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Introduction

Fully Packed Loop (FPL) configurations are combinatorial
structures that arose in statistical mechanics, in simple
bijection with known combinatorial objects.



0 0 1 0 0 0 0
0 1 −1 0 0 1 0
0 0 0 0 1 −1 1
1 0 0 0 −1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0





2-2

Introduction

Fully Packed Loop (FPL) configurations are combinatorial
structures that arose in statistical mechanics, in simple
bijection with known combinatorial objects.



0 0 1 0 0 0 0
0 1 −1 0 0 1 0
0 0 0 0 1 −1 1
1 0 0 0 −1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0



One can define certain polynomials Aπ(X) (indexed by
noncrossing matchings π) which count FPLs when specialized
to nonnegative integers.

We will here formulate conjectures for the polynomials Aπ(X),
hinting at “combinatorial reciprocity”.
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Introduction

(1) such that around each
vertex of Gn, 2 edges out of 4
are selected ; (“Fully Packed”)

(2) containing every other
external edge. (“Boundary
condition”)

A FPL configuration of size n
is a subgraph of the grid Gn

Start with the square grid Gn with n2 vertices and 4n external
edges (here n = 7).
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An =number of FPLs of size n
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Introduction

A link pattern π of size n is a set of n noncrossing chords
between 2n points on a disk.
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To each FPL F is associated a a link pattern π(F ).
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Introduction

We will write link patterns linearly, as noncrossing matchings :

1 2 3 4 5 6 7 8 9 1011 131412
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⇔

Given a noncrossing matching π, we note Aπ the number of
FPLs F such that π(F ) = π.
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Introduction

We will write link patterns linearly, as noncrossing matchings :

1 2 3 4 5 6 7 8 9 1011 131412
3

4
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Matchings with nested arches : for p ≥ 0,

(π)p := π{ {
p p

⇔

Given a noncrossing matching π, we note Aπ the number of
FPLs F such that π(F ) = π.
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Introduction : the Razumov-Stroganov ex-conjecture

Definition : The operators ei,i ∈ [[1, 2n]], act on matchings by
{i, j}, {i+ 1, k} ∈ π → {i, i+ 1}, {j, k} ∈ ei(π).
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Introduction : the Razumov-Stroganov ex-conjecture

Definition : The operators ei,i ∈ [[1, 2n]], act on matchings by
{i, j}, {i+ 1, k} ∈ π → {i, i+ 1}, {j, k} ∈ ei(π).

ei

i
i+ 1i
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j

k

j

k

Markov chain M
• States = LPn ;
• Transition probabilities : P (π → π′) = k

2n where k is the
number of i ∈ {1, . . . , 2n} such that ei(π) = π′.
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Introduction : the Razumov-Stroganov ex-conjecture

Definition : The operators ei,i ∈ [[1, 2n]], act on matchings by
{i, j}, {i+ 1, k} ∈ π → {i, i+ 1}, {j, k} ∈ ei(π).

ei

i
i+ 1i

i+ 1
j

k

j

k

Markov chain M
• States = LPn ;
• Transition probabilities : P (π → π′) = k

2n where k is the
number of i ∈ {1, . . . , 2n} such that ei(π) = π′.

Stationary distribution : Let P be the matrix defined by
Pππ′ = P (π → π′) where π, π′ ∈ LPn.
Then there is a unique probability distribution (ψ)π on LPn
such that Pψ = ψ.
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Introduction : the Razumov-Stroganov ex-conjecture

RS conjecture ([Cantini and Sportiello ’10]) :

∀π ∈ LPn, ψπ =
Aπ
An

∀π, 2nAπ =
∑

(i,π′),ei(π′)=π

Aπ′

The proof consists in showing that the numbers Aπ/An verify
the stationary equations ofM, which can be written explicitly :
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Introduction : the Razumov-Stroganov ex-conjecture

RS conjecture ([Cantini and Sportiello ’10]) :

∀π ∈ LPn, ψπ =
Aπ
An

∀π, 2nAπ =
∑

(i,π′),ei(π′)=π

Aπ′

The numbers ψπ were studied in detail by Di Francesco and
Zinn-Justin → integral expressions (up to a change of basis),
multivariate versions, computations in special cases.

The proof consists in showing that the numbers Aπ/An verify
the stationary equations ofM, which can be written explicitly :
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Introduction : the Razumov-Stroganov ex-conjecture

RS conjecture ([Cantini and Sportiello ’10]) :

∀π ∈ LPn, ψπ =
Aπ
An

∀π, 2nAπ =
∑

(i,π′),ei(π′)=π

Aπ′

The numbers ψπ were studied in detail by Di Francesco and
Zinn-Justin → integral expressions (up to a change of basis),
multivariate versions, computations in special cases.

The proof consists in showing that the numbers Aπ/An verify
the stationary equations ofM, which can be written explicitly :

Consequence : to prove results about the numbers Aπ one
can either use their combinatorial definitions or use the
expressions from Di-Francesco and Zinn-Justin.
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Introduction

Theorem[Caselli,Krattenthaler,Lass,N. ’05]

For a fixed π, the quantity A(π)p is polynomial in p ; let
Aπ(X) be the polynomial such that Aπ(p) = A(π)p for p ∈ N.
Then Aπ(X) is a polynomial of degree d(π), with leading
coeffient 1

Hπ
, such that d(π)! ·Aπ(X) has integer coefficients.
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Introduction

Theorem[Caselli,Krattenthaler,Lass,N. ’05]

For a fixed π, the quantity A(π)p is polynomial in p ; let
Aπ(X) be the polynomial such that Aπ(p) = A(π)p for p ∈ N.
Then Aπ(X) is a polynomial of degree d(π), with leading
coeffient 1

Hπ
, such that d(π)! ·Aπ(X) has integer coefficients.

d(π) is the number of boxes in the Young diagram Y (π) :
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Introduction

Theorem[Caselli,Krattenthaler,Lass,N. ’05]

For a fixed π, the quantity A(π)p is polynomial in p ; let
Aπ(X) be the polynomial such that Aπ(p) = A(π)p for p ∈ N.
Then Aπ(X) is a polynomial of degree d(π), with leading
coeffient 1

Hπ
, such that d(π)! ·Aπ(X) has integer coefficients.

d(π) is the number of boxes in the Young diagram Y (π) :

Hπ is the product of the hook
lengths of Y (π).

14578
2356
1245

12
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Introduction

Aπ(X) = Aπ∗(X).

A(π)(X) = Aπ(X + 1).

Here π∗ is the matching reflected vertically ; this is proved by
checking the evaluations X = p ∈ N.

We have the following properties :
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Introduction

Aπ(X) = Aπ∗(X).

A(π)(X) = Aπ(X + 1).

Here π∗ is the matching reflected vertically ; this is proved by
checking the evaluations X = p ∈ N.

We have the following properties :

We formulate several conjectures about the polynomials
Aπ(X), and emphasize the combinatorics related to them.
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Some simple combinatorics
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Combinatorial constructions (1)

Let x̂ = 2n+ 1− x., and (I) be the interval [[i+ 1, î+ 1]],
while (O) is defined as [[1, 2n]]− (I).

Let π be a matching of size |π| = n, and consider an integer i
in [[1, n− 1]].

Definition mi(π) := half the number of arcs in π linking the
regions (O) and (I).
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Combinatorial constructions (1)

1 2 3 4 5 6 7 8 8̂ 7̂ 6̂ 5̂ 4̂ 3̂ 2̂ 1̂

(O) (O)(I)

Let x̂ = 2n+ 1− x., and (I) be the interval [[i+ 1, î+ 1]],
while (O) is defined as [[1, 2n]]− (I).

Let π be a matching of size |π| = n, and consider an integer i
in [[1, n− 1]].

Definition mi(π) := half the number of arcs in π linking the
regions (O) and (I).

m4(π0) =
4
2 = 2.

π0
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Combinatorial constructions (1)

1 2 3 4 5 6 7 8

8̂7̂6̂5̂4̂3̂2̂1̂

(O) (I)

This is better visualized by folding π on itself :

We obtain mi(π0) = 0, 1, 2, 2, 2, 1, 1 for i = 1 . . . 7.
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Combinatorial constructions (1)

1 2 3 4 5 6 7 8

8̂7̂6̂5̂4̂3̂2̂1̂

(O) (I)

This is better visualized by folding π on itself :

We obtain mi(π0) = 0, 1, 2, 2, 2, 1, 1 for i = 1 . . . 7.

One has the easy properties :
• mi(π) = mi(π

∗), where π∗ is the reflected matching ;
• mi(π) = mi+1(π

′) where π′ = (π).
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Combinatorial constructions (1)

1 2 3 4 5 6 7 8

8̂7̂6̂5̂4̂3̂2̂1̂

(O) (I)

This is better visualized by folding π on itself :

We obtain mi(π0) = 0, 1, 2, 2, 2, 1, 1 for i = 1 . . . 7.

One has the easy properties :
• mi(π) = mi(π

∗), where π∗ is the reflected matching ;
• mi(π) = mi+1(π

′) where π′ = (π).

We now define other integers mbis
i (π), defined also for

i = 1, 2, . . . , n− 1.
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Combinatorial constructions (2)

We use here the Young diagram Y (π) attached to π.
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Combinatorial constructions (2)

We use here the Young diagram Y (π) attached to π.

7 6 5 4 3

6 5 4 3

5 4 2

4 3

3

1) Label the cells by putting n− 1 in the top left corner, and
letting labels decrease by 1 ; decompose Y (π) in rims.
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Combinatorial constructions (2)

We use here the Young diagram Y (π) attached to π.

7 6 5 4 3

6 5 4 3

5 4 2

4 3

3

1) Label the cells by putting n− 1 in the top left corner, and
letting labels decrease by 1 ; decompose Y (π) in rims.

2) For each rim R, construct the multiset union of {k},
[[k + 1, e1]] and [[k + 1, e2]], where k is the minimum label in R,
and e1, e2 are the labels at both extremities.

{6, 7}

{4, 5, 5}

{2, 3, 4, 3}
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Combinatorial constructions (2)

We use here the Young diagram Y (π) attached to π.

7 6 5 4 3

6 5 4 3

5 4 2

4 3

3

1) Label the cells by putting n− 1 in the top left corner, and
letting labels decrease by 1 ; decompose Y (π) in rims.

2) For each rim R, construct the multiset union of {k},
[[k + 1, e1]] and [[k + 1, e2]], where k is the minimum label in R,
and e1, e2 are the labels at both extremities.

3) Now do the union U of all these multisets :

mbis
i (π) := multiplicity of i in U .

{6, 7}

{4, 5, 5}

{2, 3, 4, 3}

U = {2, 32, 42, 52, 6, 7}
→ mbis

i = 0, 1, 2, 2, 2, 1, 1
for i = 1 . . . 7.
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Combinatorial constructions (2)

In fact we have :

Proposition : For all π, i, we have mi(π) = mbis
i (π)

One can show this by induction on the number of rims in the
rim decomposition of Y (π).
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Combinatorial constructions (2)

Proposition : For any π, we have
•
∑
imi(π) ≤ d(π) ;

•
∑
imi(π) ≡ d(π) (mod 2).

Proof : Use the mbis
i (π) construction.

In fact we have :

Proposition : For all π, i, we have mi(π) = mbis
i (π)

One can show this by induction on the number of rims in the
rim decomposition of Y (π).

By convention, we set mi(π) = 0 if i ∈ [[1, n− 1]].
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The conjectures
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The conjectures

We will formulate conjectures about the polynomials Aπ(X),
which concern :
• the real roots ;
• the values at negative integers ;
• the coefficients.
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The conjectures

We will formulate conjectures about the polynomials Aπ(X),
which concern :
• the real roots ;
• the values at negative integers ;
• the coefficients.

The Aπ(X) have been explicitly computed for |π| ≤ 8, and the
conjectures hold for these polynomials.

(There are C8 = 1430 matchings π with 8 arches. The maximal
degree d(π) of the corresponding polynomials Aπ(X) is 28.)
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The root conjecture

Root conjecture : All real roots of Aπ(X) are negative
integers. The multiplicity of −i is exactly mi(π).

Equivalently, we have the factorization :

Aπ(X) =

(∏
i

(X + i)mi(π)

)
·Qπ(X)

where Qπ(X) has no real roots.
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The root conjecture

Root conjecture : All real roots of Aπ(X) are negative
integers. The multiplicity of −i is exactly mi(π).

Equivalently, we have the factorization :

Aπ(X) =

(∏
i

(X + i)mi(π)

)
·Qπ(X)

where Qπ(X) has no real roots.

(Remark : A consequence of the conjecture is that it gives
the sign variations of the real function x 7→ Aπ(x).)

Proposition : If (1, 2n) is not an arc in π, then Aπ(−1) = 0.

This is a very special case of the conjecture.
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The root conjecture

We need to check that the root conjecture is compatible with
what we know about Aπ(X) and mi(π).

1) Aπ(X) has degree d(π), so
∑
imi(π) cannot be larger than

d(π). Furthermore Qπ(X) has even degree, so
d(π)−

∑
imi(π) is even.

⇒ We already checked both facts.

2) We have Aπ(X) = Aπ∗(X).
⇒ indeed mi(π) = mi(π

∗) for all i.

3) A(π)(X) = Aπ(X + 1)
⇒ we have mi ((π)) = mi+1(π) as expected.
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The ghost value conjecture

1) Definition For any π we define Gπ := Aπ(−|π|).

By the root conjecture, its sign is (−1)d(π).

α ◦ βα β

2) Composition of matchings
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The ghost value conjecture

Ghost value conjecture : Let i ∈ [[1, n− 1]] such that
mi(π) = 0, and write π = α ◦ β where |α| = i, |β| = n− i.
Then

Aπ(−i) = GαAβ .

1) Definition For any π we define Gπ := Aπ(−|π|).

By the root conjecture, its sign is (−1)d(π).

α ◦ βα β

2) Composition of matchings
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The ghost value conjecture

The values Gπ play thus a special role, and we have
conjectures for them :

Conjecture : For all n ≥ 1, we have∑
π:|π|=n

|Gπ| = An

Here An is the total number of FPLs of size n.

So, like the Aπ, the values Gπ seem to be associated to a
partition of FPLs indexed by non-crossing matchings ( It is
easily checked that Aπ 6= Gπ in general).
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The positivity conjecture

Positivity conjecture : The polynomial Aπ(X) has
nonnegative coefficients.

This is already known for :
– the constant term Aπ(0) = Aπ, and
– the leading coefficient in degree d(π) which is 1/Hπ.



21-2

The positivity conjecture

Positivity conjecture : The polynomial Aπ(X) has
nonnegative coefficients.

This is already known for :
– the constant term Aπ(0) = Aπ, and
– the leading coefficient in degree d(π) which is 1/Hπ.

Theorem The positivity conjecture holds for the coefficient of
Xd(π)−1 in Aπ(X).

Two proofs can be given : either using the formula for ψπ, or
an expression for the polynomials Aπ(X) based on “FPL
configurations in a triangle” ([N. ’10]).

Remark : As a byproduct of these proofs, we obtained certain
summation formulas involving hook products Hπ.



22-1

A last word of support

We sum up the various sources of supporting evidence for the
conjectures :

• Computation of the Aπ(X) for small |π| ;
• Compatibility of the conjectures with known facts ;

• Coherence of the conjectures among themselves.

• Proof of the conjectures for special values ;

• Proof of the conjectures for certain families of matchings π,
for which Aπ(X) is known explicitly [Di-Francesco and al ’04,
Caselli and Krattenthaler ’05].
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We sum up the various sources of supporting evidence for the
conjectures :

• Computation of the Aπ(X) for small |π| ;
• Compatibility of the conjectures with known facts ;

• Coherence of the conjectures among themselves.

• Proof of the conjectures for special values ;

• Proof of the conjectures for certain families of matchings π,
for which Aπ(X) is known explicitly [Di-Francesco and al ’04,
Caselli and Krattenthaler ’05].

I wish this were enough to turn them into theorems ; it’s not...
But anyway, they are true.
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A last word of support

We sum up the various sources of supporting evidence for the
conjectures :

• Computation of the Aπ(X) for small |π| ;
• Compatibility of the conjectures with known facts ;

• Coherence of the conjectures among themselves.

• Proof of the conjectures for special values ;

• Proof of the conjectures for certain families of matchings π,
for which Aπ(X) is known explicitly [Di-Francesco and al ’04,
Caselli and Krattenthaler ’05].

I wish this were enough to turn them into theorems ; it’s not...
But anyway, they are true.

I guess.
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Conclusion

• The conjectures lead us to believe that there is combinatorial
reciprocity result underlying the Aπ(X), à la Ehrhart
polynomial :
⇒ there “should be” nice objects enumerated by the values
Aπ(−i).

Especially interesting is to conjecture/prove :

What do the numbers Gπ count ?
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Conclusion

• The conjectures lead us to believe that there is combinatorial
reciprocity result underlying the Aπ(X), à la Ehrhart
polynomial :
⇒ there “should be” nice objects enumerated by the values
Aπ(−i).

Especially interesting is to conjecture/prove :

What do the numbers Gπ count ?

• The τ case : There exists a refinement of the probabilities
ψπ to polynomials in τ , with no known equivalent for the Aπ,
which specialize to our previous setting for τ = 1.
Our conjectures all have “τ versions” dealing with bivariate
polynomials ψπ(X, τ).
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Aπ0(X) =
(2 +X)(3 +X)2(4 +X)2(5 +X)2(6 +X)(7 +X)

145152000

× (9X6 + 284X5 + 4355X4 + 39660X3 + 225436X2

+ 757456X + 123120)

1 2 3 4 5 6 7 8 8̂ 7̂ 6̂ 5̂ 4̂ 3̂ 2̂ 1̂

π0
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