On the full interval linear expansion of a skew Schur function

O. Azenhas, A. Conflitti, R. Mamede

CMUC - Universidade de Coimbra
March 31, 2010

Outline

(1) Background: partitions, skew Schur functions and the Schur interval

- Partitions
- Skew Schur functions
- Schur interval
(2) An algorithm for the Schur interval of a skew Schur function
(3) Necessary conditions to achieve the full Schur interval
- Characterization of multiplicity-free skew Schur functions with full Schur interval expansion
- Partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$, $n=\sum \lambda_{i}$ weight, $\ell(\lambda)=\ell$ length

Example: $\lambda=(5,4,2)$

- If $\mu \subseteq \lambda$ then the skew diagram λ / μ is obtained by removing from the diagram of λ the boxes of μ
- Partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$, $n=\sum \lambda_{i}$ weight, $\ell(\lambda)=\ell$ length

Example: $\lambda / \mu=(5,4,2) /(2)=$

- If $\mu \subseteq \lambda$ then the skew diagram λ / μ is obtained by removing from the diagram of λ the boxes of μ
- Partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$, $n=\sum \lambda_{i}$ weight, $\ell(\lambda)=\ell$ length

Example: $\lambda / \mu=(5,4,2) /(2)=$

- If $\mu \subseteq \lambda$ then the skew diagram λ / μ is obtained by removing from the diagram of λ the boxes of μ

$$
\begin{gathered}
s_{\text {in }}=(2,2,1,3), \quad m^{n}-\text { shortness of } \mu \text { is } 1 \\
s_{\text {out }}=(2,1,2,1,1,1), \quad m^{n}-\text { shortness of } \lambda^{*} \text { is } 1
\end{gathered}
$$

$$
\lambda=(4,2,0,0), \mu=(3,1,1,0)
$$

- $\lambda+\mu=(4+3,2+1,1)=\square$

- $\lambda \cup \mu=(4,3,2,1,1)=\square$
- λ^{π}

Dominance order on partitions λ, μ having the same weight: $\lambda \preceq \mu$ if

$$
\mu_{1}+\mu_{2}+\cdots+\mu_{i} \leq \lambda_{1}+\lambda_{2}+\cdots+\lambda_{i}
$$

for $i=1,2, \ldots, \min \{\ell(\mu), \ell(\lambda)\}$.

- $\mu \preceq \nu$ iff μ is obtained by "lowering" at least one box of ν.
- $\mu \triangleleft \nu$, iff ν is obtained by lifting exactly one box of μ to the next available position such that the transfer must be from some μ_{i+1} to μ_{i}, or from μ_{i-1}^{\prime} to μ_{i}^{\prime}.

- Semistandard Young tableau $\quad T=$| 1 | 2 | 3 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 4 | |
| 4 | | | |

$\lambda=(4,3,1)$
content $=(1,1,4,2) \quad$ reading word $w(T)=33214334$

- The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{S S Y T_{T}} x_{1}^{\# 1^{\prime} s \text { in } T} x_{2}^{\# 2^{\prime} s \text { in } T} \ldots
$$

Example: $s_{\lambda}=x_{1}^{1} x_{2}^{1} x_{3}^{4} x_{4}^{2}+\cdots$

- Semistandard Young tableau $\quad T=$| 3 | 3 | 4 |
| :--- | :--- | :--- |
| 4 | | | $\lambda / \mu=(4,3,1) /(2)$ content $=(0,0,4,2) \quad$ reading word $w(T)=334334$
- The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{S S Y T_{T}} x_{1}^{\# 1^{\prime} s \text { in } T_{x_{2}}^{\# 2^{\prime} s} \text { in } T} \ldots
$$

Example: $s_{\lambda / \mu}=\quad x_{3}^{4} x_{4}^{2}+\cdots$

- Littlewood-Richardson Rule

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

where $c_{\mu \nu}^{\lambda}$ is the number of SSYT of shape λ / μ and content ν whose reading word is a lattice permutation (LR tableaux).

1122132 is a lattice permutation, but 122213 is not.

- $\operatorname{supp}(\lambda / \mu)=\left\{\nu^{\prime}: c_{\mu \nu}^{\lambda}>0\right\}$ support of $s_{\lambda / \mu}($ or $\lambda / \mu)$

If $\lambda / \mu=(3,2,1) /(2,1)=\square \quad$ then $s_{\lambda / \mu}=s_{(1,1,1)}+2 s_{(2,1)}+s_{(3)}$ and $\operatorname{supp}(\lambda / \mu)=\{(1,1,1),(2,1),(3)\}$.

Littlewood- Richardson coefficients satisfy a number of symmetry properties, including:

- $c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$ and $c_{\mu^{\prime} \nu^{\prime}}^{\lambda^{\prime}}=c_{\mu \nu}^{\lambda}$;

It is useful to note that

- $s_{\lambda / \mu}=s_{(\lambda / \mu)^{\pi}}$ and $s_{\lambda / \mu}=s_{\hat{\lambda} / \hat{\mu}}$
where $\widehat{\lambda} / \hat{\mu}$ is the skew diagram obtained from λ / μ by deleting any empty rows and any empty columns.

$w^{r}=2312211$ the reverse lattice permutation $\quad P(w)=$<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">3</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 2 | 2 |
| 3 | | |</table-markdown></div>
 $w^{r}=\operatorname{shuffle}(321,21,21)=2312211$

$$
w=1122132=\operatorname{shuffle}(123,12,12)
$$

$w^{r}=2312211$ the reverse lattice permutation $\quad P(w)=$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 2 | 2 |
| | | |

$$
\begin{gathered}
w^{r}=\operatorname{shuffle}(321,21,21)=2312211 \\
w=1122132=\operatorname{shuffle}(123,12,12)
\end{gathered}
$$

- The set of reverse lattice permutations with the same content m forms a single plactic class whose unique tableau is the Yamanouchi tableau of shape m.
- Moreover, this set is equal to all shuffles of the columns of the only tableau in that class.

LR tableau with content $(4,2,1,1)=(4,2,1,1)^{\prime}$
$S_{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is a k-string of T if $y_{1}<\cdots<y_{k}$ and the rightmost box in row y_{i} is labeled with i

$$
S_{4}=(1,2,3,4)
$$

- A tableau with content $m=\left(m_{1}, m_{2}, \ldots, m_{s}\right)^{\prime}$ is a LR tableau if and only if it has a complete sequence of strings $S_{m_{1}} \leq S_{m_{2}} \leq \cdots \leq S_{m_{s}}$.

LR tableau with content $(4,2,1,1)=(4,2,1,1)^{\prime}$
$S_{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is a k-string of T if $y_{1}<\cdots<y_{k}$ and the rightmost box in row y_{i} is labeled with i

$$
S_{4}=(1,2,3,4) \leq S_{2}=(1,3)
$$

- A tableau with content $m=\left(m_{1}, m_{2}, \ldots, m_{s}\right)^{\prime}$ is a LR tableau if and only if it has a complete sequence of strings $S_{m_{1}} \leq S_{m_{2}} \leq \cdots \leq S_{m_{s}}$.

	1	1	
1	1	1	
	1	2	
	2	3	
1	4		

LR tableau with content $(4,2,1,1)=(4,2,1,1)^{\prime}$
$S_{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is a k-string of T if $y_{1}<\cdots<y_{k}$ and the rightmost box in row y_{i} is labeled with i

$$
\begin{aligned}
& S_{4}=(1,2,3,4) \leq S_{2}=(1,3) \leq S_{1}=(2) \\
& w(T)=11213241
\end{aligned}
$$

- A tableau with content $m=\left(m_{1}, m_{2}, \ldots, m_{s}\right)^{\prime}$ is a LR tableau if and only if it has a complete sequence of strings $S_{m_{1}} \leq S_{m_{2}} \leq \cdots \leq S_{m_{s}}$.

LR tableau with content $(4,2,1,1)=(4,2,1,1)^{\prime}$
$S_{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is a k-string of T if $y_{1}<\cdots<y_{k}$ and the rightmost box in row y_{i} is labeled with i
$S_{4}=(1,2,3,4) \leq S_{2}=(1,3) \leq S_{1}=(2) \leq S_{1}=$ (4) complete sequence of strings
$w(T)=11213241$

- A tableau with content $m=\left(m_{1}, m_{2}, \ldots, m_{s}\right)^{\prime}$ is a LR tableau if and only if it has a complete sequence of strings $S_{m_{1}} \leq S_{m_{2}} \leq \cdots \leq S_{m_{s}}$.

$$
\begin{aligned}
& \mathbf{w}=(3,3,1,1) \preceq \mathbf{n}=(4,4)
\end{aligned}
$$

- $\operatorname{supp}(\lambda / \mu) \subseteq[\mathbf{w}, \mathbf{n}]$ with $\mathbf{w}, \mathbf{n} \in \operatorname{supp}(\lambda / \mu)$ and $c_{\mu \mathbf{w}^{\prime}}^{\lambda}=c_{\mu \mathbf{n}^{\prime}}^{\lambda}=1$.
- $[\mathbf{w}, \mathbf{n}]$ is called the Schur interval of $s_{\lambda / \mu}$

Question: Characterize the skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

$$
\begin{aligned}
& \mathbf{w}=(3,3,1,1) \preceq \mathbf{n}=(4,4)
\end{aligned}
$$

- $\operatorname{supp}(\lambda / \mu) \subseteq[\mathbf{w}, \mathbf{n}]$ with $\mathbf{w}, \mathbf{n} \in \operatorname{supp}(\lambda / \mu)$ and $c_{\mu \mathbf{w}^{\prime}}^{\lambda}=c_{\mu \mathbf{n}^{\prime}}^{\lambda}=1$.
- $[\mathbf{w}, \mathbf{n}]$ is called the Schur interval of $s_{\lambda / \mu}$

Question: Characterize the skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

Question: Characterize the multiplicity-free skew Schur functions whose support is equal to $[\mathbf{w}, \mathbf{n}]$.

Theorem (Gutschwager '06, Thomas and Yong '05, King et al '09)
The basic skew Schur function $s_{\lambda / \mu}$ is multiplicity-free if and only if one or more of the following is true:
$R 0 \mu$ or λ^{*} is the zero partition 0 ;
$R 1 \mu$ or λ^{*} is a rectangle of m^{n}-shortness 1 ;
$R 2 \mu$ is a rectangle of m^{n}-shortness 2 and λ^{*} is a fat hook;
$R 3 \mu$ is a rectangle and λ^{*} is a fat hook of m^{n}-shortness 1 ;
$R 4 \mu$ and λ^{*} are rectangles.

Corollary (Stembridge '00)

The product $s_{\mu} s_{\nu}$ is multiplicity-free if and only if
(i) μ or ν is a one-line rectangle, or
(ii) μ is a two line rectangle and ν is a fat hook, or
(iii) μ is a rectangle an ν is a near rectangle, or
(iv) μ and ν are rectangles.

R1

R2

Fix a skew diagram λ / μ and let T be a LR tableau with shape λ / μ and content $\left(m_{1}, \ldots, m_{t}\right)^{\prime}$

- Rule 1. $T=1 \quad 3 \quad 3 \rightarrow T_{1}=1 \quad 3 \quad 3$

$$
m=(5,3,2)^{\prime} \triangleleft m_{1}=(5,4,1)^{\prime}
$$

$$
m=(5,3,2)^{\prime} \triangleleft m_{1}=(5,4,1)^{\prime}
$$

$$
\begin{aligned}
& \lambda / \mu=\square, \mathbf{w}=(4,3,2) \preceq \mathbf{n}=(6,3)
\end{aligned}
$$

$$
\begin{aligned}
& (5,3,1) \quad \triangleleft(5,4) \\
& {[\mathbf{w}, \mathbf{n}]=\{(4,3,2),(4,4,1),(5,2,2),(5,3,1),(6,2,1),(5,4),(6,3)\}} \\
& =\operatorname{supp}(\lambda / \mu)
\end{aligned}
$$

Lemma

- $\mathbf{w}=\mathbf{n}$ if and only if $\lambda / \mu=\nu$ or $\lambda / \mu=\nu^{\pi}$.
- (van Willigenburg '04) $s_{\lambda / \mu}=s_{\nu}$ if and only if $\lambda / \mu=\nu$ or $\lambda / \mu=\nu^{\pi}$.

Lemma

Let v, w be partitions with n entries.
(a) If $\lambda / \mu=v^{\pi} \bullet w$ and $\beta / \alpha=\left[v+\left(x^{n}\right)\right]^{\pi} \bullet w$, then
$c \in \operatorname{supp}(\beta / \alpha)$ if and only if $c=b \cup\left(n^{x}\right)$ with $b \in \operatorname{supp}(\lambda / \mu)$.
(b) If $\lambda / \mu=\left(v^{\pi} \bullet w\right)^{\prime}$ and $\beta / \alpha=\left(\left[v+\left(x^{n}\right)\right]^{\pi} \bullet w\right)^{\prime}$, then $c \in \operatorname{supp}(\beta / \alpha)$ if and only if $c=b+\left(x^{n}\right)$ with $b \in \operatorname{supp}(\lambda / \mu)$.
$v=(3,2,2,0), w=(4,2,2,1)$ with $n=4$

Lemma

If λ / μ is a two row skew diagram then its support is the entire Schur interval.

$[\mathbf{w}, \mathbf{n}]=\{\mathbf{w}, b, \mathbf{n}\}=\operatorname{supp}(\lambda / \mu)$.

Example

$\lambda / \mu=\square, \mathbf{w}=(3,3,2)$ and $\mathbf{n}=(4,3,1)$

$$
\xi:=(4,2,2) \in[\mathbf{w}, \mathbf{n}] \quad \text { but } \xi \notin \operatorname{supp}(\lambda / \mu)
$$

$$
\lambda^{1} / \mu=\stackrel{\bullet}{\vdots}, \mathbf{w}^{1}=(3,1)=\mathbf{n}^{1} \text { and }(2,2) \prec \mathbf{w}^{1} .
$$

$$
\begin{aligned}
& \operatorname{supp}(\lambda / \mu)=\{\mathbf{w}, \mathbf{n}\}
\end{aligned}
$$

F1

Theorem

- If, up to a π-rotation and/or conjugation, λ / μ is an $F 1$ configuration then $\operatorname{supp}(\lambda / \mu) \varsubsetneqq[\mathbf{w}, \mathbf{n}]$.
- If $\ell\left(\lambda^{1} / \mu\right) \leq \ell(\lambda / \mu)-2$ and λ^{1} / μ has at least one column of length ≥ 2 then $\operatorname{supp}(\lambda / \mu) \varsubsetneqq[\mathbf{w}, \mathbf{n}]$.

F1

Theorem

- If, up to a π-rotation and/or conjugation, λ / μ is an $F 1$ configuration then $\operatorname{supp}(\lambda / \mu) \varsubsetneqq[\mathbf{w}, \mathbf{n}]$.
- If $\ell\left(\lambda^{1} / \mu\right) \leq \ell(\lambda / \mu)-2$ and λ^{1} / μ has at least one column of length ≥ 2 then $\operatorname{supp}(\lambda / \mu) \varsubsetneqq[\mathbf{w}, \mathbf{n}]$.

Examples:

Proposition

(1) The support of G2 is the entire Schur interval iff $a \leq c+1$ and $d \leq b+1$.
(2) The support of G3 is the entire Schur interval iff $a=x=1$, or $a=1$ and $x \leq y+1$, or $a \leq b+1$ and $x=1$
(3) The support of G4 is the entire Schur interval iff $a=1$ and $x \leq y+1$ or $a \geq 2$ and $x=1$.

Proposition

(1) The support of $G 6$ is the entire Schur interval iff $b=y=1$.
(2) Let $\mathbf{w}=\left(n_{1}, \ldots, n_{\ell}\right) \cup(x)$ be the minimal filling of $G 8$. The support of $G 8$ is the entire Schur interval iff $\ell=3, x=n_{2}, n_{3}=1, x+y=n_{1}+1$ and (i) $n_{2} \leq y$ and $k \geq 1$; or (ii) $n_{2}>y$, where k is the number of rows that the last two columns share.

Theorem

The basic skew Schur function $s_{\lambda / \mu}$ is multiplicity-free and its support is the entire Schur interval [\mathbf{w}, \mathbf{n}] if and only if, up to a block of maximal width or maximal length, and up to a π-rotation and/or conjugation, one or more of the following is true:
(i) μ or λ^{*} is the zero partition 0 .
(ii) λ / μ is a two column or a two row diagram.
(iii) λ / μ is an $A 2, A 3, A 4, A 6$ or $A 8$ configuration.

(1) O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra 46 (1999), 51-99.
(2) D. Dou, R. Tang, R. King, A hive model determination of multiplicity-free Schur function products and skew Schur functions, arXiv:0901.0186v1 [math.CO].
(3) C. Gutschwager, On multiplicity-free skew characters and the Schubert Calculus, arXiv:1002.1610v1 [math.CO].
(4) P. McNamara, Necessary conditions for Schur-positivity, J Algebr Comb 28 (2008), 495-507.
(5) J.R. Stembridge, Multiplicity-free products of Schur functions, Ann. Combin. 5 (2001), 113-121.
(6) S. van Willigenburg, Equality of Schur and skew Schur functions, Ann. Comb. 9 (2005), 355-362 .
(7) H. Thomas and A. Yong, Multiplicity-free Schubert calculus, Canad. Math. Bull. 53 (2010), 171-186.
(8) I. Zaballa. Increasing and Decreasing Littlewood-Richardson Sequences and Duality, preprint, University of Basque Country, 1996.

