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For a detailed discussion of the physical model see:

Arvind Ayyer, Kirone Mallick (C.E.A. Saclay)
Exact results for an asymmetric annihilation process with open
boundaries
J. Phys. A: Math. Gen. 343 045033 2010, 22pp.

In this paper the model is introduced and various properties are
obtained: transition matrices, transfer matrices, partition
functions, distributions related to particular states etc. The paper
ends with a conjecture for the eigenvalues of the transition
matrices. A proof of (a generalized version of) this conjecture is
outlined in these slides. Furthermore, transfer matrices and
partition functions for a generalized model are given. Finally, an
interesting property of shifted standard tableaux that is related to
the partition functions is sketched.



The model (1)

I right shift (1)

I annihilation (λ)



The model (2)

I left creation (α)

I left annihilation (αλ)

I right annihilation (β)



I Example of a transition matrix (L = 2)

00 01 10 11

00 ? β αλ λ
01 ? λ αλ
10 α ? β
11 α ?

Note: The diagonal elements ? must be chosen so that column
sums vanish



I Example of a transition matrix (L = 3)

000 001 010 011 100 101 110 111

000 ? β λ αλ λ
001 ? 1 αλ λ
010 ? β 1 αλ
011 ? 1 αλ
100 α ? β λ
101 α ? 1
110 α ? β
111 α ?

Note: The diagonal elements ? must be chosen so that column
sums vanish



I inductive structure of the transition matrices (λ = 1)
Let

σ =

[
0 1
1 0

]
and 1L the (2L × 2L)-unit matrix
Define

M1 =

[
−α α + β
α −α− β

]
and then inductively the (2L × 2L)-matrices

ML =

[
ML−1 − α(σ ⊗ 1L−2) α1L−1 + (σ ⊗ 1L−2)

α1L−1 ML−1 − α(σ ⊗ 1L−2)− 1L−1

]



I The conjecture by Ayyer and Mallick

The characteristic polynomial PL(x) of ML is given by

PL(x) = AL(x)AL(x + 2α + β)BL(x + β)BL(x + 2α)

where

AL(x) =
∏
k≥0

(x + 2k)(L−1
2k )

BL(x) =
∏
k≥0

(x + 2k + 1)( L−1
2k+1)



1. Proof of the eigenvalue conjecture (outline)



I some notation
I BL : vector space of bitvectors of length L (over F2)
I VL =

{
|b 〉 ; b ∈ BL

}
I VL : vector space with basis VL (over an extension of Q)

I σ =

[
0 1
1 0

]
I For b = b1b2 . . . bL ∈ BL

σb = σb1b2...bL = σb1 ⊗ σb2 ⊗ · · · ⊗ σbL .

defines a linear transformation σb of VL = V⊗L1

(w.r.t. the basis VL)



I For 1 ≤ j ≤ L define involutive mappings

φj : BL → BL :

b1 . . . bj−1bj bj+1 . . . bL 7→ φjb = b1 . . . bj−1 bj bj+1 . . . bL

by complementing the j-th component,

I and involutions

ψj : BL → BL : b 7→ φjφj+1b

by complementing components indexed j and j + 1.
ψL is the same as φL.



I The A-transformation
I α = (αb)b∈BL variables
I the transformation AL(α) of VL is defined by its matrix

(w.r.t. the basis VL)

AL(α) =
∑
b∈BL

αb σ
b

I direct definition (matrix elements)

〈b |AL | c 〉 = αb⊕c, (b, c ∈ BL),

where ⊕ denotes F2-addition (exor) of bit vectors.

I Example (L = 2) 
α00 α01 α10 α11

α01 α00 α11 α10

α10 α11 α00 α01

α11 α10 α01 α00





I The B-transformation
I For 1 ≤ j ≤ L define projection operators PL,j on VL by

PL,j =
∑
b∈BL

|b 〉〈b | − |ψbj
j (b) 〉〈b |

I For variables b = (β1, β2, . . . , βL) let

BL(β) =
∑

1≤j≤L

βj PL,j

I BL(β) : the matrix representing BL(β) in VL



I In the sum for PL,j only summands for which bj = 1, i.e., for
which ψj(b) < b, occur.
Indeed: this condition allows only for two situations to
contribute:

bj bj+1 = 10 7→ bj bj+1 = 01 (right shift)

bj bj+1 = 11 7→ bj bj+1 = 00 (annihilation)

These operators ψj encode the transitions of our model.

I By definition, BL(β) is an upper triangular matrix.



I Example for L = 3 (with β = (β, γ, δ) in place of (β1, β2, β3)):

B3(β, γ, δ) =

0 −δ 0 −γ 0 0 −β 0
0 δ −γ 0 0 0 0 −β
0 0 γ −δ −β 0 0 0
0 0 0 δ + γ 0 −β 0 0
0 0 0 0 β −δ 0 −γ
0 0 0 0 0 δ + β −γ 0
0 0 0 0 0 0 γ + β −δ
0 0 0 0 0 0 0 δ + γ + β


.



I another linear transformation (over F2)

∆ : BL → BL :

b = [b1b2 . . . bL] 7→ b∆ = [b1b2 . . . bL]


1 1 1 . . . 1 1
1 1 1 . . . 1 0
...

...
1 1 0 . . . 0 0
1 0 0 . . . 0 0


I As an example (L = 3):

b 000 001 010 011 100 101 110 111

b∆ 000 100 110 010 111 011 001 101



I Main result: Consider the transformation

ML(α,β) = AL(α)− BL(β).

with its matrix (w.r.t. VL) ML(α,β) = AL(α)− BL(β)

Then

detML(α,β) = det [AL(α)− BL(β)] =
∏
b∈BL

(
λb∆ − βrev · b

)
where

I the λb are the eigenvalues of AL(α)

λb =
∑
c∈BL

(−1)b·c αc (b ∈ BL)

I βrev = (bL, bL−1, . . . , b2, b1) is the reverse of
β = (b1, b2, . . . , bL−2, bL)



I llustration of the Theorem for L = 3:

b b∆ λb∆ (δ, γ, β) · b
000 000 [+ + + + + + ++] ·α 0
001 100 [+ + + +−−−−] ·α β
010 110 [+ +−−−−++] ·α γ
011 010 [+ +−−+ +−−] ·α β + γ
100 111 [+−−+−+ +−] ·α δ
101 011 [+−−+ +−−+] ·α β + δ
110 001 [+−+−+−+−] ·α γ + δ
111 101 [+−+−−+−+] ·α β + γ + δ

So, as an example, the line for b = 101 contributes the factor

α000−α001−α010 +α011 +α100−α101−α110 +α111− β− δ

to the product.



I Idea of proof:
I Use the Hadamard transform on VL, given by

H⊗L =

(
1√
2

[
1 1
1 −1

])⊗L
to diagonalize AL(α). The basis

WL =
{
H⊗L|b 〉 ; b ∈ BL

}
=
{
|wb 〉 ; b ∈ BL

}
is the adapted ON-basis of VL

I BL is not even triangular in the basis WL, but becomes lower
triangular w.r.t. the basis

W̃L = { |wb∆

〉 ; b ∈ BL }

namely
H̃L · BL(β) · H̃L = Bt

L(βrev)

where H̃L is the matrix of the Hadamard transformation
combined with the ∆-transformation.



I Comments
I The original conjecture by Ayyer-Mallick about the

eigenvalues of the asymmetric annihilation process is a
particular case of the above factorized determinant

I In the original problem the eigenvalues had high multiplicities
and the eigenspaces were maximally degenerate (experimental
observation) – in the extended “symbolic” model all
eigenvalues are simple

I For the extended model a partition function can be computed

Z (α,β) =
∏

0 6=b∈BL

(λ∗b∆ + βrev · b)

where
λ∗b = 2

∑
c : b·c=1

αc (b ∈ BL)

which has degree 2L − 1 – instead of
(
L+1

2

)
in the original

model.



2. Linear algebra approach for a generalized partition function



I Some notation
I all matrices are square matrices indexed by some Bk

I Ik denotes the Bk × Bk -identity matrix

I σ =

[
0 1
1 0

]
I if N is a Bn × Bn matrix with n > 0, then

Nσ = N · (σ ⊗ In−1)

I for matrices M = [mu,v ]u,v∈Bk and N = [nx,y ]x,y∈B` (as before)

M ⊗σ N =
[
mu,v · Nσ‖u⊕v‖

]
u,v∈Bk

=


m0...00,0...00N m0...00,0...01N

σ m0...00,0...10N
σ . . .

m0...01,0...00N
σ m0...01,0...01N m0...01,0...10N . . .

m0...10,0...00N
σ m0...10,0...01N m0...10,0...10N . . .

...
...

...
. . .


I ⊗σ is associative and satisfies a useful homomorphism property

(M ⊗σ N)σ = Mσ ⊗σ Nσ



I generalized transition matrices

M1 =

[
z a+b
a z−b

]

M2 =


z b a c
0 z−b c a
a 0 z−c b
0 a 0 z−b− c





M3 =

z b 0 c a 0 d 0
0 z−b c 0 0 a 0 d
0 0 z−c b d 0 a 0
0 0 0 z−b−c 0 d 0 a
a 0 0 0 z−d b 0 c
0 a 0 0 0 z−b−d c 0
0 0 a 0 0 0 z−c−d b
0 0 0 a 0 0 0 z−b−c−d





I writing the transition matrices using the matrices

σ =

[
0 1
1 0

]
and τ =

[
0 1
0 −1

]
:

I

M1 = z · I1 + a σ + b τ

I

M2 = z · I2 + a · σ ⊗ I1 + b · I1 ⊗ τ + c · τ ⊗σ I1

I

M3 = z ·I3 +a ·σ⊗I2 +b ·I2⊗τ+c ·I1⊗τ⊗σ I1 +d ·I0⊗τ⊗σ I2



I the general picture

Mk = z · Ik + a0 · σ ⊗ Ik−1 +
k−1∑
j=0

aj+1 · Ik−1−j ⊗ τ ⊗σ Ij

I wanted: transfer matrices Tk+1,k of format 2k+1 × 2k such
that

Mk+1 · Tk+1,k = Tk+1,k ·Mk



I k = 1

T2,1 =


ab + bc + c2 ab + ac + bc

ac c2

ab + ac ab
0 ac


=

[
c
a

]
⊗
[
b + c b

0 c

]
︸ ︷︷ ︸

β(b,c)

+

[
a
0

]
⊗
[
b b + c
c 0

]
︸ ︷︷ ︸

βσ(b,c)

=

[
c
a

]
⊗ β(b, c) +

[
a
0

]
⊗ βσ(b, c)



I k = 2

T3,2 =

d2c+d2b+d3 +dcb+acb d2b+cda+dcb+acb dcb+cda+abd+ad2 +acb d2c+abd+dcb+acb

cda (d+c) d2 d2c (d+c) ad

(b+d) ad abd (b+d) d2 d2b

0 ad2 0 d3

a
(
bd+d2 +cb+cd

)
ba (d+c) acb ac (b+d)

0 (d+c) ad cda 0

0 0 (b+d) ad abd

0 0 0 ad2



=


cd + d2 ac + ad

ad d2

ac + ad 0
0 ad

⊗ β(b, d) +


ac cd
0 0
0 ac
0 0

⊗ βσ(b, d)



that is

T3,2 =

[
d
a

]
⊗ B +

[
a
0

]
⊗ Bσ

where

B =

[
(c + d)β(b, d) c βσ(b, d)

0 d β(b, d)

]
= β(c , d)⊗σ β(b, d)

Bσ =

[
c βσ(b, d) (c + d)β(b, d)
d β(b, d) 0

]
= βσ(c , d)⊗σ βσ(b, d)

so we get

T3,2 =

[
d
a

]
⊗ β(c , d)⊗σ β(b, d)︸ ︷︷ ︸

β(b,c,d)

+

[
a
0

]
⊗ βσ(c , d)⊗σ βσ(b, d)︸ ︷︷ ︸

βσ(b,c,d)



I k = 3

T4,3 =

[
e
a

]
⊗ β(d , e)⊗σ β(c , e)⊗σ β(b, e)︸ ︷︷ ︸

β(b,c,d ,e)

+

[
a
0

]
⊗ βσ(d , e)⊗σ βσ(c , e)⊗σ βσ(b, e)︸ ︷︷ ︸

βσ(b,c,d ,e)



I the general picture: the transfer matrices are

Tk+1,k =

[
ak+1

a0

]
⊗ β(a1, a2, . . . , ak+1)

+

[
a0

0

]
⊗ βσ(a1, a2, . . . , ak+1)

where

β(a1, a2, . . . , ak+1) =

β(ak , ak+1)⊗σ β(ak−1, ak+1)⊗σ · · · ⊗σ β(a1, ak+1)



I the partition functions
I the stationary vectors (= right eigenvectors for eigenvalue

a0 + a1)

|v1〉 =

[
a0 + a1

a0

]
|vk+1〉 = Tk+1,k | vk〉

I the partition functions

zk = 〈12k

| vk〉

so that

z0 = 2a0 + a1 zk+1 = 〈12k+1

|Tk+1,k | vk〉



I note

〈11 |β(b, c) = 〈11 |
[
b + c b

0 c

]
= (b + c)〈11|

〈11 |βσ(b, c) = 〈11 |
[
b b + c
c 0

]
= (b + c)〈11|

I so that (as an example)

z3 = 〈18 | v3〉 = 〈18 |T3,2 | v2〉

= 〈11|⊗3

([
d
a

]
⊗ β(c, d)⊗σ β(b, d)

)
| v2〉

+ 〈11|⊗3

([
a
0

]
⊗ βσ(c , d)⊗σ βσ(b, d)

)
| v2〉

=
(
(a + d)(c + d)(b + d) + a(c + d)(b + d)

)
· 〈14 | v2〉

= (2a + d)(b + d)(c + d) · z2



I and the general result is

zk =
∏

1≤j≤k
(2a0 + aj) ·

∏
1≤i<j≤k

(ai + aj)



3. Denominators of weighted shifted tableaux



I some notation
I shifted shape (alias strict partition) : a sequence

λ = (λ1, λ2, . . . , λ`) of integers with λ1 > λ2 > . . . > λ` > 0
I length of λ : |λ| = ` (= number of parts)
I size of λ : ‖λ‖ = λ1 + λ2 + · · ·+ λ` (sum of parts)

I A weight function on shifted shapes λ = (λ1, λ2, . . . , λ`)

w(λ) = xλ1 + xλ2 + · · ·+ xλ`

x1, x2, . . . are variables



I Shifted standard Young tableaux (sSYT) of shape λ are
defined as usual

I A sSYT t is as a sequence of nested shifted shapes

t : ∅ ⊂ λ(1) ⊂ λ(2) ⊂ . . . ⊂ λ(‖λ‖) = λ

where ‖λ(j)‖ = j (1 ≤ j ≤ ‖λ‖)
I sSYT (λ) : the set of all sSYTs t of shape λ

I multiplicative extension of the weight function

w(t) =
∏

1≤j≤‖λ‖

w(λ(j)).

w(t) is a polynomial in x1, x2, . . . , xλ1 of degree ‖λ‖



I now define

S(λ) :=
∑

t∈sSYT (λ)

1

w(t)
=

num(λ)

den(λ)

where
I num(λ) is a polynomial in x1, x2, . . . , xλ1 of degree

deg(den(λ))− ‖λ‖,
I the fraction is reduced, i.e. num(λ) and den(λ) have no

common factor



I Claim:
I if λ = (λ1, λ2, . . .), then

den(λ) =
∏

µ⊆(λ1,λ2)

w(µ),

where the µ’s appearing in the product have length two or one.
So den(λ) depends only on the two largest parts of λ.

I if λ has length one, i.e. λ = (λ1), this reduces to

den(λ) =
∏

1≤i≤λ1

xi .



I Illustration

t =
8

3 6
1 2 4 5 7

= (12457 | 36 | 8)

= 〈(1), (2), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (5, 2, 1)〉

w(t) =

x1·x2·(x2+x1)·(x3+x1)·(x4+x1)·(x4+x2)·(x5+x2)·(x5+x2+x1)

I the general rule

S(λ) =
1

w(λ)

∑
µ /λ

S(µ)

where / denotes covering w.r.t. inclusion



Illustration for λ = (3, 2, 1):

I (3, 2) / (3, 2, 1)

I λ = (3, 2), sSYT (3, 2) = {(123 | 45), (124 | 35)}

S(3, 2) =
1

w(3, 2)
S(3, 1)

=
x1 + x2 + x3

x1 x2 x3 (x1 + x2) (x1 + x3) (x2 + x3)

I λ = (3, 2, 1), sSYT (3, 2, 1) = {(123 | 45 | 6), (124 | 35 | 6)}

S(3, 2, 1) =
1

w(3, 2, 1)
S(3, 2) =

=
1

x1 x2 x3 (x1 + x2) (x1 + x3) (x2 + x3)



Illustration for λ = (4, 2, 1):
I (3, 2, 1) / (4, 2, 1), (4, 2) / (4, 2, 1)
I λ = (3, 2, 1)

S(3, 2, 1) =
1

x1 x2 x3 (x1 + x2) (x1 + x3) (x2 + x3)

I λ = (4, 2)

sSYT (4, 2) = {(1234 | 56), (1235 | 46), (1245 | 36),

(1236 | 45), (1246 | 35)}
I

S(4, 2) =
1

w(4, 2)

(
S(4, 1) + S(3, 2)

)
=

x2
1x2+x2

1x3+x2
1x4+x1x

2
2 +x1x

2
3 +x1x

2
4 +x2

2x3+x2
2x4+ · · ·+x3x

2
4

x1x2x3x4 (x1+x2) (x1+x3) (x1+x4) (x2+x3) (x2+x4)

+
2 x1x2x3 + 2 x1x2x4 + 2 x1x3x4 + 2 x2x3x4

x1x2x3x4 (x1 + x2) (x1 + x3) (x1 + x4) (x2 + x3) (x2 + x4)

=
m(2,1)(x1, x2, x3, x4) + 2m(1,1,1)(x1, x2, x3, x4)

x1x2x3x4 (x1 + x2) (x1 + x3) (x1 + x4) (x2 + x3) (x2 + x4)



I λ = (4, 2, 1)

sSYT (4, 2, 1) = {(1234 | 56 | 7), (1235 | 46 | 7), (1245 | 36 | 7),

(1236 | 45 | 7), (1246 | 35 | 7), (1237 | 45 | 6),

(1247 | 35 | 6)}

S(4, 2, 1) =
1

w(4, 2, 1)

(
S(4, 2) + S(3, 2, 1)

)
=

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x2
3 + x3x4 + x2

4

x1x2x3x4 (x1 + x2) (x1 + x3) (x1 + x4) (x2 + x3) (x2 + x4)

=
e2(x1, x2, x3, x4) + x2

3 + x2
4

x1x2x3x4 (x1 + x2) (x1 + x3) (x1 + x4) (x2 + x3) (x2 + x4)


	The annihilation process
	Proof of the eigenvalue conjecture (outline)
	Linear algebra approach for a generalized partition function
	Denominators of weighted shifted tableaux

