.

Saddlepoint asymptotics

It remains to asymptotically evaluate

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) \det_{1 \le j, m \le k} (\sin(v_m \varphi_j)) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

Simple calculations show that

$$S(e^{i\varphi_1},\ldots,e^{i\varphi_k})^n = S(1,\ldots,1)^n e^{-n\Lambda \sum_{j=1}^k \varphi_j^2/2} \left(1 + O\left(n^{-5/3}\right)\right)$$

for $max_j |arphi_j| < n^{-5/12}$, where $\Lambda = rac{S^{\prime\prime}(1,...,1)}{S(1,...,1)}.$

But how do we expand $\det_{1 \le j,m \le k} (\sin(u_m \varphi_j))?$

Saddlepoint asymptotics

It remains to asymptotically evaluate

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) \det_{1 \le j, m \le k} (\sin(v_m \varphi_j)) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

Simple calculations show that

$$S(e^{i\varphi_1},\ldots,e^{i\varphi_k})^n = S(1,\ldots,1)^n e^{-n\Lambda \sum_{j=1}^k \varphi_j^2/2} \left(1+O\left(n^{-5/3}\right)\right)$$

for $max_j |\varphi_j| < n^{-5/12}$, where $\Lambda = \frac{S''(1,...,1)}{S(1,...,1)}$.

But how do we expand $\det_{1 \le j,m \le k} (\sin(u_m \varphi_j))$?

Saddlepoint asymptotics

It remains to asymptotically evaluate

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) \det_{1 \le j, m \le k} (\sin(v_m \varphi_j)) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

Simple calculations show that

$$S(e^{i\varphi_1},\ldots,e^{i\varphi_k})^n = S(1,\ldots,1)^n e^{-n\Lambda \sum_{j=1}^k \varphi_j^2/2} \left(1+O\left(n^{-5/3}\right)\right)$$

for $max_j |\varphi_j| < n^{-5/12}$, where $\Lambda = \frac{S''(1,...,1)}{S(1,...,1)}$.

But how do we expand $\det_{1 \le j,m \le k} (\sin(u_m \varphi_j))?$

Determinants and asymptotics: Technique

Lemma

Let $A_m(x_j, y_m)$ be analytic for $\max_j |x_j| < R$. Then we have

$$\det_{1 \le j,m \le k} (A_m(x_j, y_m)) = \left(\prod_{1 \le j < m \le k} (x_m - x_j) \right) \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\xi| = R} \frac{A_m(\xi, y_m) d\xi}{\prod_{\ell=1}^j (\xi - x_\ell)} \right)$$

Proof.

.

Determinants and asymptotics: Technique

Lemma

Let $A_m(x_j, y_m)$ be analytic for $\max_j |x_j| < R$. Then we have

$$\det_{1 \le j,m \le k} (A_m(x_j, y_m)) = \left(\prod_{1 \le j < m \le k} (x_m - x_j) \right) \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\xi| = R} \frac{A_m(\xi, y_m) d\xi}{\prod_{\ell=1}^j (\xi - x_\ell)} \right)$$

Proof.

$$\det_{1 \le j,m \le k} \left(A_m(x_j, y_m) \right) = \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\xi|=R} \frac{A_m(\xi, y_m) d\xi}{\xi - x_j} \right)$$

.

Determinants and asymptotics: Technique

Lemma

Let $A_m(x_j, y_m)$ be analytic for $\max_j |x_j| < R$. Then we have

$$\det_{1 \le j,m \le k} (A_m(x_j, y_m)) = \left(\prod_{1 \le j < m \le k} (x_m - x_j) \right) \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\xi| = R} \frac{A_m(\xi, y_m) d\xi}{\prod_{\ell=1}^j (\xi - x_\ell)} \right)$$

Proof.

$$\begin{split} \int_{|\xi|=R} \frac{A_m(\xi, y_m)d\xi}{(\xi - x_j)} &- \int_{|\xi|=R} \frac{A_m(\xi, y_m)d\xi}{(\xi - x_t)} \\ &= (x_t - x_j) \int_{|\xi|=R} \frac{A(\xi, y)d\xi}{(\xi - x_j)(\xi - x_t)}. \end{split}$$

.

Determinants and asymptotics: det(sin($u_m \varphi_i$))

Lemma

For all $u_1, \ldots, u_k \in \mathbb{R}$ we have as $(\varphi_1, \ldots, \varphi_k) \to (0, \ldots, 0)$ the asymptotics

$$\det_{1 \le j,m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right) \left(\prod_{j=1}^k \frac{(-1)^{j-1}}{(2j-1)!}\right) \times \left(\left(\prod_{j=1}^k u_j\right) \left(\prod_{1 \le j < m \le k} (u_m^2 - u_j^2)\right) + O\left(\max_j |\varphi_j|^2\right)\right).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Determinants and asymptotics: Proof

We have to take into account the symmetry

$$\sin(u_m\varphi_j) = \frac{1}{2}\left(\sin(u_m\varphi_j) - \sin(-u_m\varphi_j)\right)$$

Now, we plug this into the determinant and obtain by the same series of operations as before

$$\det_{1 \le j,m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right)$$
$$\times \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\eta| = 1} \frac{\sin(u_m \eta) d\eta}{\prod_{\ell=1}^j (\eta^2 - \varphi_\ell^2)}\right)$$

We have to take into account the symmetry

$$\sin(u_m\varphi_j) = \frac{1}{2} \left(\frac{1}{2\pi i} \int_{|\xi|=R} \frac{\sin(u_m\xi)d\xi}{\xi - \varphi_j} - \frac{1}{2\pi i} \int_{|\xi|=R} \frac{\sin(-u_m\xi)d\xi}{\xi - \varphi_j} \right)$$

Now, we plug this into the determinant and obtain by the same series of operations as before

$$\det_{1 \le j,m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right)$$
$$\times \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\eta|=1} \frac{\sin(u_m \eta) d\eta}{\prod_{\ell=1}^j (\eta^2 - \varphi_\ell^2)}\right)$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

We have to take into account the symmetry

$$\sin(u_m\varphi_j) = \frac{\varphi_j}{2\pi i} \int_{|\xi|=R} \frac{\sin(u_m\xi)d\xi}{\xi^2 - \varphi_j^2}$$

Now, we plug this into the determinant and obtain by the same series of operations as before

$$\det_{1 \le j,m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right)$$
$$\times \det_{1 \le j,m \le k} \left(\frac{1}{2\pi i} \int_{|\eta|=1} \frac{\sin(u_m \eta) d\eta}{\prod_{\ell=1}^j (\eta^2 - \varphi_\ell^2)}\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

We have to take into account the symmetry

$$\sin(u_m\varphi_j) = \frac{\varphi_j}{2\pi i} \int_{|\xi|=R} \frac{\sin(u_m\xi)d\xi}{\xi^2 - \varphi_j^2}$$

Now, we plug this into the determinant and obtain by the same series of operations as before

$$\det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right)$$
$$\times \det_{1 \le j, m \le k} \left(\frac{1}{2\pi i} \int_{|\eta|=1} \frac{\sin(u_m \eta) d\eta}{\prod_{\ell=1}^j (\eta^2 - \varphi_\ell^2)}\right)$$

We have to take into account the symmetry

$$\sin(u_m\varphi_j) = \frac{\varphi_j}{2\pi i} \int_{|\xi|=R} \frac{\sin(u_m\xi)d\xi}{\xi^2 - \varphi_j^2}$$

Now, we plug this into the determinant and obtain by the same series of operations as before

$$\det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) = \left(\prod_{j=1}^k \varphi_j\right) \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right) \times \det_{1 \le j, m \le k} \left(\frac{(-1)^{j-1} u_m^{2j-1}}{(2j-1)!} + O\left(|\varphi_j|^2\right)\right)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consider again

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} (\sin(u_m \varphi_j)) \det_{1 \le j, m \le k} (\sin(v_m \varphi_j)) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

This is asymptotically equal to

$$\begin{pmatrix} \prod_{j=1}^{k} \frac{u_{j}v_{j}}{(2j-1)!^{2}} \end{pmatrix} \begin{pmatrix} \prod_{1 \leq j < m \leq k} (u_{m}^{2} - u_{j}^{2})(v_{m}^{2} - v_{j}^{2}) \end{pmatrix} \\ \times \int_{-\varepsilon}^{\varepsilon} \dots \int_{-\varepsilon}^{\varepsilon} \left(\prod_{1 \leq j < m \leq k} (\varphi_{m}^{2} - \varphi_{j}^{2}) \right)^{2} \left(\prod_{j=1}^{k} \varphi_{j}^{2} e^{-n\Lambda\varphi_{j}^{2}/2} d\varphi_{j} \right) \\ \times \left(1 + O\left(n^{-2/3}\right) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider again

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} \left(\sin(u_m \varphi_j) \right) \det_{1 \le j, m \le k} \left(\sin(v_m \varphi_j) \right) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

This is asymptotically equal to

$$\begin{split} \left(\prod_{j=1}^{k} \frac{u_{j} v_{j}}{(2j-1)!^{2}}\right) \left(\prod_{1 \leq j < m \leq k} (u_{m}^{2} - u_{j}^{2})(v_{m}^{2} - v_{j}^{2})\right) \\ \times \int_{-\varepsilon}^{\varepsilon} \dots \int_{-\varepsilon}^{\varepsilon} \left(\prod_{1 \leq j < m \leq k} (\varphi_{m}^{2} - \varphi_{j}^{2})\right)^{2} \left(\prod_{j=1}^{k} \varphi_{j}^{2} e^{-n\Lambda \varphi_{j}^{2}/2} d\varphi_{j}\right) \\ \times \left(1 + O\left(n^{-2/3}\right)\right) \end{split}$$

Consider again

$$\int_{-\varepsilon}^{\varepsilon} \dots \int_{1 \le j, m \le k}^{\varepsilon} \det_{1 \le j, m \le k} \left(\sin(u_m \varphi_j) \right) \det_{1 \le j, m \le k} \left(\sin(v_m \varphi_j) \right) S(e^{i\varphi_1}, \dots, e^{i\varphi_k})^n \prod_{j=1}^k d\varphi_j$$

This is asymptotically equal to

$$\begin{split} \left(\prod_{j=1}^{k} \frac{u_j v_j}{(2j-1)!^2}\right) \left(\prod_{1 \le j < m \le k} (u_m^2 - u_j^2) (v_m^2 - v_j^2)\right) \\ \times (n\Lambda)^{-k^2 - k/2} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left(\prod_{1 \le j < m \le k} (\varphi_m^2 - \varphi_j^2)\right)^2 \left(\prod_{j=1}^{k} \varphi_j^2 e^{-\varphi_j^2/2} d\varphi_j\right) \\ \times \left(1 + O\left(n^{-2/3}\right)\right) \end{split}$$

Asymptotics for $P_n^+(\mathbf{u} \rightarrow \mathbf{v})$

Theorem Let \mathcal{M} we denote the set of maximal points of $(\varphi_1, \ldots, \varphi_k) \mapsto |S(e^{i\varphi_1}, \ldots, e^{i\varphi_k})|.$ We have the asymptotics

$$P_n^+(\mathbf{u} \to \mathbf{v}) = |\mathcal{M}| S(1, \dots, 1)^n \left(\frac{2}{\pi}\right)^{k/2} \left(\frac{S(1, \dots, 1)}{nS''(1, \dots, 1)}\right)^{k^2+k/2} \\ \times \frac{\left(\prod_{1 \le j < m \le k} (v_m^2 - v_j^2)(u_m^2 - u_j^2)\right) \left(\prod_{j=1}^k v_j u_j\right)}{\left(\prod_{j=1}^k (2j-1)!\right)} \left(1 + O(n^{-1/4})\right)$$

as $n \to \infty$ in the set $\{n : P_n^+(\mathbf{u} \to \mathbf{v}) > 0\}$.