### Refined Gelfand models for $B_n$ and $D_n$

#### FABRIZIO CASELLI AND ROBERTA FULCI

SLC64 - Lyon, March 2010

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for B<sub>n</sub> and D<sub>n</sub>

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A Gelfand model of a group G is a G-module containing each irreducible complex representation of G exactly once:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A Gelfand model of a group G is a G-module containing each irreducible complex representation of G exactly once:

$$(M, \rho) \cong \bigoplus_{\phi \in Irr(G)} (V_{\phi}, \phi)$$

 $Irr(G) = \{$ irreducible representations of  $G \}.$ 

< ロ > < 同 > < 回 > < 回 > < □ > <

- Inglis-Richardson-Saxl, for symmetric groups;
- Kodiyalam-Verma, for symmetric groups;
- Aguado-Araujo-Bigeon, for Weyl groups;
- Baddeley, for wreath products;
- Adin-Postnikov-Roichman, for the groups G(r, n)...

・ 同 ト ・ ヨ ト ・ ヨ ト

• Caselli, for *involutory reflection groups*, a family of complex reflection groups which is bigger than  $\{G(r, n)\}$  and contains all infinite families of irreducible finite Coxeter groups.

< ロ > < 同 > < 回 > < 回 > < □ > <

• Caselli, for *involutory reflection groups*, a family of complex reflection groups which is bigger than  $\{G(r, n)\}$  and contains all infinite families of irreducible finite Coxeter groups.

We will:

• Introduce the Gelfand model due to F.Caselli, for the particular cases of  $B_n$  and  $D_n$ ;

イロン 不同 とくほう イロン

• Caselli, for *involutory reflection groups*, a family of complex reflection groups which is bigger than  $\{G(r, n)\}$  and contains all infinite families of irreducible finite Coxeter groups.

We will:

- Introduce the Gelfand model due to F.Caselli, for the particular cases of  $B_n$  and  $D_n$ ;
- provide a refinement for such model in these two cases.

イロン 不同 とくほう イロン

 $B_n := \{ \text{signed permutations on } n \text{ elements} \}.$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

 $B_n := \{ \text{signed permutations on } n \text{ elements} \}.$ Example:  $g = (2, -4, 3, 1) \in B_4.$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

 $B_n := \{ \text{signed permutations on } n \text{ elements} \}.$ 

Example:  $g = (2, -4, 3, 1) \in B_4$ .

g is the matrix

$$\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

 $B_n := \{ \text{signed permutations on } n \text{ elements} \}.$ 

Example:  $g = (2, -4, 3, 1) \in B_4$ .

g is the matrix

| ( | 0 | 1 | 0 | 0  |  |
|---|---|---|---|----|--|
|   | 0 | 0 | 0 | -1 |  |
|   | 0 | 0 | 1 | 0  |  |
| ĺ | 1 | 0 | 0 | 0  |  |

We denote by |g| the permutation associated to g:

$$|g|:=(2,4,3,1)=\left(egin{array}{ccccc} 0&1&0&0\ 0&0&0&1\ 0&0&1&0\ 1&0&0&0\end{array}
ight)$$

イロト イヨト イヨト イヨト 三日

$$g = (2, -4, 3, 1) \in B_4.$$

• split g into two double-rowed vectors according to the sign:

$$g_0 = \left( \begin{array}{ccc} 1 & 3 & 4 \\ 2 & 3 & 1 \end{array} 
ight) \qquad g_1 = \left( \begin{array}{c} 2 \\ 4 \end{array} 
ight)$$

ヘロト ヘヨト ヘヨト ヘヨト

$$g = (2, -4, 3, 1) \in B_4.$$

• split g into two double-rowed vectors according to the sign:

$$g_0 = \left( \begin{array}{ccc} 1 & 3 & 4 \\ 2 & 3 & 1 \end{array} 
ight) \qquad g_1 = \left( \begin{array}{ccc} 2 \\ 4 \end{array} 
ight)$$

• perform RS to the two double-rowed vectors:

$$g_{0} \xrightarrow{RS} (P_{0}, Q_{0}) = \left( \boxed{\begin{array}{c} 1 & 3 \\ 2 \end{array}}, \boxed{\begin{array}{c} 1 & 3 \\ 4 \end{array}} \right)$$
$$g_{1} \xrightarrow{RS} (P_{1}, Q_{1}) = \left( \boxed{\begin{array}{c} 4 \end{array}}, \boxed{\begin{array}{c} 2 \end{array}} \right)$$

• glue the images of  $g_0$  and  $g_1$  together:

$$g \xrightarrow{RS} (P_0, P_1; Q_0, Q_1) = \left( \boxed{\begin{array}{c} 1 & 3 \\ 2 \end{array}}, \boxed{4}; \boxed{\begin{array}{c} 1 & 3 \\ 4 \end{array}}, \boxed{2} \right)$$

ヘロン ヘロン ヘビン ヘビン

Let M be a model for  $B_n$ . It turns out that

$$\dim(M) = \#\{g \in B_n : g^2 = 1\}.$$

We observe that:

g is an involution if and only if  $g \xrightarrow{RS} (P_0, P_1; P_0, P_1)$ .

<ロト <回ト < 回ト < 回ト < 回ト = 三</p>

Let M be a model for  $B_n$ . It turns out that

$$\dim(M) = \#\{g \in B_n : g^2 = 1\}.$$

We observe that:

g is an involution if and only if  $g \xrightarrow{RS} (P_0, P_1; P_0, P_1)$ .

{ involutions of  $B_n$ } = { symmetric matrices of  $B_n$ } =: Sym $(B_n)$ 

Thus, when constructing a model for  $B_n$ , it is natural to look for a model structure on a vector space spanned by the elements

$$\{g \in B_n : g \xrightarrow{RS} (P_0, P_1; P_0, P_1)\}.$$

ヘロト ヘヨト ヘヨト ヘヨト

Caselli's model  $(M, \rho)$  for  $B_n$  looks like this:

ヘロト ヘヨト ヘヨト ヘヨト

Caselli's model  $(M, \rho)$  for  $B_n$  looks like this:

• *M* is the vector space spanned by the involutions of  $B_n$ :

$$M = \bigoplus_{v \in \operatorname{Sym}(B_n)} \mathbb{C} C_v$$

Caselli's model  $(M, \rho)$  for  $B_n$  looks like this:

• M is the vector space spanned by the involutions of  $B_n$ :

$$M = \bigoplus_{v \in \operatorname{Sym}(B_n)} \mathbb{C} C_v$$

• the morphism  $ho: B_n \to GL(M)$  has the form

$$\rho(g)\mathbf{v} = \phi_{\mathbf{v}}(g)C_{|g|\mathbf{v}|g|^{-1}},$$

 $\phi_{\nu}(g)$  being a scalar.

There is a nice parametrization for  $B_n$ 's representations:

{irreducible representations of  $B_n$ }



イロト 不得 トイヨト イヨト

There is a nice parametrization for  $B_n$ 's representations:

{irreducible representations of  $B_n$ }

# $\uparrow$

{ordered pairs of Ferrers diagrams  $(\lambda, \mu)$  such that  $|\lambda| + |\mu| = n$ }

イロト 不得 トイヨト イヨト 二日

The irreducible representations of  $B_3$  are:





- 4 回 > - 4 回 > - 4 回 >

Recall that the representation that makes M a model has the form

$$\rho(g)v = \phi_v(g)C_{|g|v|g|^{-1}}.$$

ヘロト ヘヨト ヘヨト ヘヨト

Recall that the representation that makes M a model has the form

$$\rho(g)v = \phi_v(g)C_{|g|v|g|^{-1}}.$$

#### Definition

Two elements of  $B_n$  are  $S_n$ -conjugate if they are conjugate via an element of  $S_n$ .

イロト イポト イヨト イヨト

Recall that the representation that makes M a model has the form

$$\rho(g)v = \phi_v(g)C_{|g|v|g|^{-1}}.$$

#### Definition

Two elements of  $B_n$  are  $S_n$ -conjugate if they are conjugate via an element of  $S_n$ .

Thus *M* naturally splits into submodules M(c), where each *c* is a  $S_n$ -conjugacy class of involutions of  $B_n$ .

Which of the irreducible representations of  $B_n$  are afforded by each of this natural submodules?

・ロト ・回ト ・ヨト ・ヨト

Which of the irreducible representations of  $B_n$  are afforded by each of this natural submodules?

It is quite natural to expect the decomposition to be well behaved with respect to the RS correspondence.

イロト イポト イヨト イヨト

Which of the irreducible representations of  $B_n$  are afforded by each of this natural submodules?

It is quite natural to expect the decomposition to be well behaved with respect to the RS correspondence.

And so it is!

イロト イポト イヨト イヨト

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1)$$

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

æ

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1)$$

$$\mathit{Sh}(v) = \mathsf{shape} \; \mathsf{of} \; (P_0, P_1)$$

æ

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1)$$

$$Sh(v) =$$
shape of  $(P_0, P_1)$ 

#### Theorem (C., F., 2010)

Let c be a  $S_n$ -conjugacy class of involutions in  $B_n$ .

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1)$$

$$Sh(v) =$$
shape of  $(P_0, P_1)$ 

#### Theorem (C., F., 2010)

Let c be a  $S_n$ -conjugacy class of involutions in  $B_n$ . The following decomposition holds:

$$M(c) \cong \bigoplus_{(\lambda,\mu)\in Sh(c)} 
ho_{\lambda,\mu},$$

where

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1)$$

$$Sh(v) =$$
shape of  $(P_0, P_1)$ 

#### Theorem (C., F., 2010)

Let c be a  $S_n$ -conjugacy class of involutions in  $B_n$ . The following decomposition holds:

$$M(c) \cong \bigoplus_{(\lambda,\mu)\in Sh(c)} \rho_{\lambda,\mu},$$

where

$$Sh(c) = \bigcup_{v \in c} Sh(v).$$

Fabrizio Caselli and Roberta Fulci

Refined Gelfand models for  $B_n$  and  $D_n$ 

In words:

æ

In words:

if a submodule M(c) of M is spanned by involutions whose images via RS have certain shapes...

< ロ > < 同 > < 回 > < 回 > < □ > <
In words:

if a submodule M(c) of M is spanned by involutions whose images via RS have certain shapes...

 $\dots M(c)$  affords the irreducible representations of  $B_n$  parametrized by those shapes.

Two involutions v and w of  $B_n$  are  $S_n$ -conjugate if and only if

$$v \xrightarrow{RS} (P_0, P_1; P_0, P_1) \qquad w \xrightarrow{RS} (Q_0, Q_1; Q_0, Q_1)$$

with:

<ロト <回 > < 注 > < 注 > … 注

Two involutions v and w of  $B_n$  are  $S_n$ -conjugate if and only if

$$v \stackrel{RS}{\longrightarrow} (P_0, P_1; P_0, P_1) \qquad w \stackrel{RS}{\longrightarrow} (Q_0, Q_1; Q_0, Q_1)$$

with:

- $P_0$  and  $Q_0$  have the same number of boxes;
- P<sub>1</sub> and Q<sub>1</sub> have the same number of boxes;
- $P_0$  and  $Q_0$  have the same number of columns of odd length;
- $P_1$  and  $Q_1$  have the same number of columns of odd length.

イロト 不得 トイヨト イヨト 二日

Two involutions v and w of  $B_n$  are  $S_n$ -conjugate if and only if

$$v \stackrel{RS}{\longrightarrow} (P_0, P_1; P_0, P_1) \qquad w \stackrel{RS}{\longrightarrow} (Q_0, Q_1; Q_0, Q_1)$$

with:

- $P_0$  and  $Q_0$  have the same number of boxes;
- P<sub>1</sub> and Q<sub>1</sub> have the same number of boxes;
- $P_0$  and  $Q_0$  have the same number of columns of odd length;
- $P_1$  and  $Q_1$  have the same number of columns of odd length.

$$egin{array}{lll} Sh(v) = Sh(w) & \stackrel{\Rightarrow}{
eq} & v ext{ and } w ext{ are } S_n - ext{conjugate} \ & 
eq \end{array}$$

イロト 不得 トイヨト イヨト 二日

Example in  $B_3$ :

$$Sh(v) = \left( \bigsqcup, \emptyset \right) \qquad Sh(w) = \left( \bigsqcup, \emptyset \right)$$

v and w are  $S_3$  conjugate.

ヘロン ヘロン ヘビン ヘビン

$$v = (-6, 4, 3, 2, -5, -1, -7) \in B_7$$

Let c be the  $S_7$ -conjugacy class of v. Then

$$v = (-6, 4, 3, 2, -5, -1, -7) \in B_7$$

Let c be the  $S_7$ -conjugacy class of v. Then

# $M(c) \cong (\square, \square) \oplus (\square) \square (\square) \oplus (\square) \square (\square) \oplus (\square) \square (\square)$

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

Key point: the submodule spanned by the set

$$Sym_0(B_n) := \left\{ egin{array}{c} ext{symmetric elements of } B_n ext{ which are} \\ ext{ products of signed cycles of length 2 only} \end{array} 
ight\}$$
  
 $= \left\{ egin{array}{c} ext{symmetric elements of } B_n ext{ whose} \\ ext{ diagonal has zero entries only} \end{array} 
ight\}$ 

is actually made up of the irreducible representations parametrized by the elements of  $Sh(Sym_0(B_n))$ .

Key point: the submodule spanned by the set

$$Sym_0(B_n) := \left\{ egin{array}{c} ext{symmetric elements of } B_n ext{ which are} \ ext{products of signed cycles of length 2 only} \end{array} 
ight\} \ = \left\{ egin{array}{c} ext{symmetric elements of } B_n ext{ whose} \ ext{diagonal has zero entries only} \end{array} 
ight\}$$

is actually made up of the irreducible representations parametrized by the elements of  $Sh(Sym_0(B_n))$ .

 $Sh(Sym_0(B_n)) = \{(\lambda, \mu) : \lambda, \mu \text{ have no columns of odd length}\}.$ 

(日) (四) (日) (日) (日) (日)

 $\pi_k$  representation of  $S_{2k}$ . Suppose that, for every k,

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

 $\pi_k$  representation of  $S_{2k}$ . Suppose that, for every k,

• 
$$\pi_k \downarrow_{S_{2k-1}} = \pi_{k-1} \uparrow^{S_{2k-1}}$$
;

 $\pi_k$  representation of  $S_{2k}$ . Suppose that, for every k,

• 
$$\pi_k \downarrow_{S_{2k-1}} = \pi_{k-1} \uparrow^{S_{2k-1}}$$
 ;

•  $\pi_k$  contains the trivial representation.

Then

イロト 不得 トイヨト イヨト 二日

 $\pi_k$  representation of  $S_{2k}$ . Suppose that, for every k,

• 
$$\pi_k \downarrow_{S_{2k-1}} = \pi_{k-1} \uparrow^{S_{2k-1}}$$
 ;

•  $\pi_k$  contains the trivial representation.

Then

$$\pi_k \simeq \bigoplus_{\substack{\lambda \vdash 2k \\ \lambda \text{ with even parts only}}} V_{\lambda}$$

### $\Pi_m$ representation of $B_{2m}$ . Suppose that, for every m,

(日)

 $\Pi_m$  representation of  $B_{2m}$ . Suppose that, for every m,

• 
$$\Pi_m \downarrow_{B_{2m-1}} = \Pi_{m-1} \uparrow^{B_{2m-1}};$$

(日)

 $\Pi_m$  representation of  $B_{2m}$ . Suppose that, for every m,

• 
$$\Pi_m \downarrow_{B_{2m-1}} = \Pi_{m-1} \uparrow^{B_{2m-1}};$$

 Π<sub>m</sub> contains the irreducible representations of B<sub>2m</sub> indexed by the pairs of single-columned diagrams of even size.

Then

 $\Pi_m$  representation of  $B_{2m}$ . Suppose that, for every m,

• 
$$\Pi_m \downarrow_{B_{2m-1}} = \Pi_{m-1} \uparrow^{B_{2m-1}};$$

 Π<sub>m</sub> contains the irreducible representations of B<sub>2m</sub> indexed by the pairs of single-columned diagrams of even size.

Then

$$\Pi_m \simeq igoplus_{(\lambda,\mu)\in Sh(Sym_0(B_n))} V_{\lambda,\mu}$$

 $\Pi_m$  representation of  $B_{2m}$ . Suppose that, for every m,

• 
$$\Pi_m \downarrow_{B_{2m-1}} = \Pi_{m-1} \uparrow^{B_{2m-1}};$$

 Π<sub>m</sub> contains the irreducible representations of B<sub>2m</sub> indexed by the pairs of single-columned diagrams of even size.

Then

$$\Pi_m \simeq \bigoplus_{(\lambda,\mu)\in Sh(Sym_0(B_n))} V_{\lambda,\mu}$$

Apply this to

$$\Pi_m = \bigoplus_{v \in Sym_0(B_{2m})} \mathbb{C} C_v!$$

## The group $D_n$

$$D_n < B_n$$

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

▲□ → ▲圖 → ▲ 画 → ▲ 画 → →

$$D_n < B_n$$

 $g \in B_n$ . Then  $g \in D_n$  if -1 appears in the matrix of g an even number of times.

<ロト <回 > < 注 > < 注 > … 注

## The group $D_n$

 $D_n < B_n$ 

 $g \in B_n$ . Then  $g \in D_n$  if -1 appears in the matrix of g an even number of times.

 $g = (2, -4, 3, 1) \in B_4.$ 

$$g=\left(egin{array}{cccc} 0&1&0&0\ 0&0&0&-1\ 0&0&1&0\ 1&0&0&0 \end{array}
ight)
onumber definition D_4$$

## The group $D_n$

 $D_n < B_n$ 

 $g \in B_n$ . Then  $g \in D_n$  if -1 appears in the matrix of g an even number of times.

 $g = (2, -4, 3, 1) \in B_4.$ 

$$g=\left(egin{array}{cccc} 0&1&0&0\ 0&0&0&-1\ 0&0&1&0\ 1&0&0&0 \end{array}
ight)
otin D_4$$

 $h = (2, -4, -3, 1) \in B_4.$ 

$$h = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in D_4$$

## Another generalization for RS correspondence

$$g \in B_n \xrightarrow{RS} (P_0, P_1; Q_0, Q_1)$$

ヘロト ヘヨト ヘヨト ヘヨト

## Another generalization for RS correspondence

$$g \in B_n \xrightarrow{RS} (P_0, P_1; Q_0, Q_1)$$

$$-g \in B_n \xrightarrow{RS} (P_1, P_0; Q_1, Q_0)$$

ヘロト ヘヨト ヘヨト ヘヨト

## Another generalization for RS correspondence

$$g \in B_n \xrightarrow{RS} (P_0, P_1; Q_0, Q_1)$$
  
 $-g \in B_n \xrightarrow{RS} (P_1, P_0; Q_1, Q_0)$ 

$$\bar{g} \in \frac{B_n}{\pm Id} \xrightarrow{RS_2} (\{P_0, P_1\}; \{Q_0, Q_1\})$$

$$\uparrow \qquad \uparrow$$
UNORDERED PAIRS!!!!

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

ヘロト ヘヨト ヘヨト ヘヨト

$$\{g \in B_n : g \xrightarrow{RS} (P_0, P_1; P_0, P_1)\} = \operatorname{Sym}(B_n).$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

$$\{g \in B_n : g \xrightarrow{RS} (P_0, P_1; P_0, P_1)\} = \operatorname{Sym}(B_n).$$

Model for  $D_n$ : instead of looking at  $D_n$ ...

$$\{g \in B_n : g \xrightarrow{RS} (P_0, P_1; P_0, P_1)\} = \operatorname{Sym}(B_n).$$

Model for  $D_n$ : instead of looking at  $D_n$ ...

... we look at the quotient 
$$\frac{B_n}{\pm Id}$$

$$\{g \in \frac{B_n}{\pm Id} : \overline{g} \xrightarrow{RS_2} (\{P_0, P_1\}; \{P_0, P_1\})\} = \uparrow \uparrow$$

the same unordered pair

ヘロト ヘヨト ヘヨト ヘヨト

= {

$$\{g \in \frac{B_n}{\pm Id} : \overline{g} \xrightarrow{RS_2} (\{P_0, P_1\}; \{P_0, P_1\})\} = \uparrow \uparrow$$

the same unordered pair

・ロト ・四ト ・ヨト ・ヨト

$$\{g \in \frac{B_n}{\pm Id} : \overline{g} \xrightarrow{RS_2} (\{P_0, P_1\}; \{P_0, P_1\})\} = \uparrow \uparrow$$

the same unordered pair

$$= \begin{cases} \operatorname{Sym}\left(\frac{B_n}{\pm Id}\right) := \{ \bar{g} \in \frac{B_n}{\pm Id} : g \xrightarrow{RS} (P_0, P_1; P_0, P_1) \text{ for (any) } g \text{ lift of } \bar{g} \}; \end{cases}$$

ヘロト ヘヨト ヘヨト ヘヨト

\_

$$\{g \in \frac{B_n}{\pm Id} : \bar{g} \xrightarrow{RS_2} (\{P_0, P_1\}; \{P_0, P_1\})\} = \uparrow \uparrow$$

the same unordered pair

$$= \left\{ \begin{array}{l} \operatorname{Sym}\left(\frac{B_n}{\pm Id}\right) := \{ \bar{g} \in \frac{B_n}{\pm Id} : g \xrightarrow{RS} (P_0, P_1; P_0, P_1) \text{ for (any) } g \text{ lift of } \bar{g} \}; \\ \operatorname{Asym}\left(\frac{B_n}{\pm Id}\right) := \{ \bar{g} \in \frac{B_n}{\pm Id} : g \xrightarrow{RS} (P_0, P_1; P_1, P_0) \text{ for (any) } g \text{ lift of } \bar{g} \}. \end{array} \right.$$

ヘロン 人間 とくほと 人ほとう

## Example: antisymmetric elements

$$\boldsymbol{v} \rightarrow \left( \begin{array}{c|c} 1 & 3 \end{array}, \begin{array}{c|c} 2 & 4 \end{array}; \begin{array}{c|c} 2 & 4 \end{array}, \begin{array}{c|c} 1 & 3 \end{array} \right)$$

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

ヘロト ヘヨト ヘヨト ヘヨト

## Example: antisymmetric elements

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

・ロト ・回ト ・ヨト ・ヨト

## Example: antisymmetric elements

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

ヘロト ヘヨト ヘヨト ヘヨト

$$v \to (\boxed{1} 3, \boxed{2} 4; \boxed{2} 4, \boxed{1} 3)$$
$$v = (-2, 1, -4, 3) = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$\bar{v} \in \operatorname{Asym}\left(\frac{B_4}{\pm Id}\right)$$

• Notice that a pair  $(P_0, P_1; P_1, P_0)$  can be the *RS* image of a  $g \in B_n$  only if  $P_0$  and  $P_1$  have the same shape  $\lambda$ .

イロン 不同 とくほう イロン
### A model for $D_n$ : the module (Caselli, 2009)

Caselli's model  $(M, \rho)$  for  $D_n$  looks like this:

ヘロト ヘヨト ヘヨト ヘヨト

Caselli's model  $(M, \rho)$  for  $D_n$  looks like this:

M is the vector space spanned by

$$\operatorname{Sym}\left(\frac{B_n}{\pm Id}\right) \cup \operatorname{Asym}\left(\frac{B_n}{\pm Id}\right)$$
:

ヘロト ヘヨト ヘヨト ヘヨト

Caselli's model  $(M, \rho)$  for  $D_n$  looks like this:

M is the vector space spanned by

$$\operatorname{Sym}\left(\frac{B_n}{\pm Id}\right) \cup \operatorname{Asym}\left(\frac{B_n}{\pm Id}\right):$$

$$M = \bigoplus_{v \in \mathrm{Sym}} \mathbb{C} C_v \oplus \bigoplus_{v \in \mathrm{Asym}} \mathbb{C} C_v$$

ヘロト ヘヨト ヘヨト ヘヨト

The morphism  $\rho: D_n \to GL(M)$  has the form

$$\rho(g)\mathbf{v} = \psi_{\mathbf{v}}(g)C_{|g|\mathbf{v}|g|^{-1}},$$

 $\psi_v(g)$  being a scalar.

{irreducible representations of  $B_n$ }

# $\uparrow$ {ordered pairs of Ferrers diagrams $(\lambda, \mu)$ such that $|\lambda| + |\mu| = n$ }.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\{ \text{irreducible representations of } B_n \}$   $\uparrow$   $\{ \text{ordered pairs of Ferrers diagrams } (\lambda, \mu) \text{ such that } |\lambda| + |\mu| = n \}.$ Restrict them to  $D_n$ :

$$\left\{\begin{array}{ll} \lambda \neq \mu: \quad (\lambda, \mu) \downarrow_{D_n} = (\mu, \lambda) \downarrow_{D_n} \text{ doesn't split} \right.$$

イロン 不同 とくほう イロン

 $\{ \text{irreducible representations of } B_n \}$   $\uparrow$   $\{ \text{ordered pairs of Ferrers diagrams } (\lambda, \mu) \text{ such that } |\lambda| + |\mu| = n \}.$ Restrict them to  $D_n$ :

$$\left\{ \begin{array}{ll} \lambda \neq \mu : & (\lambda, \mu) \downarrow_{D_n} = (\mu, \lambda) \downarrow_{D_n} \mbox{ doesn't split} \\ \lambda = \mu : & (\lambda, \lambda) \downarrow_{D_n} \mbox{ splits into two irreducible representations} \end{array} \right.$$

イロン 不同 とくほう イロン

 $\{ \text{irreducible representations of } B_n \}$   $\uparrow$   $\{ \text{ordered pairs of Ferrers diagrams } (\lambda, \mu) \text{ such that } |\lambda| + |\mu| = n \}.$ Restrict them to  $D_n$ :

$$\left\{ \begin{array}{ll} \lambda \neq \mu : & (\lambda, \mu) \downarrow_{D_n} = (\mu, \lambda) \downarrow_{D_n} \mbox{ doesn't split} \\ \\ \lambda = \mu : & (\lambda, \lambda) \downarrow_{D_n} \mbox{ splits into two irreducible representations} \end{array} \right.$$

Where can we find these representations in the model M?

イロン 不同 とくほう イロン

Irreducible representations of  $D_n$ :

・ロト ・回ト ・ヨト ・ヨト

э

Irreducible representations of  $D_n$ :

•  $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (UNSPLIT REP);

イロト 不得 トイヨト イヨト 二日

Irreducible representations of  $D_n$ :

- $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (UNSPLIT REP);
- $\{\lambda, \lambda\}^+$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP);
- $\{\lambda, \lambda\}^-$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP)

Irreducible representations of  $D_n$ :

- $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (UNSPLIT REP);
- $\{\lambda, \lambda\}^+$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP);

• 
$$\{\lambda, \lambda\}^-$$
, with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP)

Possible shapes via  $RS_2$  of the generators of M:

•  $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (SYMMETRIC GEN);

イロト 不得 トイヨト イヨト 二日

Irreducible representations of  $D_n$ :

- $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (UNSPLIT REP);
- $\{\lambda, \lambda\}^+$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP);
- $\{\lambda, \lambda\}^-$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP)

Possible shapes via  $RS_2$  of the generators of M:

- $\{\lambda,\mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$ , with  $\lambda \vdash \frac{n}{2}$  (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$ , with  $\lambda \vdash \frac{n}{2}$  (ANTISYMMETRIC GEN).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Irreducible representations of  $D_n$ :

- $\{\lambda, \mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (UNSPLIT REP);
- $\{\lambda, \lambda\}^+$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP);
- $\{\lambda, \lambda\}^-$ , with  $\lambda \vdash \frac{n}{2}$  (SPLIT REP)

Possible shapes via  $RS_2$  of the generators of M:

- $\{\lambda,\mu\}$ , with  $\lambda \neq \mu$ ,  $|\lambda| + |\mu| = n$  (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$ , with  $\lambda \vdash \frac{n}{2}$  (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$ , with  $\lambda \vdash \frac{n}{2}$  (ANTISYMMETRIC GEN).

#### HOW NICE!

#### M naturally splits first of all into the two fat submodules





<ロ> <部> < 部> < き> < き> < き</p>

Again, this decomposition is well-behaved w.r.t. the  $RS_2$  correspondence!

<ロト <回ト < 回ト < 回ト < 回ト = 三</p>

Again, this decomposition is well-behaved w.r.t. the  $RS_2$  correspondence!

#### Theorem (C., F., 2010)

The split representations of  $D_n$  can be labelled in such a way that

$$\bigoplus_{\nu \in \operatorname{Asym}} \mathbb{C} C_{\nu} \simeq \bigoplus_{\lambda \vdash \frac{n}{2}} \{\lambda, \lambda\}^{-},$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Again, this decomposition is well-behaved w.r.t. the  $RS_2$  correspondence!

#### Theorem (C., F., 2010)

The split representations of  $D_n$  can be labelled in such a way that

$$v = (-6, 4, 3, 2, -5, -1) \in B_6.$$

Let  $\bar{c}$  be the  $S_6$ -conjugacy class of  $\bar{v}$ . Then

・ロト ・回ト ・ヨト ・ヨト

æ

$$v = (-6, 4, 3, 2, -5, -1) \in B_6.$$

Let  $\bar{c}$  be the  $S_6$ -conjugacy class of  $\bar{v}$ . Then

$$M(\bar{c}) \cong (\square, \square) \oplus (\square, \square)^{+} \oplus (\square, \square)^{+}.$$

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

・ロト ・回ト ・ヨト ・ヨト

æ

The submodule



admits a finer refinement which is analogous to the case of  $B_n$  and is also well-behaved with respect to  $RS_2$ .

ヘロン ヘロン ヘビン ヘビン

The whole argument can be generalized to a much wider class of groups.

The whole argument can be generalized to a much wider class of groups.

#### Definition

Let  $G < GL(n, \mathbb{C})$  and let M be a Gelfand model for G. G is involutory if  $\dim(M) = \#\{g \in G : g\overline{g} = 1\},\$ 

where  $\bar{g}$  denotes the complex conjugate of g.

The whole argument can be generalized to a much wider class of groups.

#### Definition

Let  $G < GL(n, \mathbb{C})$  and let M be a Gelfand model for G. G is involutory if  $\dim(M) = \#\{g \in G : g\overline{g} = 1\},$ 

where  $\bar{g}$  denotes the complex conjugate of g.

#### Theorem (Caselli, 2009)

A group G(r, p, n) is involutory if and only if GCD(p, n) = 1, 2.

イロト イポト イヨト イヨト

## Thank you!

Fabrizio Caselli and Roberta Fulci Refined Gelfand models for  $B_n$  and  $D_n$ 

æ