Refined Gelfand models for B_{n} and D_{n}

FABRIZIO CASELLI AND ROBERTA FULCI

SLC64 - Lyon, March 2010

Starting point: Gelfand models

A Gelfand model of a group G is a G-module containing each irreducible complex representation of G exactly once:

Starting point: Gelfand models

A Gelfand model of a group G is a G-module containing each irreducible complex representation of G exactly once:

$$
\begin{gathered}
(M, \rho) \cong \bigoplus_{\phi \in \operatorname{lrr}(G)}\left(V_{\phi}, \phi\right) \\
\operatorname{lrr}(G)=\{\text { irreducible representations of } G\} .
\end{gathered}
$$

Gelfand models in recent literature

- Inglis-Richardson-Saxl, for symmetric groups;
- Kodiyalam-Verma, for symmetric groups;
- Aguado-Araujo-Bigeon, for Weyl groups;
- Baddeley, for wreath products;
- Adin-Postnikov-Roichman, for the groups $G(r, n) \ldots$

Plan of the talk

- Caselli, for involutory reflection groups, a family of complex reflection groups which is bigger than $\{G(r, n)\}$ and contains all infinite families of irreducible finite Coxeter groups.

Plan of the talk

- Caselli, for involutory reflection groups, a family of complex reflection groups which is bigger than $\{G(r, n)\}$ and contains all infinite families of irreducible finite Coxeter groups.

We will:

- Introduce the Gelfand model due to F.Caselli, for the particular cases of B_{n} and D_{n};

Plan of the talk

- Caselli, for involutory reflection groups, a family of complex reflection groups which is bigger than $\{G(r, n)\}$ and contains all infinite families of irreducible finite Coxeter groups.

We will:

- Introduce the Gelfand model due to F.Caselli, for the particular cases of B_{n} and D_{n};
- provide a refinement for such model in these two cases.

The group B_{n}

$B_{n}:=\{$ signed permutations on n elements $\}$.

The group B_{n}
$B_{n}:=\{$ signed permutations on n elements $\}$.
Example: $g=(2,-4,3,1) \in B_{4}$.

The group B_{n}
$B_{n}:=\{$ signed permutations on n elements $\}$.
Example: $g=(2,-4,3,1) \in B_{4}$.
g is the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The group B_{n}

$B_{n}:=\{$ signed permutations on n elements $\}$.
Example: $g=(2,-4,3,1) \in B_{4}$.
g is the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We denote by $|g|$ the permutation associated to g :

$$
|g|:=(2,4,3,1)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

RS corresponence for B_{n}

$$
g=(2,-4,3,1) \in B_{4} .
$$

- split g into two double-rowed vectors according to the sign:

$$
g_{0}=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 3 & 1
\end{array}\right) \quad g_{1}=\binom{2}{4}
$$

RS corresponence for B_{n}

$$
g=(2,-4,3,1) \in B_{4}
$$

- split g into two double-rowed vectors according to the sign:

$$
g_{0}=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 3 & 1
\end{array}\right) \quad g_{1}=\binom{2}{4}
$$

- perform RS to the two double-rowed vectors:

$$
\begin{aligned}
& g_{0} \xrightarrow{R S}\left(P_{0}, Q_{0}\right)=\left(\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \left., \begin{array}{|l|l}
1 & 3 \\
\hline 4 &
\end{array}\right) \\
g_{1} \xrightarrow{R S}\left(P_{1}, Q_{1}\right)=\binom{4}{\hline}
\end{array},=\begin{array}{l}
2 \\
\hline
\end{array}\right.
\end{aligned}
$$

RS corresponence for B_{n}

- glue the images of g_{0} and g_{1} together:

$$
g \xrightarrow{R S}\left(P_{0}, P_{1} ; Q_{0}, Q_{1}\right)=\left(\begin{array}{|l|l}
\hline 1 & 3 \\
\hline 2 &
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 \\
\hline 4 & , \\
\hline
\end{array}\right)
$$

A crucial remark

Let M be a model for B_{n}. It turns out that

$$
\operatorname{dim}(M)=\#\left\{g \in B_{n}: g^{2}=1\right\}
$$

We observe that:
g is an involution if and only if $g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)$.

A crucial remark

Let M be a model for B_{n}. It turns out that

$$
\operatorname{dim}(M)=\#\left\{g \in B_{n}: g^{2}=1\right\}
$$

We observe that:
g is an involution if and only if $g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)$.
$\left\{\right.$ involutions of $\left.B_{n}\right\}=\left\{\right.$ symmetric matrices of $\left.B_{n}\right\}=: \operatorname{Sym}\left(B_{n}\right)$

Basis of the model

Thus, when constructing a model for B_{n}, it is natural to look for a model structure on a vector space spanned by the elements

$$
\left\{g \in B_{n}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right\} .
$$

Caselli's model (M, ρ) for B_{n} looks like this:

Caselli's model (M, ρ) for B_{n} looks like this:

- M is the vector space spanned by the involutions of B_{n} :

$$
M=\bigoplus_{v \in \operatorname{Sym}\left(B_{n}\right)} \mathbb{C} C_{v}
$$

Caselli's model (M, ρ) for B_{n} looks like this:

- M is the vector space spanned by the involutions of B_{n} :

$$
M=\bigoplus_{v \in \operatorname{Sym}\left(B_{n}\right)} \mathbb{C} C_{v}
$$

- the morphism $\rho: B_{n} \rightarrow G L(M)$ has the form

$$
\rho(g) v=\phi_{v}(g) C_{|g| v|g|^{-1}},
$$

$\phi_{v}(g)$ being a scalar.

Irreducible representations for B_{n}

There is a nice parametrization for B_{n} 's representations:

$$
\left\{\text { irreducible representations of } B_{n}\right\}
$$

Irreducible representations for B_{n}

There is a nice parametrization for B_{n} 's representations:

$$
\left\{\text { irreducible representations of } B_{n}\right\}
$$

\{ordered pairs of Ferrers diagrams (λ, μ) such that $|\lambda|+|\mu|=n\}$

Example: B_{3}

The irreducible representations of B_{3} are:

A natural decomposition of M

Recall that the representation that makes M a model has the form

$$
\rho(g) v=\phi_{v}(g) C_{|g| v|g|^{-1}} .
$$

A natural decomposition of M

Recall that the representation that makes M a model has the form

$$
\rho(g) v=\phi_{v}(g) C_{|g| v|g|^{-1}}
$$

Definition

Two elements of B_{n} are S_{n}-conjugate if they are conjugate via an element of S_{n}.

A natural decomposition of M

Recall that the representation that makes M a model has the form

$$
\rho(g) v=\phi_{v}(g) C_{|g| v|g|^{-1}}
$$

Definition

Two elements of B_{n} are S_{n}-conjugate if they are conjugate via an element of S_{n}.

Thus M naturally splits into submodules $M(c)$, where each c is a S_{n}-conjugacy class of involutions of B_{n}.

Refining the model for B_{n}

Which of the irreducible representations of B_{n} are afforded by each of this natural submodules?

Refining the model for B_{n}

Which of the irreducible representations of B_{n} are afforded by each of this natural submodules?

It is quite natural to expect the decomposition to be well behaved with respect to the $R S$ correspondence.

Refining the model for B_{n}

Which of the irreducible representations of B_{n} are afforded by each of this natural submodules?

It is quite natural to expect the decomposition to be well behaved with respect to the $R S$ correspondence.

And so it is!

Decomposition of M

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)
$$

Decomposition of M

$$
\begin{gathered}
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right) \\
S h(v)=\text { shape of }\left(P_{0}, P_{1}\right)
\end{gathered}
$$

Decomposition of M

$$
\begin{gathered}
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right) \\
S h(v)=\text { shape of }\left(P_{0}, P_{1}\right)
\end{gathered}
$$

Theorem (C., F., 2010)
Let c be a S_{n}-conjugacy class of involutions in B_{n}.

Decomposition of M

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)
$$

$$
\operatorname{Sh}(v)=\text { shape of }\left(P_{0}, P_{1}\right)
$$

Theorem (C., F., 2010)

Let c be a S_{n}-conjugacy class of involutions in B_{n}. The following decomposition holds:

$$
M(c) \cong \bigoplus_{(\lambda, \mu) \in S h(c)} \rho_{\lambda, \mu}
$$

where

Decomposition of M

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)
$$

$$
\operatorname{Sh}(v)=\text { shape of }\left(P_{0}, P_{1}\right)
$$

Theorem (C., F., 2010)

Let c be a S_{n}-conjugacy class of involutions in B_{n}. The following decomposition holds:

$$
M(c) \cong \bigoplus_{(\lambda, \mu) \in S h(c)} \rho_{\lambda, \mu}
$$

where

$$
\operatorname{Sh}(c)=\bigcup_{v \in c} \operatorname{Sh}(v)
$$

Decomposition of M

In words:

Decomposition of M

In words:
if a submodule $M(c)$ of M is spanned by involutions whose images via $R S$ have certain shapes...

Decomposition of M

In words:
if a submodule $M(c)$ of M is spanned by involutions whose images via $R S$ have certain shapes...
... $M(c)$ affords the irreducible representations of B_{n} parametrized by those shapes.

S_{n}-conjugacy classes for B_{n}

Two involutions v and w of B_{n} are S_{n}-conjugate if and only if

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right) \quad w \xrightarrow{R S}\left(Q_{0}, Q_{1} ; Q_{0}, Q_{1}\right)
$$

with:

S_{n}-conjugacy classes for B_{n}

Two involutions v and w of B_{n} are S_{n}-conjugate if and only if

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right) \quad w \xrightarrow{R S}\left(Q_{0}, Q_{1} ; Q_{0}, Q_{1}\right)
$$

with:

- P_{0} and Q_{0} have the same number of boxes;
- P_{1} and Q_{1} have the same number of boxes;
- P_{0} and Q_{0} have the same number of columns of odd length;
- P_{1} and Q_{1} have the same number of columns of odd length.

S_{n}-conjugacy classes for B_{n}

Two involutions v and w of B_{n} are S_{n}-conjugate if and only if

$$
v \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right) \quad w \xrightarrow{R S}\left(Q_{0}, Q_{1} ; Q_{0}, Q_{1}\right)
$$

with:

- P_{0} and Q_{0} have the same number of boxes;
- P_{1} and Q_{1} have the same number of boxes;
- P_{0} and Q_{0} have the same number of columns of odd length;
- P_{1} and Q_{1} have the same number of columns of odd length.

$$
\operatorname{Sh}(v)=\operatorname{Sh}(w) \quad \begin{array}{ll}
\neq & v \text { and } w \text { are } S_{n}-\text { conjugate }
\end{array}
$$

Example

Example in B_{3} :

$$
\operatorname{Sh}(v)=(\square, \emptyset)
$$

$$
\operatorname{Sh}(w)=(\square, \emptyset)
$$

v and w are S_{3} conjugate.

Example

$$
v=(-6,4,3,2,-5,-1,-7) \in B_{7} .
$$

Let c be the S_{7}-conjugacy class of v. Then

Example

$$
v=(-6,4,3,2,-5,-1,-7) \in B_{7} .
$$

Let c be the S_{7}-conjugacy class of v. Then

The proof

Key point: the submodule spanned by the set

$$
\begin{aligned}
\operatorname{Sym}_{0}\left(B_{n}\right): & =\left\{\begin{array}{c}
\text { symmetric elements of } B_{n} \text { which are } \\
\text { products of signed cycles of length } 2 \text { only }
\end{array}\right\} \\
& =\left\{\begin{array}{c}
\text { symmetric elements of } B_{n} \text { whose } \\
\text { diagonal has zero entries only }
\end{array}\right\}
\end{aligned}
$$

is actually made up of the irreducible representations parametrized by the elements of $\operatorname{Sh}\left(\operatorname{Sym}_{0}\left(B_{n}\right)\right)$.

The proof

Key point: the submodule spanned by the set

$$
\begin{aligned}
\operatorname{Sym}_{0}\left(B_{n}\right): & =\left\{\begin{array}{c}
\text { symmetric elements of } B_{n} \text { which are } \\
\text { products of signed cycles of length } 2 \text { only }
\end{array}\right\} \\
& =\left\{\begin{array}{c}
\text { symmetric elements of } B_{n} \text { whose } \\
\text { diagonal has zero entries only }
\end{array}\right\}
\end{aligned}
$$

is actually made up of the irreducible representations parametrized by the elements of $\operatorname{Sh}\left(\operatorname{Sym}_{0}\left(B_{n}\right)\right)$.
$\operatorname{Sh}\left(\operatorname{Sym}_{0}\left(B_{n}\right)\right)=\{(\lambda, \mu): \lambda, \mu$ have no columns of odd length $\}$.

Strategy: a hint from S_{n}

Theorem (Inglis, Richardson, Saxl, 1990)
π_{k} representation of $S_{2 k}$. Suppose that, for every k,

Strategy: a hint from S_{n}

Theorem (Inglis, Richardson, Saxl, 1990)

π_{k} representation of $S_{2 k}$. Suppose that, for every k,

- $\pi_{k} \downarrow_{S_{2 k-1}}=\pi_{k-1} \uparrow^{S_{2 k-1}}$;

Strategy: a hint from S_{n}

Theorem (Inglis, Richardson, Saxl, 1990)

π_{k} representation of $S_{2 k}$. Suppose that, for every k,

- $\pi_{k} \downarrow S_{2 k-1}=\pi_{k-1} \uparrow^{S_{2 k-1}}$;
- π_{k} contains the trivial representation.

Then

Strategy: a hint from S_{n}

Theorem (Inglis, Richardson, Saxl, 1990)

π_{k} representation of $S_{2 k}$. Suppose that, for every k,

- $\pi_{k} \downarrow{ }_{S_{2 k-1}}=\pi_{k-1} \uparrow^{S_{2 k-1}}$;
- π_{k} contains the trivial representation.

Then

$$
\pi_{k} \simeq \bigoplus_{\substack{\lambda \vdash 2 k}}^{\bigoplus_{\lambda} \text { with even parts only }}
$$

Back to B_{n}

Lemma (C., F., 2010)
Π_{m} representation of $B_{2 m}$. Suppose that, for every m,

Back to B_{n}

Lemma (C., F., 2010)
Π_{m} representation of $B_{2 m}$. Suppose that, for every m,

- $\Pi_{m} \downarrow_{B_{2 m-1}}=\Pi_{m-1} \uparrow^{B_{2 m-1}}$;

Back to B_{n}

Lemma (C., F., 2010)

Π_{m} representation of $B_{2 m}$. Suppose that, for every m,

- $\Pi_{m} \downarrow_{B_{2 m-1}}=\Pi_{m-1} \uparrow^{B_{2 m-1}}$;
- Π_{m} contains the irreducible representations of $B_{2 m}$ indexed by the pairs of single-columned diagrams of even size.
Then

Back to B_{n}

Lemma (C., F., 2010)

Π_{m} representation of $B_{2 m}$. Suppose that, for every m,

- $\Pi_{m} \downarrow_{B_{2 m-1}}=\Pi_{m-1} \uparrow^{B_{2 m-1}}$;
- Π_{m} contains the irreducible representations of $B_{2 m}$ indexed by the pairs of single-columned diagrams of even size.
Then

$$
\Pi_{m} \simeq \bigoplus_{(\lambda, \mu) \in \operatorname{Sh}\left(\operatorname{Sym}_{0}\left(B_{n}\right)\right)} V_{\lambda, \mu}
$$

Back to B_{n}

Lemma (C., F., 2010)

Π_{m} representation of $B_{2 m}$. Suppose that, for every m,

- $\Pi_{m} \downarrow_{B_{2 m-1}}=\Pi_{m-1} \uparrow^{B_{2 m-1}}$;
- Π_{m} contains the irreducible representations of $B_{2 m}$ indexed by the pairs of single-columned diagrams of even size.
Then

$$
\Pi_{m} \simeq \bigoplus_{(\lambda, \mu) \in \operatorname{Sh}\left(\operatorname{Sym}_{0}\left(B_{n}\right)\right)} V_{\lambda, \mu}
$$

Apply this to

$$
\Pi_{m}=\bigoplus_{v \in \operatorname{Sym}_{0}\left(B_{2 m}\right)} \mathbb{C} C_{v}!
$$

The group D_{n}

$$
D_{n}<B_{n}
$$

The group D_{n}

$$
D_{n}<B_{n}
$$

$g \in B_{n}$. Then $g \in D_{n}$ if -1 appears in the matrix of g an even number of times.

The group D_{n}

$$
D_{n}<B_{n}
$$

$g \in B_{n}$. Then $g \in D_{n}$ if -1 appears in the matrix of g an even number of times.
$g=(2,-4,3,1) \in B_{4}$.

$$
g=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \notin D_{4}
$$

The group D_{n}

$$
D_{n}<B_{n}
$$

$g \in B_{n}$. Then $g \in D_{n}$ if -1 appears in the matrix of g an even number of times.
$g=(2,-4,3,1) \in B_{4}$.

$$
g=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \notin D_{4}
$$

$h=(2,-4,-3,1) \in B_{4}$.

$$
h=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \in D_{4}
$$

Another generalization for RS correspondence

$$
g \in B_{n} \xrightarrow{R S}\left(P_{0}, P_{1} ; Q_{0}, Q_{1}\right)
$$

Another generalization for RS correspondence

$$
\begin{aligned}
& g \in B_{n} \xrightarrow{R S}\left(P_{0}, P_{1} ; Q_{0}, Q_{1}\right) \\
& -g \in B_{n} \xrightarrow{R S}\left(P_{1}, P_{0} ; Q_{1}, Q_{0}\right)
\end{aligned}
$$

Another generalization for RS correspondence

$$
\begin{gathered}
g \in B_{n} \xrightarrow{R S}\left(P_{0}, P_{1} ; Q_{0}, Q_{1}\right) \\
-g \in B_{n} \xrightarrow{R S}\left(P_{1}, P_{0} ; Q_{1}, Q_{0}\right) \\
\bar{g} \in \frac{B_{n}}{ \pm I d} \xrightarrow{R S_{2}}\left(\left\{P_{0}, P_{1}\right\} ;\left\{Q_{0}, Q_{1}\right\}\right) \\
\uparrow \quad \uparrow \\
\text { UNORDERED PAIRS!!!!! }
\end{gathered}
$$

The model for D_{n}

Model for B_{n} spanned by

$$
\left\{g \in B_{n}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right\}=\operatorname{Sym}\left(B_{n}\right) .
$$

The model for D_{n}

Model for B_{n} spanned by

$$
\left\{g \in B_{n}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right\}=\operatorname{Sym}\left(B_{n}\right) .
$$

Model for D_{n} : instead of looking at $D_{n} \ldots$

Model for B_{n} spanned by

$$
\left\{g \in B_{n}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right\}=\operatorname{Sym}\left(B_{n}\right) .
$$

Model for D_{n} : instead of looking at $D_{n} \ldots$
... we look at the quotient $\frac{B_{n}}{ \pm I d}$

Generators for the model of D_{n}

Model for D_{n} spanned by

$$
\left\{g \in \frac{B_{n}}{ \pm I d}: \bar{g} \xrightarrow{R S_{2}}\left(\left\{P_{0}, P_{1}\right\} ;\left\{P_{0}, P_{1}\right\}\right)\right\}=
$$

the same unordered pair

Generators for the model of D_{n}

Model for D_{n} spanned by

$$
\left\{g \in \frac{B_{n}}{ \pm l_{d}}: \bar{g} \xrightarrow{R S_{2}}\left(\left\{P_{0}, P_{1}\right\} ;\left\{P_{0}, P_{1}\right\}\right)\right\}=
$$

the same unordered pair

Generators for the model of D_{n}

Model for D_{n} spanned by

$$
\left\{g \in \frac{B_{n}}{ \pm I d}: \bar{g} \xrightarrow{R S_{2}}\left(\left\{P_{0}, P_{1}\right\} ;\left\{P_{0}, P_{1}\right\}\right)\right\}=
$$

the same unordered pair
$\operatorname{Sym}\left(\frac{B_{n}}{ \pm l d}\right):=\left\{\bar{g} \in \frac{B_{n}}{ \pm l d}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right.$ for (any) g lift of $\left.\bar{g}\right\} ;$

Generators for the model of D_{n}

Model for D_{n} spanned by

$$
\left\{g \in \frac{B_{n}}{ \pm I d}: \bar{g} \xrightarrow{R S_{2}}\left(\left\{P_{0}, P_{1}\right\} ;\left\{P_{0}, P_{1}\right\}\right)\right\}=
$$

the same unordered pair
$\operatorname{Sym}\left(\frac{B_{n}}{ \pm I d}\right):=\left\{\bar{g} \in \frac{B_{n}}{ \pm I d}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{0}, P_{1}\right)\right.$ for (any) g lift of $\left.\bar{g}\right\} ;$
Asym $\left(\frac{B_{n}}{ \pm l d}\right):=\left\{\bar{g} \in \frac{B_{n}}{ \pm l d}: g \xrightarrow{R S}\left(P_{0}, P_{1} ; P_{1}, P_{0}\right)\right.$ for (any) g lift of $\left.\bar{g}\right\}$.

Example: antisymmetric elements

$$
v \rightarrow\left(\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 2 & 4 \\
\hline
\end{array} ; \begin{array}{|l|l|}
\hline 2 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline
\end{array}\right)
$$

Example: antisymmetric elements

$$
\begin{gathered}
v \rightarrow\left(\begin{array}{|l|l}
\hline 1 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 2 & 4 \\
\end{array} ; \begin{array}{|c|c|}
\hline 2 & 4 \\
, ~
\end{array}, \begin{array}{|c|c|}
\hline 1 & 3 \\
\hline
\end{array}\right) \\
v=(-2,1,-4,3)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Example: antisymmetric elements

$$
\begin{gathered}
v \rightarrow\left(\begin{array}{|l|l|}
\hline 1 & 3 \\
,
\end{array}, \begin{array}{|l|l|}
\hline 2 & 4 \\
\end{array} ; \begin{array}{|c|c|}
\hline 2 & 4 \\
, ~
\end{array}, \begin{array}{|c|c|}
\hline 1 & 3 \\
\hline
\end{array}\right) \\
v(-2,1,-4,3)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\bar{v} \in \operatorname{Asym}\left(\frac{B_{4}}{ \pm I d}\right)
\end{gathered}
$$

Example: antisymmetric elements

$$
\begin{gathered}
v \rightarrow\left(\begin{array}{|l|l|}
\hline 1 & 3 \\
,
\end{array}, \begin{array}{|l|l}
2 & 4 \\
\end{array} ; \begin{array}{|c|c|}
\hline 2 & 4 \\
, ~
\end{array}, \begin{array}{|c|c}
1 & 3 \\
\hline
\end{array}\right) \\
v(-2,1,-4,3)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\bar{v} \in \operatorname{Asym}\left(\frac{B_{4}}{ \pm I d}\right)
\end{gathered}
$$

- Notice that a pair $\left(P_{0}, P_{1} ; P_{1}, P_{0}\right)$ can be the $R S$ image of a $g \in B_{n}$ only if P_{0} and P_{1} have the same shape λ.

A model for D_{n} : the module (Caselli, 2009)

Caselli's model (M, ρ) for D_{n} looks like this:

A model for D_{n} : the module (Caselli, 2009)

Caselli's model (M, ρ) for D_{n} looks like this:
M is the vector space spanned by

$$
\operatorname{Sym}\left(\frac{B_{n}}{ \pm l d}\right) \cup \operatorname{Asym}\left(\frac{B_{n}}{ \pm l d}\right):
$$

A model for D_{n} : the module (Caselli, 2009)

Caselli's model (M, ρ) for D_{n} looks like this:
M is the vector space spanned by

$$
\begin{aligned}
& \operatorname{Sym}\left(\frac{B_{n}}{ \pm l d}\right) \cup \operatorname{Asym}\left(\frac{B_{n}}{ \pm l d}\right): \\
& M=\bigoplus_{v \in \operatorname{Sym}} \mathbb{C} C_{v} \oplus \bigoplus_{v \in \operatorname{Asym}} \mathbb{C} C_{v}
\end{aligned}
$$

The morphism $\rho: D_{n} \rightarrow G L(M)$ has the form

$$
\rho(g) v=\psi_{v}(g) C_{|g| v|g|^{-1}}
$$

$\psi_{v}(g)$ being a scalar.
\{irreducible representations of B_{n} \}
\{ordered pairs of Ferrers diagrams (λ, μ) such that $|\lambda|+|\mu|=n\}$.

\{irreducible representations of B_{n} \}

\{ordered pairs of Ferrers diagrams (λ, μ) such that $|\lambda|+|\mu|=n\}$. Restrict them to D_{n} :

$$
\left\{\begin{array}{l}
\lambda \neq \mu: \quad(\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}} \text { doesn't split }
\end{array}\right.
$$

\{irreducible representations of B_{n} \}

\downarrow
\{ordered pairs of Ferrers diagrams (λ, μ) such that $|\lambda|+|\mu|=n\}$. Restrict them to D_{n} :
$\begin{cases}\lambda \neq \mu: & (\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}} \text { doesn't split } \\ \lambda=\mu: & (\lambda, \lambda) \downarrow_{D_{n}} \text { splits into two irreducible representations }\end{cases}$

\{irreducible representations of B_{n} \}

\downarrow
\{ordered pairs of Ferrers diagrams (λ, μ) such that $|\lambda|+|\mu|=n\}$. Restrict them to D_{n} :
$\begin{cases}\lambda \neq \mu: & (\lambda, \mu) \downarrow_{D_{n}}=(\mu, \lambda) \downarrow_{D_{n}} \text { doesn't split } \\ \lambda=\mu: & (\lambda, \lambda) \downarrow_{D_{n}} \text { splits into two irreducible representations }\end{cases}$
Where can we find these representations in the model M ?

A very welcome coincidence

Irreducible representations of D_{n} :

A very welcome coincidence

Irreducible representations of D_{n} :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (UNSPLIT REP);

A very welcome coincidence

Irreducible representations of D_{n} :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (UNSPLIT REP);
- $\{\lambda, \lambda\}^{+}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP);
- $\{\lambda, \lambda\}^{-}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP)

A very welcome coincidence

Irreducible representations of D_{n} :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (UNSPLIT REP);
- $\{\lambda, \lambda\}^{+}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP);
- $\{\lambda, \lambda\}^{-}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP)

Possible shapes via $R S_{2}$ of the generators of M :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (SYMMETRIC GEN);

A very welcome coincidence

Irreducible representations of D_{n} :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (UNSPLIT REP);
- $\{\lambda, \lambda\}^{+}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP);
- $\{\lambda, \lambda\}^{-}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP)

Possible shapes via $R S_{2}$ of the generators of M :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$, with $\lambda \vdash \frac{n}{2}$ (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$, with $\lambda \vdash \frac{n}{2}$ (ANTISYMMETRIC GEN).

A very welcome coincidence

Irreducible representations of D_{n} :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (UNSPLIT REP);
- $\{\lambda, \lambda\}^{+}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP);
- $\{\lambda, \lambda\}^{-}$, with $\lambda \vdash \frac{n}{2}$ (SPLIT REP)

Possible shapes via $R S_{2}$ of the generators of M :

- $\{\lambda, \mu\}$, with $\lambda \neq \mu,|\lambda|+|\mu|=n$ (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$, with $\lambda \vdash \frac{n}{2}$ (SYMMETRIC GEN);
- $\{\lambda, \lambda\}$, with $\lambda \vdash \frac{n}{2}$ (ANTISYMMETRIC GEN).

HOW NICE!

A natural decomposition for M

M naturally splits first of all into the two fat submodules

$$
\bigoplus_{v \in \operatorname{Sym}} \mathbb{C} C_{v}
$$

$\oplus \mathbb{C} c_{v}$
$v \in$ Asym

Refinement for M

Again, this decomposition is well-behaved w.r.t. the $R S_{2}$ correspondence!

Refinement for M

Again, this decomposition is well-behaved w.r.t. the $R S_{2}$ correspondence!

Theorem (C., F., 2010)

The split representations of D_{n} can be labelled in such a way that

$$
\bigoplus_{v \in \mathrm{Asym}} \mathbb{C} C_{v} \simeq \bigoplus_{\lambda \vdash \frac{n}{2}}\{\lambda, \lambda\}^{-}
$$

Refinement for M

Again, this decomposition is well-behaved w.r.t. the $R S_{2}$ correspondence!

Theorem (C., F., 2010)

The split representations of D_{n} can be labelled in such a way that

$$
\begin{gathered}
\bigoplus_{v \in \operatorname{Asym}} \mathbb{C} C_{v} \simeq \bigoplus_{\lambda \vdash \frac{n}{2}}\{\lambda, \lambda\}^{-}, \\
\Downarrow \\
\bigoplus_{v \in \operatorname{Sym}} \mathbb{C} C_{v} \simeq \bigoplus_{\lambda \neq \mu}\{\lambda, \mu\} \oplus \bigoplus_{\lambda \vdash \frac{n}{2}}\{\lambda, \lambda\}^{+} .
\end{gathered}
$$

Example

$$
v=(-6,4,3,2,-5,-1) \in B_{6} .
$$

Let \bar{c} be the S_{6}-conjugacy class of \bar{v}. Then

Example

$$
v=(-6,4,3,2,-5,-1) \in B_{6} .
$$

Let \bar{c} be the S_{6}-conjugacy class of \bar{v}. Then

$$
M(\bar{c}) \cong(\boxminus, \forall) \oplus(\boxminus, \boxplus)^{+} \oplus(\theta, \forall)^{+} .
$$

A further refinement

The submodule

$\bigoplus_{v \in \operatorname{Sym}} \mathbb{C} C_{v}$

admits a finer refinement which is analogous to the case of B_{n} and is also well-behaved with respect to $R S_{2}$.

Further generalizations

The whole argument can be generalized to a much wider class of groups.

Further generalizations

The whole argument can be generalized to a much wider class of groups.

Definition

Let $G<G L(n, \mathbb{C})$ and let M be a Gelfand model for $G . G$ is involutory if

$$
\operatorname{dim}(M)=\#\{g \in G: g \bar{g}=1\}
$$

where \bar{g} denotes the complex conjugate of g.

Further generalizations

The whole argument can be generalized to a much wider class of groups.

Definition

Let $G<G L(n, \mathbb{C})$ and let M be a Gelfand model for $G . G$ is involutory if

$$
\operatorname{dim}(M)=\#\{g \in G: g \bar{g}=1\}
$$

where \bar{g} denotes the complex conjugate of g.

```
Theorem (Caselli, 2009)
A group \(G(r, p, n)\) is involutory if and only if \(\operatorname{GCD}(p, n)=1,2\).
```


Thank you!

