On some polynomials enumerating Fully Packed Loop configurations

Philippe Nadeau (Univ. of Vienna)
Joint work with Tiago Fonseca (LPTHE, Univ. Paris 6)

SLC 64, Lyon, March 29th 2010.

Introduction

Fully Packed Loop (FPL) configurations are combinatorial structures that arose in statistical mechanics, in simple bijection with known combinatorial objects.

Introduction

Fully Packed Loop (FPL) configurations are combinatorial structures that arose in statistical mechanics, in simple bijection with known combinatorial objects.

One can define certain polynomials $A_{\pi}(X)$ (indexed by noncrossing matchings π) which count FPLs when specialized to nonnegative integers.

We will here formulate conjectures for the polynomials $A_{\pi}(X)$, hinting at "combinatorial reciprocity".

Introduction

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges (here $n=7$).

A FPL configuration of size n is a subgraph of the grid G_{n}
(1) such that around each vertex of $G_{n}, 2$ edges out of 4 are selected; ("Fully Packed")
(2) containing every other external edge. ("Boundary condition")
$A_{n}=$ number of FPLs of size n

Introduction

A link pattern π of size n is a set of n noncrossing chords between $2 n$ points on a disk.

To each FPL F is associated a a link pattern $\pi(F)$.

Introduction

We will write link patterns linearly, as noncrossing matchings :

Given a noncrossing matching π, we note A_{π} the number of FPLs F such that $\pi(F)=\pi$.

Introduction

We will write link patterns linearly, as noncrossing matchings :

Given a noncrossing matching π, we note A_{π} the number of FPLs F such that $\pi(F)=\pi$.

Matchings with nested arches: for $p \geq 0$,

Introduction : the Razumov-Stroganov ex-conjecture Definition : The operators $e_{i}, i \in \llbracket 1,2 n \rrbracket$, act on matchings by $\{i, j\},\{i+1, k\} \in \pi \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(\pi)$.

Introduction : the Razumov-Stroganov ex-conjecture Definition : The operators $e_{i}, i \in \llbracket 1,2 n \rrbracket$, act on matchings by $\{i, j\},\{i+1, k\} \in \pi \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(\pi)$.

Markov chain \mathcal{M}

- States $=L P_{n}$;
- Transition probabilities: $P\left(\pi \rightarrow \pi^{\prime}\right)=\frac{k}{2 n}$ where k is the number of $i \in\{1, \ldots, 2 n\}$ such that $e_{i}(\pi)=\pi^{\prime}$.

Introduction : the Razumov-Stroganov ex-conjecture
Definition : The operators $e_{i}, i \in \llbracket 1,2 n \rrbracket$, act on matchings by $\{i, j\},\{i+1, k\} \in \pi \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(\pi)$.

Markov chain \mathcal{M}

- States $=L P_{n}$;
- Transition probabilities: $P\left(\pi \rightarrow \pi^{\prime}\right)=\frac{k}{2 n}$ where k is the number of $i \in\{1, \ldots, 2 n\}$ such that $e_{i}(\pi)=\pi^{\prime}$.

Stationary distribution : Let P be the matrix defined by $P_{\pi \pi^{\prime}}=P\left(\pi \rightarrow \pi^{\prime}\right)$ where $\pi, \pi^{\prime} \in L P_{n}$.
Then there is a unique probability distribution $(\psi)_{\pi}$ on $L P_{n}$ such that $P \psi=\psi$.

Introduction : the Razumov-Stroganov ex-conjecture RS conjecture ([Cantini and Sportiello '10]) :

$$
\forall \pi \in L P_{n}, \quad \psi_{\pi}=\frac{A_{\pi}}{A_{n}}
$$

The proof consists in showing that the numbers A_{π} / A_{n} verify the stationary equations of \mathcal{M}, which can be written explicitly :

$$
\forall \pi, \quad 2 n A_{\pi}=\sum_{\left(i, \pi^{\prime}\right), e_{i}\left(\pi^{\prime}\right)=\pi} A_{\pi^{\prime}}
$$

Introduction : the Razumov-Stroganov ex-conjecture RS conjecture ([Cantini and Sportiello '10]) :

$$
\forall \pi \in L P_{n}, \quad \psi_{\pi}=\frac{A_{\pi}}{A_{n}}
$$

The proof consists in showing that the numbers A_{π} / A_{n} verify the stationary equations of \mathcal{M}, which can be written explicitly :

$$
\forall \pi, \quad 2 n A_{\pi}=\sum_{\left(i, \pi^{\prime}\right), e_{i}\left(\pi^{\prime}\right)=\pi} A_{\pi^{\prime}}
$$

The numbers ψ_{π} were studied in detail by Di Francesco and Zinn-Justin \rightarrow integral expressions (up to a change of basis), multivariate versions, computations in special cases.

Introduction : the Razumov-Stroganov ex-conjecture RS conjecture ([Cantini and Sportiello '10]) :

$$
\forall \pi \in L P_{n}, \quad \psi_{\pi}=\frac{A_{\pi}}{A_{n}}
$$

The proof consists in showing that the numbers A_{π} / A_{n} verify the stationary equations of \mathcal{M}, which can be written explicitly :

$$
\forall \pi, \quad 2 n A_{\pi}=\sum_{\left(i, \pi^{\prime}\right), e_{i}\left(\pi^{\prime}\right)=\pi} A_{\pi^{\prime}}
$$

The numbers ψ_{π} were studied in detail by Di Francesco and Zinn-Justin \rightarrow integral expressions (up to a change of basis), multivariate versions, computations in special cases.
Consequence : to prove results about the numbers A_{π} one can either use their combinatorial definitions or use the expressions from Di-Francesco and Zinn-Justin.

Introduction

Theorem[Caselli,Krattenthaler,Lass,N. '05]

For a fixed π, the quantity $A_{(\pi)_{p}}$ is polynomial in p; let $A_{\pi}(X)$ be the polynomial such that $A_{\pi}(p)=A_{(\pi)_{p}}$ for $p \in \mathbb{N}$. Then $A_{\pi}(X)$ is a polynomial of degree $d(\pi)$, with leading coeffient $\frac{1}{H_{\pi}}$, such that $d(\pi)!\cdot A_{\pi}(X)$ has integer coefficients.

Introduction

Theorem[Caselli,Krattenthaler,Lass,N. '05]

For a fixed π, the quantity $A_{(\pi)_{p}}$ is polynomial in p; let $A_{\pi}(X)$ be the polynomial such that $A_{\pi}(p)=A_{(\pi)_{p}}$ for $p \in \mathbb{N}$. Then $A_{\pi}(X)$ is a polynomial of degree $d(\pi)$, with leading coeffient $\frac{1}{H_{\pi}}$, such that $d(\pi)!\cdot A_{\pi}(X)$ has integer coefficients.
$d(\pi)$ is the number of boxes in the Young diagram $Y(\pi)$:

Introduction

Theorem[Caselli,Krattenthaler,Lass,N. '05]

For a fixed π, the quantity $A_{(\pi)_{p}}$ is polynomial in p; let $A_{\pi}(X)$ be the polynomial such that $A_{\pi}(p)=A_{(\pi)_{p}}$ for $p \in \mathbb{N}$. Then $A_{\pi}(X)$ is a polynomial of degree $d(\pi)$, with leading coeffient $\frac{1}{H_{\pi}}$, such that $d(\pi)!\cdot A_{\pi}(X)$ has integer coefficients.
$d(\pi)$ is the number of boxes in the Young diagram $Y(\pi)$:

H_{π} is the product of the hook lengths of $Y(\pi)$.

Introduction

We have the following properties :

$$
\begin{gathered}
A_{\pi}(X)=A_{\pi^{*}}(X) . \\
A_{(\pi)}(X)=A_{\pi}(X+1) .
\end{gathered}
$$

Here π^{*} is the matching reflected vertically; this is proved by checking the evaluations $X=p \in \mathbb{N}$.

Introduction

We have the following properties :

$$
\begin{gathered}
A_{\pi}(X)=A_{\pi^{*}}(X) \\
A_{(\pi)}(X)=A_{\pi}(X+1)
\end{gathered}
$$

Here π^{*} is the matching reflected vertically; this is proved by checking the evaluations $X=p \in \mathbb{N}$.

We formulate several conjectures about the polynomials $A_{\pi}(X)$, and emphasize the combinatorics related to them.

Some simple combinatorics

Combinatorial constructions (1)

Let π be a matching of size $|\pi|=n$, and consider an integer i in $\llbracket 1, n-1 \rrbracket$.

Let $\widehat{x}=2 n+1-x$., and (I) be the interval $\llbracket i+1, \widehat{i+1} \rrbracket$, while (O) is defined as $\llbracket 1,2 n \rrbracket-(I)$.

Definition $m_{i}(\pi):=$ half the number of arcs in π linking the regions (O) and (I).

Combinatorial constructions (1)

Let π be a matching of size $|\pi|=n$, and consider an integer i in $\llbracket 1, n-1 \rrbracket$.

Let $\widehat{x}=2 n+1-x$., and (I) be the interval $\llbracket i+1, \widehat{i+1} \rrbracket$, while (O) is defined as $\llbracket 1,2 n \rrbracket-(I)$.

Definition $m_{i}(\pi):=$ half the number of arcs in π linking the regions (O) and (I).

Combinatorial constructions (1)

This is better visualized by folding π on itself :

We obtain $m_{i}\left(\pi_{0}\right)=0,1,2,2,2,1,1$ for $i=1 \ldots 7$.

Combinatorial constructions (1)

This is better visualized by folding π on itself :

We obtain $m_{i}\left(\pi_{0}\right)=0,1,2,2,2,1,1$ for $i=1 \ldots 7$.
One has the easy properties :

- $m_{i}(\pi)=m_{i}\left(\pi^{*}\right)$, where π^{*} is the reflected matching;
- $m_{i}(\pi)=m_{i+1}\left(\pi^{\prime}\right)$ where $\pi^{\prime}=(\pi)$.

Combinatorial constructions (1)

This is better visualized by folding π on itself :

We obtain $m_{i}\left(\pi_{0}\right)=0,1,2,2,2,1,1$ for $i=1 \ldots 7$.
One has the easy properties :

- $m_{i}(\pi)=m_{i}\left(\pi^{*}\right)$, where π^{*} is the reflected matching;
- $m_{i}(\pi)=m_{i+1}\left(\pi^{\prime}\right)$ where $\pi^{\prime}=(\pi)$.

We now define other integers $m_{i}^{b i s}(\pi)$, defined also for $i=1,2, \ldots, n-1$.

Combinatorial constructions (2)

We use here the Young diagram $Y(\pi)$ attached to π.

Combinatorial constructions (2)

We use here the Young diagram $Y(\pi)$ attached to π.

1) Label the cells by putting $n-1$ in the top left corner, and letting labels decrease by 1 ; decompose $Y(\pi)$ in rims.

Combinatorial constructions (2)

We use here the Young diagram $Y(\pi)$ attached to π.

1) Label the cells by putting $n-1$ in the top left corner, and letting labels decrease by 1 ; decompose $Y(\pi)$ in rims.
2) For each rim R, construct the multiset union of $\{k\}$, $\llbracket k+1, e_{1} \rrbracket$ and $\llbracket k+1, e_{2} \rrbracket$, where k is the minimum label in R, and e_{1}, e_{2} are the labels at both extremities.

Combinatorial constructions (2)

We use here the Young diagram $Y(\pi)$ attached to π.

1) Label the cells by putting $n-1$ in the top left corner, and letting labels decrease by 1 ; decompose $Y(\pi)$ in rims.
2) For each rim R, construct the multiset union of $\{k\}$, $\llbracket k+1, e_{1} \rrbracket$ and $\llbracket k+1, e_{2} \rrbracket$, where k is the minimum label in R, and e_{1}, e_{2} are the labels at both extremities.
3) Now do the union U of all these multisets :
$m_{i}^{b i s}(\pi):=$ multiplicity of i in U.

$$
\begin{aligned}
& U=\left\{2,3^{2}, 4^{2}, 5^{2}, 6,7\right\} \\
& \rightarrow m_{i}^{b i s}=0,1,2,2,2,1,1 \\
& \text { for } i=1 \ldots 7
\end{aligned}
$$

Combinatorial constructions (2)

In fact we have :
Proposition : For all π, i, we have $m_{i}(\pi)=m_{i}^{b i s}(\pi)$
One can show this by induction on the number of rims in the rim decomposition of $Y(\pi)$.

Combinatorial constructions (2)

In fact we have :
Proposition : For all π, i, we have $m_{i}(\pi)=m_{i}^{b i s}(\pi)$
One can show this by induction on the number of rims in the rim decomposition of $Y(\pi)$.

Proposition : For any π, we have

- $\sum_{i} m_{i}(\pi) \leq d(\pi)$;
- $\sum_{i} m_{i}(\pi) \equiv d(\pi)(\bmod 2)$.

Proof: Use the $m_{i}^{b i s}(\pi)$ construction.

By convention, we set $m_{i}(\pi)=0$ if $i \in \llbracket 1, n-1 \rrbracket$.

The conjectures

The conjectures

We will formulate conjectures about the polynomials $A_{\pi}(X)$, which concern :

- the real roots;
- the values at negative integers;
- the coefficients.

The conjectures

We will formulate conjectures about the polynomials $A_{\pi}(X)$, which concern :

- the real roots;
- the values at negative integers;
- the coefficients.

The $A_{\pi}(X)$ have been explicitly computed for $|\pi| \leq 8$, and the conjectures hold for these polynomials.
(There are $C_{8}=1430$ matchings π with 8 arches. The maximal degree $d(\pi)$ of the corresponding polynomials $A_{\pi}(X)$ is 28 .)

The root conjecture

Root conjecture : All real roots of $A_{\pi}(X)$ are negative integers. The multiplicity of $-i$ is exactly $m_{i}(\pi)$.

Equivalently, we have the factorization :

$$
A_{\pi}(X)=\left(\prod_{i}(X+i)^{m_{i}(\pi)}\right) \cdot Q_{\pi}(X)
$$

where $Q_{\pi}(X)$ has no real roots.

The root conjecture

Root conjecture : All real roots of $A_{\pi}(X)$ are negative integers. The multiplicity of $-i$ is exactly $m_{i}(\pi)$.

Equivalently, we have the factorization :

$$
A_{\pi}(X)=\left(\prod_{i}(X+i)^{m_{i}(\pi)}\right) \cdot Q_{\pi}(X)
$$

where $Q_{\pi}(X)$ has no real roots.
(Remark: A consequence of the conjecture is that it gives the sign variations of the real function $x \mapsto A_{\pi}(x)$.)

Proposition : If $(1,2 n)$ is not an arc in π, then $A_{\pi}(-1)=0$.
This is a very special case of the conjecture.

The root conjecture

We need to check that the root conjecture is compatible with what we know about $A_{\pi}(X)$ and $m_{i}(\pi)$.

1) $A_{\pi}(X)$ has degree $d(\pi)$, so $\sum_{i} m_{i}(\pi)$ cannot be larger than $d(\pi)$. Furthermore $Q_{\pi}(X)$ has even degree, so
$d(\pi)-\sum_{i} m_{i}(\pi)$ is even.
\Rightarrow We already checked both facts.
2) We have $A_{\pi}(X)=A_{\pi^{*}}(X)$.
\Rightarrow indeed $m_{i}(\pi)=m_{i}\left(\pi^{*}\right)$ for all i.
3) $A_{(\pi)}(X)=A_{\pi}(X+1)$
\Rightarrow we have $m_{i}((\pi))=m_{i+1}(\pi)$ as expected.

The ghost value conjecture

1) Definition For any π we define $G_{\pi}:=A_{\pi}(-|\pi|)$.

By the root conjecture, its sign is $(-1)^{d(\pi)}$.
2) Composition of matchings

α

$\alpha \circ \beta$

The ghost value conjecture

1) Definition For any π we define $G_{\pi}:=A_{\pi}(-|\pi|)$.

By the root conjecture, its sign is $(-1)^{d(\pi)}$.
2) Composition of matchings

α

$\alpha \circ \beta$

Ghost value conjecture : Let $i \in \llbracket 1, n-1 \rrbracket$ such that $m_{i}(\pi)=0$, and write $\pi=\alpha \circ \beta$ where $|\alpha|=i,|\beta|=n-i$. Then

$$
A_{\pi}(-i)=G_{\alpha} A_{\beta} .
$$

The ghost value conjecture

The values G_{π} play thus a special role, and we have conjectures for them :

Conjecture : For all $n \geq 1$, we have

$$
\sum_{\pi:|\pi|=n}\left|G_{\pi}\right|=A_{n}
$$

Here A_{n} is the total number of FPLs of size n.
So, like the A_{π}, the values G_{π} seem to be associated to a partition of FPLs indexed by non-crossing matchings (It is easily checked that $A_{\pi} \neq G_{\pi}$ in general).

The positivity conjecture

Positivity conjecture : The polynomial $A_{\pi}(X)$ has

 nonnegative coefficients.This is already known for :

- the constant term $A_{\pi}(0)=A_{\pi}$, and
- the leading coefficient in degree $d(\pi)$ which is $1 / H_{\pi}$.

The positivity conjecture

Positivity conjecture : The polynomial $A_{\pi}(X)$ has nonnegative coefficients.

This is already known for :

- the constant term $A_{\pi}(0)=A_{\pi}$, and
- the leading coefficient in degree $d(\pi)$ which is $1 / H_{\pi}$.

Theorem The positivity conjecture holds for the coefficient of $X^{d(\pi)-1}$ in $A_{\pi}(X)$.

Two proofs can be given : either using the formula for ψ_{π}, or an expression for the polynomials $A_{\pi}(X)$ based on "FPL configurations in a triangle" ([N. '10]).

Remark: As a byproduct of these proofs, we obtained certain summation formulas involving hook products H_{π}.

A last word of support

We sum up the various sources of supporting evidence for the conjectures :

- Computation of the $A_{\pi}(X)$ for small $|\pi|$;
- Compatibility of the conjectures with known facts;
- Coherence of the conjectures among themselves.
- Proof of the conjectures for special values;
- Proof of the conjectures for certain families of matchings π, for which $A_{\pi}(X)$ is known explicitly [Di-Francesco and al '04, Caselli and Krattenthaler '05].

A last word of support

We sum up the various sources of supporting evidence for the conjectures :

- Computation of the $A_{\pi}(X)$ for small $|\pi|$;
- Compatibility of the conjectures with known facts;
- Coherence of the conjectures among themselves.
- Proof of the conjectures for special values;
- Proof of the conjectures for certain families of matchings π, for which $A_{\pi}(X)$ is known explicitly [Di-Francesco and al '04, Caselli and Krattenthaler '05].

I wish this were enough to turn them into theorems ; it's not... But anyway, they are true.

A last word of support

We sum up the various sources of supporting evidence for the conjectures :

- Computation of the $A_{\pi}(X)$ for small $|\pi|$;
- Compatibility of the conjectures with known facts;
- Coherence of the conjectures among themselves.
- Proof of the conjectures for special values;
- Proof of the conjectures for certain families of matchings π, for which $A_{\pi}(X)$ is known explicitly [Di-Francesco and al '04, Caselli and Krattenthaler '05].

I wish this were enough to turn them into theorems ; it's not... But anyway, they are true.

I guess.

Conclusion

- The conjectures lead us to believe that there is combinatorial reciprocity result underlying the $A_{\pi}(X)$, à la Ehrhart polynomial :
\Rightarrow there "should be" nice objects enumerated by the values $A_{\pi}(-i)$.

Especially interesting is to conjecture/prove :
What do the numbers G_{π} count ?

Conclusion

- The conjectures lead us to believe that there is combinatorial reciprocity result underlying the $A_{\pi}(X)$, à la Ehrhart polynomial :
\Rightarrow there "should be" nice objects enumerated by the values $A_{\pi}(-i)$.

Especially interesting is to conjecture/prove :
What do the numbers G_{π} count?

- The τ case : There exists a refinement of the probabilities ψ_{π} to polynomials in τ, with no known equivalent for the A_{π}, which specialize to our previous setting for $\tau=1$.
Our conjectures all have " τ versions" dealing with bivariate polynomials $\psi_{\pi}(X, \tau)$.

$$
\begin{aligned}
& \pi_{0} \xrightarrow[\sim]{\infty} \curvearrowright \curvearrowright \\
& 12345678 \hat{8} \hat{7} \hat{6} \hat{5} \hat{4} \hat{3} \hat{2} \hat{1} \\
& A_{\pi_{0}}(X)=\frac{(2+X)(3+X)^{2}(4+X)^{2}(5+X)^{2}(6+X)(7+X)}{145152000} \\
& \times\left(9 X^{6}+284 X^{5}+4355 X^{4}+39660 X^{3}+225436 X^{2}\right. \\
& +757456 X+123120)
\end{aligned}
$$

