Asymptotic of characters of symmetric groups and limit shape of Young diagrams

Valentin Féray
coworkers : Piotr Śniady (Wroclaw), Pierre-Loïc Méliot (Marne-La-Vallée)

Laboratoire Bordelais de Recherche en Informatique CNRS

Séminaire Lotharingien de Combinatoire (64), Lyon, France

0

Outline of the talk

(1) Character values of symmetric groups

- An exact formula
- Asymptotic behaviours
(2) Application : limit shape of Young diagrams

Young symmetrizer

Let T be a filling of $\lambda=(3,2,2)$.

2	3	6
4	1	
7	5	
$y y n n n$		

Consider :

row-stabilizer $R S(T)=S_{\{2,3,6\}} \times S_{\{1,4\}} \times S_{\{5,7\}}$.
column-stabilizer $C S(T)=S_{\{2,4,7\}} \times S_{\{1,3,5\}}$.

Young symmetrizer

Let T be a filling of $\lambda=(3,2,2)$.

2	3	6
4	1	
7	5	
$y y n n n$		

$$
\frac{n!s_{\lambda}}{\operatorname{dim} \lambda}=\sum_{\substack{\sigma_{1} \in R S(T) \\ \sigma_{2} \in C S(T)}}(-1)^{\sigma_{2}} p_{\mathrm{type}\left(\sigma_{2} \sigma_{1}\right)}
$$

Work in progress with P. Śniady : analog for zonal polynomials

An equivalent formulation

Recall : character value $\chi^{\lambda}(\mu)$ fulfills $s_{\lambda}=\sum_{\mu} \frac{\chi^{\lambda}(\mu)}{z_{\mu}} p_{\mu}$.

$$
\frac{n!\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}=\sum_{\sigma_{2} \sigma_{1}=\pi}(-1)^{\sigma_{2}} N_{\sigma_{1}, \sigma_{2}}^{\prime}(\lambda),
$$

where

Definition

$N_{\sigma_{1}, \sigma_{2}}^{\prime}(\lambda)$ is the number of bijections $f:\{1, \ldots, n\} \simeq \lambda$ such that for all $i, f(i)$ and $f\left(\sigma_{1}(i)\right)$ (resp. $f\left(\sigma_{2}(i)\right)$) are in the same row (resp. column).

Nice behaviour on short permutations

$$
\begin{aligned}
& \text { If } \pi \in S_{k} \stackrel{\iota}{\hookrightarrow} S_{n},(\pi(i)=i \forall i>k), \\
& \quad \text { then } N_{\sigma_{1}, \sigma_{2}}^{\prime}(\lambda)=0 \text { unless } \sigma_{1}(i)=\sigma_{2}(i)=\pi(i) \forall i>k .
\end{aligned}
$$

In this case the formula becomes:

$$
\frac{n!\chi^{\lambda}(\iota(\pi))}{\operatorname{dim} \lambda}=\sum_{\substack{\sigma_{1}, \sigma_{2} \in S_{k} \\ \sigma_{2} \sigma_{1}=\pi}}(-1)^{\sigma_{2}} N_{\iota\left(\sigma_{1}\right), \iota\left(\sigma_{2}\right)}^{\prime}(\lambda)
$$

But $N_{\iota\left(\sigma_{1}\right), \iota\left(\sigma_{2}\right)}^{\prime}=\#\{f:\{1, \ldots, k\} \hookrightarrow \lambda$ with usual conditions $\}$.

$$
\underbrace{(n-k)!}_{\text {choices of the places of } k+1, \ldots, n}
$$

Nice behaviour on short permutations

Definition

$N_{\sigma_{1}, \sigma_{2}}^{\prime}(\lambda)$ is the number of injections $f:\{1, \ldots, k\} \hookrightarrow \lambda$ such that, for all $i, f(i)$ and $f\left(\sigma_{1}(i)\right)$ (resp. $f\left(\sigma_{2}(i)\right)$) are in the same row (resp. column).

$$
\Sigma_{\pi}(\lambda):=\frac{n \cdot(n-1) \ldots(n-k+1) \chi^{\lambda}(\iota(\pi))}{\operatorname{dim} \lambda}=\sum_{\substack{\sigma_{1}, \sigma_{2} \in S_{k} \\ \sigma_{2} \sigma_{1}=\pi}}(-1)^{\sigma_{2}} N_{\sigma_{1}, \sigma_{2}}^{\prime}(\lambda) .
$$

Forgetting injectivity

Definition

$N_{\sigma_{1}, \sigma_{2}}(T)$ is the number of functions $f:\{1, \ldots, k\} \rightarrow \lambda$ such that, for all $i, f(i)$ and $f\left(\sigma_{1}(i)\right)$ (resp. $f\left(\sigma_{2}(i)\right)$) are in the same row (resp. column).

$$
\Sigma_{\pi}(\lambda):=\frac{n \cdot(n-1) \ldots(n-k+1) \chi^{\lambda}(\iota(\pi))}{\operatorname{dim} \lambda}=\sum_{\substack{\sigma_{1}, \sigma_{2} \in S_{k} \\ \sigma_{2} \sigma_{1}=\pi}}(-1)^{\sigma_{2}} N_{\sigma_{1}, \sigma_{2}}(\lambda) .
$$

Idea of proof : the total contribution of a non-injective function in rhs is easily seen to be 0 .

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \cdot \lambda_{0}=\lambda$ multiplied by c (i.e. horizontal lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \cdot \lambda_{0}=\lambda$ multiplied by c (i.e. horizontal lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?
Easy on the N 's: $N_{\sigma_{1}, \sigma_{2}}(c \cdot \lambda)=c^{\left|C\left(\sigma_{2}\right)\right|} N_{\sigma_{1}, \sigma_{2}}(\lambda)$

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \cdot \lambda_{0}=\lambda$ multiplied by c (i.e. horizontal lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?
Easy on the N 's: $N_{\sigma_{1}, \sigma_{2}}(c \cdot \lambda)=c^{\left|C\left(\sigma_{2}\right)\right|} N_{\sigma_{1}, \sigma_{2}}(\lambda)$
Dominant term of $\Sigma_{\pi}(\lambda)$:

$$
N_{\pi, \mathrm{ld}_{k}}(\lambda)=\prod_{\mu_{i} \in \operatorname{type}(\pi)}\left(\sum_{j} \lambda_{j}^{\mu_{i}}\right)
$$

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \cdot \lambda_{0}=\lambda$ multiplied by c (i.e. horizontal lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?
Easy on the N 's: $N_{\sigma_{1}, \sigma_{2}}(c \cdot \lambda)=c^{\left|C\left(\sigma_{2}\right)\right|} N_{\sigma_{1}, \sigma_{2}}(\lambda)$
Dominant term of $\Sigma_{\pi}(\lambda)$:

$$
N_{\pi, \mathrm{Id}_{k}}(\lambda)=\prod_{\mu_{i} \in \operatorname{type}(\pi)}\left(\sum_{j} \lambda_{j}^{\mu_{i}}\right)=\prod_{\mu_{i} \in \operatorname{type}(\pi)} p_{\mu_{i}}(\lambda)
$$

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \bullet \lambda_{0}=\lambda$ dilated by c (i.e. horizontal and vertical lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \bullet \lambda_{0}=\lambda$ dilated by c (i.e. horizontal and vertical lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?
Easy on the N 's: $N_{\sigma_{1}, \sigma_{2}}(c \bullet \lambda)=c^{\left|C\left(\sigma_{1}\right)\right|+\left|C\left(\sigma_{2}\right)\right|} N_{\sigma_{1}, \sigma_{2}}(\lambda)$

Asymptotics is easy to read on this formula

Model : fix a permutation $\pi_{0} \in S_{k}$ and a partition $\lambda_{0} \vdash k$ Consider $\pi=\iota\left(\pi_{0}\right)$ (i.e. we just add fixpoints) and $\lambda=c \bullet \lambda_{0}=\lambda$ dilated by c (i.e. horizontal and vertical lengths are multiplied by c)

Question: asymptotics of $\frac{\chi^{\lambda}(\pi)}{\operatorname{dim} \lambda}$?
Easy on the N 's: $N_{\sigma_{1}, \sigma_{2}}(c \bullet \lambda)=c^{\left|C\left(\sigma_{1}\right)\right|+\left|C\left(\sigma_{2}\right)\right|} N_{\sigma_{1}, \sigma_{2}}(\lambda)$
Dominant term of $\Sigma_{\pi}(\lambda)$:

$$
\sum_{\substack{\sigma_{1} \sigma_{2}=\pi \\+\left|C\left(\sigma_{2}\right)\right| \text { maximal }}} \pm N_{\sigma_{1}, \sigma_{2}}(\lambda)
$$

Free cumulants

$$
\Sigma_{\pi}(c \bullet \lambda)=\sum_{\substack{\sigma_{1} \sigma_{2}=\pi \\\left|C\left(\sigma_{1}\right)\right|+\mid C\left(\sigma_{2}\right) \text { maximal }}} \pm N_{\sigma_{1}, \sigma_{2}}(\lambda)
$$

But, $\left\{\begin{array}{c}\sigma_{1} \sigma_{2}=\pi \\ \left|C\left(\sigma_{1}\right)\right|+\left|C\left(\sigma_{2}\right)\right| \text { maximal }\end{array}\right\} \simeq \prod N C_{\mu_{i}} \simeq \prod \operatorname{Trees}\left(\mu_{i}\right)$.
With generating series, one can prove (Rattan, 2006)

$$
r h s=\prod R_{\mu_{i}+1}(\lambda)
$$

R_{k} : free cumulants defined from the shape ω_{λ} by Biane (1998).

Remarks

Works in more general context than sequences $c \cdot \lambda_{0}$ and $c \bullet \lambda_{0}$ (in fact, works as soon as a sequence of Young diagram has a limit)

These results were already known (Vershik \& Kerov 81, Biane 98), but :

- we provide unified approach of both cases;
- our bound for error terms are better.

Description of the problem

Consider Plancherel's probability measure on Young diagrams of size n

$$
P(\lambda)=\frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

Question : is there a limit shape for (renormalized rotated) Young diagram taken randomly with Plancherel's measure when $n \rightarrow \infty$?

Normalized character values have simple expectations!

Fix $\pi \in \mathfrak{S}_{n}$. Let us consider the random variable :

$$
X_{\pi}(\lambda)=\chi^{\lambda}(\pi)=\frac{\operatorname{tr}\left(\rho_{\lambda}(\pi)\right)}{\operatorname{dim} V_{\lambda}}
$$

Let us compute its expectation :

$$
\begin{aligned}
\mathbb{E}\left(X_{\pi}\right)=\frac{1}{n!} \sum_{\lambda \vdash n}\left(\operatorname{dim} V_{\lambda}\right) \cdot \operatorname{tr} & \left(\rho_{\lambda}(\pi)\right) \\
& =\frac{1}{n!} \operatorname{tr}_{\left(\oplus_{\lambda \vdash n} v_{\lambda}^{\operatorname{dim} v_{\lambda}}\right)}(\pi)=\frac{1}{n!} \operatorname{tr}_{\mathbb{C}\left[\mathfrak{S}_{n}\right]}(\pi)
\end{aligned}
$$

Last expression is easy to evaluate :

$$
\mathbb{E}\left(X_{\pi}\right)=\delta_{\pi, \mid \mathrm{ld}_{n}}
$$

Convergence of cumulants

Recall : we proved that $\prod_{i} R_{k_{i}+1} \approx \Sigma_{k_{1}, \ldots, k_{r}}$. Thus

$$
\begin{aligned}
\mathbb{E}\left(R_{2}\right) & \approx n \\
\mathbb{E}\left(R_{i}\right) & \approx 0 \text { if } i>2 \\
\operatorname{Var}\left(R_{i}\right) & \approx 0 \text { if } i \geq 2
\end{aligned}
$$

Convergence of cumulants

Recall : we proved that $\prod_{i} R_{k_{i}+1} \approx \Sigma_{k_{1}, \ldots, k_{r}}$. Thus

$$
\begin{aligned}
\lim \mathbb{E}\left(R_{2} / n\right) & =1 \\
\lim \mathbb{E}\left(R_{i} / \sqrt{n}^{i}\right) & =0 \text { if } i>2 \\
\lim \operatorname{Var}\left(R_{i} / \sqrt{n}^{i}\right) & =0 \text { if } i \geq 2
\end{aligned}
$$

Easy to make it formal because $R_{k} \in \operatorname{Vect}\left(\Sigma_{\pi}\right)$.
\Rightarrow Random variables R_{i} / \sqrt{n}^{i} converge in probability towards the sequence $(0,1,0,0, \ldots)$
General lemma from Kerov :
convergence of cumulants \Rightarrow convergence of Young diagrams

Existence of a limiting curve

Theorem (Logan and Shepp 77, Kerov and Vershik 77)
Let us take randomly (with Plancherel measure) a sequence of Young diagram λ_{n} of size n. Then, in probability, for the uniform convergence topology on continuous functions, one has :

$$
r_{45^{\circ}}\left(h_{1 / \sqrt{n}}\left(\lambda_{n}\right)\right) \rightarrow \delta_{\Omega},
$$

where Ω is an explicit function drawn here :

Convergence of q-Plancherel measure

Case where expectation of character values are big:

- there can not be a limit shape after dilatation.
- we use the first approximation for characters $\Sigma_{\pi}(\lambda) \approx \prod p_{\mu_{i}}(\lambda)$.

Convergence of q-Plancherel measure

Case where expectation of character values are big:

- there can not be a limit shape after dilatation.
- we use the first approximation for characters $\Sigma_{\pi}(\lambda) \approx \prod p_{\mu_{i}}(\lambda)$.

Example : q-Plancherel measure $(q<1)$

- defined using representation of Hecke algebras
- one can prove

$$
\mathbb{E}_{q}\left(\Sigma_{\pi}\right)=\frac{(1-q)^{|\mu|}}{\prod_{i} 1-q^{\mu_{i}}} n(n-1) \ldots(n-|\mu|+1)
$$

Thus

$$
\mathbb{E}_{q}\left(p_{k}\right) \approx \frac{(1-q)^{k}}{\prod_{i} 1-q^{k}} n^{k} \quad \operatorname{Var}_{q}\left(p_{k}\right) \approx 0
$$

Convergence of q-Plancherel measure

Case where expectation of character values are big:

- there can not be a limit shape after dilatation.
- we use the first approximation for characters $\Sigma_{\pi}(\lambda) \approx \prod p_{\mu_{i}}(\lambda)$.

Example : q-Plancherel measure $(q<1)$

- defined using representation of Hecke algebras
- one can prove

$$
\mathbb{E}_{q}\left(\Sigma_{\pi}\right)=\frac{(1-q)^{|\mu|}}{\prod_{i} 1-q^{\mu_{i}}} n(n-1) \ldots(n-|\mu|+1)
$$

Thus

$$
\lim \mathbb{E}_{q}\left(p_{k} / n^{k}\right)=\frac{(1-q)^{k}}{\prod_{i} 1-q^{k}} \quad \lim \operatorname{Var}_{q}\left(p_{k} / n^{k}\right)=0
$$

Convergence of q-Plancherel measure

Theorem (F., Méliot, 2010)
Let $q<1$. In probability, under q-Plancherel measure,

$$
\forall k \geq 1, \frac{p_{k}(\lambda)}{|\lambda|^{k}} \longrightarrow_{M_{n, q}} \frac{(1-q)^{k}}{1-q^{k}} .
$$

Moreover,

$$
\forall i \geq 1, \frac{\lambda_{i}}{n} \longrightarrow M_{n, q}(1-q) q^{i-1}
$$

We also obtained the second-order asymptotics.

End of the talk

Thank you for listening

Questions?

