O. Azenhas, A. Conflitti, R. Mamede

CMUC - Universidade de Coimbra

March 31, 2010

Outline

- Background: partitions, skew Schur functions and the Schur interval
 - Partitions
 - Skew Schur functions
 - Schur interval
- 2 An algorithm for the Schur interval of a skew Schur function
- 3 Necessary conditions to achieve the full Schur interval
 - Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

Example: $\lambda = (5, 4, 2)$

• Partition
$$\lambda = (\lambda_1, \dots, \lambda_\ell), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$$

 $n = \sum \lambda_i$ weight, $\ell(\lambda) = \ell$ length

 If μ ⊆ λ then the skew diagram λ/μ is obtained by removing from the diagram of λ the boxes of μ

• Partition
$$\lambda = (\lambda_1, \dots, \lambda_\ell), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0,$$

 $n = \sum \lambda_i$ weight, $\ell(\lambda) = \ell$ length

• If $\mu \subseteq \lambda$ then the skew diagram λ/μ is obtained by removing from the diagram of λ the boxes of μ

• Partition
$$\lambda = (\lambda_1, \dots, \lambda_\ell), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0,$$

 $n = \sum \lambda_i$ weight, $\ell(\lambda) = \ell$ length

 If μ ⊆ λ then the skew diagram λ/μ is obtained by removing from the diagram of λ the boxes of μ

 $egin{aligned} s_{\textit{in}} &= (2,2,1,3), \quad m^n - ext{shortness of } \mu ext{ is } 1 \ s_{out} &= (2,1,2,1,1,1), \quad m^n - ext{shortness of } \lambda^* ext{ is } 1 \end{aligned}$

Dominance order on partitions λ,μ having the same weight: $\lambda \preceq \mu$ if

$$\mu_1 + \mu_2 + \dots + \mu_i \le \lambda_1 + \lambda_2 + \dots + \lambda_i$$

for $i = 1, 2, \dots, \min\{\ell(\mu), \ell(\lambda)\}.$

- $\mu \preceq \nu$ iff μ is obtained by "lowering" at least one box of ν .
- μ ⊲ ν, iff ν is obtained by lifting exactly one box of μ to the next available position such that the transfer must be from some μ_{i+1} to μ_i, or from μ'_{i-1} to μ'_i.

• Semistandard Young tableau $T = \lfloor 4 \rfloor$ $\lambda = (4, 3, 1)$ content=(1, 1, 4, 2) reading word w(T) = 33214334

• The Schur function s_{λ} in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda} = \sum_{SSYT \ T} x_1^{\#1's \text{ in } T} x_2^{\#2's \text{ in } T} \cdots$$

Example: $s_{\lambda} = x_1^1 x_2^1 x_3^4 x_4^2 + \cdots$

• Semistandard Young tableau
$$T = 4$$

 $\lambda/\mu = (4,3,1)/(2)$
content= $(0,0,4,2)$ reading word $w(T) = 334334$

• The skew Schur function $s_{\lambda/\mu}$ in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda/\mu} = \sum_{SSYT \ T} x_1^{\#1's \text{ in } T} x_2^{\#2's \text{ in } T} \cdots$$

Example: $s_{\lambda/\mu} = x_3^4 x_4^2 + \cdots$

• Littlewood-Richardson Rule

$$s_{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu
u} s_{
u}$$

where $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reading word is a lattice permutation (LR tableaux).

1122132 is a lattice permutation, but 122213 is not.

•
$$\operatorname{supp}(\lambda/\mu) = \{\nu' : c_{\mu\nu}^{\lambda} > 0\}$$
 support of $s_{\lambda/\mu}$ (or λ/μ)

If $\lambda/\mu = (3,2,1)/(2,1) = \Box$ then $s_{\lambda/\mu} = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$ and $\operatorname{supp}(\lambda/\mu) = \{(1,1,1), (2,1), (3)\}.$ Littlewood- Richardson coefficients satisfy a number of symmetry properties, including:

•
$$c_{\mu\nu}^{\lambda} = c_{\nu\mu}^{\lambda}$$
 and $c_{\mu'\nu'}^{\lambda'} = c_{\mu\nu}^{\lambda}$;

It is useful to note that

•
$$s_{\lambda/\mu} = s_{(\lambda/\mu)^{\pi}}$$
 and $s_{\lambda/\mu} = s_{\widehat{\lambda}/\widehat{\mu}}$

where $\hat{\lambda}/\hat{\mu}$ is the skew diagram obtained from λ/μ by deleting any empty rows and any empty columns.

 $w^r = 2312211$ the reverse lattice permutation

 $w^r = \text{shuffle}(321, 21, 21) = 2312211$

w = 1122132 = shuffle(123, 12, 12)

 $w^r = 2312211$ the reverse lattice permutation

 $w^r = \text{shuffle}(321, 21, 21) = 2312211$

w = 1122132 = shuffle(123, 12, 12)

- The set of reverse lattice permutations with the same content *m* forms a single plactic class whose unique tableau is the Yamanouchi tableau of shape *m*.
- Moreover, this set is equal to all shuffles of the columns of the only tableau in that class.

$$T = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix}$$

LR tableau with content (4,2,1,1) = (4,2,1,1)'

 $S_k = (y_1, y_2, \dots, y_k)$ is a k-string of T if $y_1 < \dots < y_k$ and the rightmost box in row y_i is labeled with i

 $S_4 = (1, 2, 3, 4)$

LR tableau with content (4,2,1,1) = (4,2,1,1)'

 $S_k = (y_1, y_2, \dots, y_k)$ is a k-string of T if $y_1 < \dots < y_k$ and the rightmost box in row y_i is labeled with i

 $S_4 = (1, 2, 3, 4) \le S_2 = (1, 3)$

LR tableau with content (4,2,1,1) = (4,2,1,1)'

 $S_k = (y_1, y_2, \dots, y_k)$ is a k-string of T if $y_1 < \dots < y_k$ and the rightmost box in row y_i is labeled with i

 $S_4 = (1, 2, 3, 4) \le S_2 = (1, 3) \le S_1 = (2)$

w(T) = 11213241

LR tableau with content (4,2,1,1) = (4,2,1,1)'

 $S_k = (y_1, y_2, \dots, y_k)$ is a k-string of T if $y_1 < \dots < y_k$ and the rightmost box in row y_i is labeled with i

 $S_4 = (1, 2, 3, 4) \le S_2 = (1, 3) \le S_1 = (2) \le S_1 = (4)$ complete sequence of strings w(T) = 11213241

Background: partitions, skew Schur functions and the Schur interval

Schur interval

$$\textbf{w}=(3,3,1,1) \preceq \textbf{n}=(4,4)$$

•
$$\operatorname{supp}(\lambda/\mu) \subseteq [\mathbf{w}, \mathbf{n}]$$
 with $\mathbf{w}, \mathbf{n} \in \operatorname{supp}(\lambda/\mu)$ and $c_{\mu\mathbf{w}'}^{\lambda} = c_{\mu\mathbf{n}'}^{\lambda} = 1.$

• $[\mathbf{w}, \mathbf{n}]$ is called the Schur interval of $s_{\lambda/\mu}$

Question: Characterize the skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

 ${\sf Background:} \ {\sf partitions, \ skew \ Schur \ functions \ and \ the \ Schur \ interval}$

Schur interval

$$\textbf{w}=(3,3,1,1) \preceq \textbf{n}=(4,4)$$

•
$$\operatorname{supp}(\lambda/\mu) \subseteq [\mathbf{w}, \mathbf{n}]$$
 with $\mathbf{w}, \mathbf{n} \in \operatorname{supp}(\lambda/\mu)$ and $c_{\mu\mathbf{w}'}^{\lambda} = c_{\mu\mathbf{n}'}^{\lambda} = 1.$

• $[\mathbf{w}, \mathbf{n}]$ is called the Schur interval of $s_{\lambda/\mu}$

Question: Characterize the skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

Question: Characterize the multiplicity-free skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

Theorem (Gutschwager '06, Thomas and Yong '05, King et al '09)

The basic skew Schur function $s_{\lambda/\mu}$ is multiplicity-free if and only if one or more of the following is true:

- **R0** μ or λ^* is the zero partition 0;
- *R*1 μ or λ^* is a rectangle of m^n -shortness 1;
- *R*2 μ is a rectangle of *mⁿ*-shortness 2 and λ^* is a fat hook;
- *R*3 μ is a rectangle and λ^* is a fat hook of m^n -shortness 1;
- R4 μ and λ^* are rectangles.

Corollary (Stembridge '00)

The product $s_\mu s_
u$ is multiplicity-free if and only if

- (i) μ or ν is a one-line rectangle, or
- (ii) μ is a two line rectangle and ν is a fat hook, or
- (iii) μ is a rectangle an ν is a near rectangle, or
- (iv) μ and ν are rectangles.

Background: partitions, skew Schur functions and the Schur interval

Schur interval

R1

R2

Fix a skew diagram λ/μ and let T be a LR tableau with shape λ/μ and content $(m_1,\ldots,m_t)'$

• Rule 1.
$$T = 1$$
 3 $3 \rightarrow T_1 = 1$ 3 3
• Rule 1. $T = 1$ 3 $3 \rightarrow T_1 = 1$ 3 3
2 4 4 4
5 5
 $m = (5, 3, 2)' \lhd m_1 = (5, 4, 1)'$
• Rule 2. $T = 2$ 3 $\rightarrow T_1 = 3$ 3
3 4 4 4
5 5
 $m = (5, 3, 2)' \lhd m_1 = (5, 4, 1)'$

On the full interval linear expansion of a skew Schur function An algorithm for the Schur interval of a skew Schur function

> , $\mathbf{w} = (4, 3, 2) \preceq \mathbf{n} = (6, 3)$ $\lambda/\mu =$ 1213241 3 1 4 2 5 ۲ $T(\mathbf{w}) =$ w=(4,3,2) \preceq (5,3,1) $\begin{array}{r}1\\1\\2\\1\\3\\2\\4\\5\end{array}$ $\begin{smallmatrix}&&1\\&1&2\\&1&3\\&2&4\\&3\end{smallmatrix}$ 1 2 1 2 3 4 1 2 3 $\xrightarrow{R1}$ R1 **R**2 • T(w) = 1 3 5 ⊲(5,2,2) ⊲(5,3,1) (5,4) w=(4,3,2) $\begin{array}{r}1\\1\\2\\1\\3\\2\\4\\3\end{array}$ 1 2 1 3 4R2 $T(\mathbf{w}) =$ w=(4,3,2) \triangleleft (4,4,1)

On the full interval linear expansion of a skew Schur function An algorithm for the Schur interval of a skew <u>Schur function</u>

•
$$\overline{\tau} = \frac{1}{2} \frac{1$$

$$\begin{split} [\mathbf{w},\mathbf{n}] &= \{(4,3,2),(4,4,1),(5,2,2),(5,3,1),(6,2,1),(5,4),(6,3)\} \\ &= \mathrm{supp}(\lambda/\mu) \end{split}$$

Lemma

- $\mathbf{w} = \mathbf{n}$ if and only if $\lambda/\mu = \nu$ or $\lambda/\mu = \nu^{\pi}$.
- (van Willigenburg '04) $s_{\lambda/\mu} = s_{\nu}$ if and only if $\lambda/\mu = \nu$ or $\lambda/\mu = \nu^{\pi}$.

Lemma

Let v, w be partitions with n entries. (a) If $\lambda/\mu = v^{\pi} \bullet w$ and $\beta/\alpha = [v + (x^n)]^{\pi} \bullet w$, then $c \in \operatorname{supp}(\beta/\alpha)$ if and only if $c = b \cup (n^x)$ with $b \in \operatorname{supp}(\lambda/\mu)$. (b) If $\lambda/\mu = (v^{\pi} \bullet w)'$ and $\beta/\alpha = ([v + (x^n)]^{\pi} \bullet w)'$, then $c \in \operatorname{supp}(\beta/\alpha)$ if and only if $c = b + (x^n)$ with $b \in \operatorname{supp}(\lambda/\mu)$.

$$v = (3, 2, 2, 0), w = (4, 2, 2, 1)$$
 with $n = 4$

Lemma

If λ/μ is a two row skew diagram then its support is the entire Schur interval.

On the full interval linear expansion of a skew Schur function Necessary conditions to achieve the full Schur interval

Example
$$\lambda/\mu = \square$$
, $\mathbf{w} = (3, 3, 2)$ and $\mathbf{n} = (4, 3, 1)$

$$T(\mathbf{w}) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{4} = T(\mathbf{n}), \qquad \text{supp}(\lambda/\mu) = \{\mathbf{w}, \mathbf{n}\}$$

 $\xi := (4,2,2) \in [\mathbf{w},\mathbf{n}] \quad ext{ but } \xi \notin ext{supp}(\lambda/\mu)$

Necessary conditions to achieve the full Schur interval

Theorem

- If, up to a π-rotation and/or conjugation, λ/μ is an F1 configuration then supp(λ/μ) ⊊ [w, n].
- If $\ell(\lambda^1/\mu) \leq \ell(\lambda/\mu) 2$ and λ^1/μ has at least one column of length ≥ 2 then $\operatorname{supp}(\lambda/\mu) \subsetneq [\mathbf{w}, \mathbf{n}]$.

Necessary conditions to achieve the full Schur interval

Theorem

- If, up to a π-rotation and/or conjugation, λ/μ is an F1 configuration then supp(λ/μ) ⊊ [w, n].
- If $\ell(\lambda^1/\mu) \leq \ell(\lambda/\mu) 2$ and λ^1/μ has at least one column of length ≥ 2 then $\operatorname{supp}(\lambda/\mu) \subsetneq [\mathbf{w}, \mathbf{n}]$.

Examples:

Necessary conditions to achieve the full Schur interval

Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

Proposition

- The support of G2 is the entire Schur interval iff a ≤ c + 1 and d ≤ b + 1.
- 2 The support of G3 is the entire Schur interval iff a = x = 1, or a = 1 and $x \le y + 1$, or $a \le b + 1$ and x = 1
- So The support of G4 is the entire Schur interval iff a = 1 and x ≤ y + 1 or a ≥ 2 and x = 1.

Necessary conditions to achieve the full Schur interval

Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

Proposition

The support of G6 is the entire Schur interval iff b = y = 1.
Let w = (n₁,..., n_ℓ) ∪ (x) be the minimal filling of G8. The support of G8 is the entire Schur interval iff ℓ = 3, x = n₂, n₃ = 1, x + y = n₁ + 1 and (i) n₂ ≤ y and k ≥ 1; or (ii) n₂ > y, where k is the number of rows that the last two columns share.

Necessary conditions to achieve the full Schur interval

Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

Theorem

The basic skew Schur function $s_{\lambda/\mu}$ is multiplicity-free and its support is the entire Schur interval $[\mathbf{w}, \mathbf{n}]$ if and only if, up to a block of maximal width or maximal length, and up to a π -rotation and/or conjugation, one or more of the following is true:

(i)
$$\mu$$
 or λ^* is the zero partition 0.

- (ii) λ/μ is a two column or a two row diagram.
- (iii) λ/μ is an A2, A3, A4, A6 or A8 configuration.

Necessary conditions to achieve the full Schur interval

Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

On the full interval linear expansion of a skew Schur function Necessary conditions to achieve the full Schur interval Characterization of multiplicity-free skew Schur functions with full Schur interval expansion

- O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra 46 (1999), 51-99.
- D. Dou, R. Tang, R. King, A hive model determination of multiplicity-free Schur function products and skew Schur functions, arXiv:0901.0186v1 [math.CO].
- C. Gutschwager, On multiplicity-free skew characters and the Schubert Calculus, arXiv:1002.1610v1 [math.CO].
- P. McNamara, Necessary conditions for Schur-positivity, J Algebr Comb 28 (2008), 495-507.
- J.R. Stembridge, Multiplicity-free products of Schur functions, Ann. Combin. 5 (2001), 113-121.
- S. van Willigenburg, Equality of Schur and skew Schur functions, Ann. Comb. 9 (2005), 355–362.
- H. Thomas and A. Yong, Multiplicity-free Schubert calculus, Canad. Math. Bull. 53 (2010), 171–186.
- I. Zaballa. Increasing and Decreasing Littlewood-Richardson Sequences and Duality, preprint, University of Basque Country, 1996.