A cyclic sieving phenomenon in Catalan Combinatorics

Christian Stump

Université du Québec à Montréal

SLC 64, Lyon

March 30, 2010

Non-crossing partitions

- Non-crossing partitions can be defined for any Coxeter group W as

$$
N C(W, c):=\left\{\omega \in W: \ell_{T}(\omega)+\ell_{T}\left(c \omega^{-1}\right)=\ell_{T}(c)\right\}
$$

where c is a Coxeter element and where $\ell_{T}(\omega)$ denotes the absolute length on W,

- for $W=\mathfrak{S}_{n}$ being the symmetric group,
$N C\left(\mathfrak{S}_{n}\right)=\left\{\omega=c_{1} \ldots c_{k} \in \mathfrak{S}_{n}: c_{i}\right.$ increasing; c_{i}, c_{j} non-crossing $\}$, where the Coxeter element $c=(1, \ldots, n)$ and where $\omega=c_{1} \ldots c_{k}$ is the cycle notation of ω.

We focus on \mathfrak{S}_{n} (and keep the general case in mind).

Example: $N C\left(\mathfrak{S}_{4}\right)$

Non-nesting partitions

- Non-nesting partitions can be defined for any crystallographic Coxeter group W as

$$
N C(W):=\left\{A \subset \Phi^{+}: A \text { antichain }\right\}
$$

where Φ^{+}denotes the root poset of W,

- for $W=\mathfrak{S}_{n}$ being the symmetric group, $\operatorname{NN}\left(\mathfrak{S}_{n}\right)$ is the set of all antichains in

Example: $N N\left(\Im_{4}\right)$

$$
\begin{gathered}
\text { Q, [12], [23], [34], [13], [24], [14], } \\
{[12]-[23],[12]-[34],[23]-[34],[12]-[24],} \\
{[13]-[34],[13]-[24],[12]-[23]-[34]}
\end{gathered}
$$

Non-crossing and non-nesting partitions

Theorem (Athanasiadis 2004)
For any crystallographic Coxeter group W of rank ℓ, the number of non-crossing and of non-nesting partitions coincide with the W-Catalan number,

$$
|N C(W)|=|N N(W)|=\operatorname{Cat}(W):=\prod_{i=1}^{\ell} \frac{d_{i}+h}{d_{i}}
$$

where $d_{1} \leq \ldots \leq d_{\ell}$ denote the degrees of the fundamental invariants of W.

An important open problem

Different groups found explicit bijections between non-crossing and non-nesting partitions for various types, but the general connection is still open:

Open Problem
Find a type-independent bijection between $N C(W)$ and $N N(W)$.

Further refinements

Define a cyclic group action on $N C(W)$ by Kreweras complementation,

$$
\mathbf{K}(\omega):=c \omega^{-1}
$$

Observe that $\mathbf{K}^{2}(\omega)=c \omega c^{-1}$ is conjugation by c.
Theorem (CSP on non-crossing partitions)

$$
\begin{aligned}
\left|\left\{\omega \in N C(W): \mathbf{K}^{k}(\omega)=\omega\right\}\right| & =\operatorname{Cat}\left(W ; \zeta_{d}^{k}\right) \\
& :=\left.\prod_{i=1}^{\ell} \frac{\left[d_{i}+h\right]_{q}}{\left[d_{i}\right]_{q}}\right|_{q=\zeta_{d}^{k}}
\end{aligned}
$$

where the product $\operatorname{Cat}(W ; q)$ is a q-analogue of the W-Catalan number $\operatorname{Cat}(W)$ and where $d=2 h$ is the order of the cyclic group.

Further refinements

- The theorem is an instance of the cyclic sieving phenomenon (which you all know from the SLC 62 one year ago in Heilsbronn, Germany).
- It was proved accidentally for the symmetric group by
C. Heitsch,
- and it was recently proved in much more generality by C. Krattenthaler in an unpublished manuscript and by him together with T . Müller in two articles on 134 pages,
- it generalizes a theorem by D. Bessis and V. Reiner on the CSP by conjugation.

Example (continued): $N C\left(\mathfrak{S}_{4}\right)$

$$
\begin{array}{rlll}
(12) & \mapsto(1234)(12)=(134) & (13) & \mapsto(1234)(13)=(14)(23) \\
& \mapsto(1234)(143)=(23) & & \mapsto(1234)(14)(23)=(24) \\
& \mapsto(1234)(23)=(124) & & \mapsto(1234)(24)=(12)(34) \\
& \mapsto(1234)(142)=(34) & & \mapsto(1234)(12)(34)=(13) \\
& \mapsto(1234)(34)=(123) & & \\
& \mapsto(1234)(132)=(14) & () & \mapsto(1234)()=(1234) \\
& \mapsto(1234)(14)=(234) & & \mapsto(1234)(4321)=() \\
& \mapsto(1234)(243)=(12) & &
\end{array}
$$

$\operatorname{Cat}\left(\mathfrak{S}_{n} ; q\right)=1+q^{2}+q^{3}+2 q^{4}+q^{5}+2 q^{6}+q^{7}+2 q^{8}+q^{9}+q^{10}+q^{12}$ evaluated at 8 -th roots of unity gives

$$
\begin{cases}14=|N C| & \text { if } \zeta=1 \\ 6=\left|N C^{\mathbf{K}^{4}}\right| & \text { if } \zeta=-1 \\ 2=\left|N C^{\mathbf{K}^{2}}\right|=\left|N C^{K^{6}}\right| & \text { if } \zeta= \pm \mathbf{i} \\ 0=\left|N C^{\mathbf{K}}\right|=\left|N C^{\mathbf{K}^{3}}\right|=\left|N C^{\mathbf{K}^{5}}\right|=\left|N C^{\mathbf{K}^{7}}\right| & \text { otherwise }\end{cases}
$$

Further refinements

Define a cyclic group action on $N C(W)$ by Panyushev complementation

$$
\mathbf{P}(A):=\min \left\{t \in \Phi^{+}: t \not \leq a \text { for some } a \in A\right\} \in N N(W) .
$$

Conjecture (V. Reiner, SLC 62)

$$
\left|\left\{\omega \in N N(W): \mathbf{P}^{k}(\omega)=\omega\right\}\right|=\operatorname{Cat}\left(W ; \zeta_{d}^{k}\right)
$$

Or equivalently, there exists a bijection $\psi: N N(W) \xrightarrow{\sim} N C(W)$ such that

$$
\psi \circ \mathbf{P}=\mathbf{K} \circ \psi
$$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

12

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$

12, 23, 34

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$

12, 34

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$
$12,34 \mapsto 23$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$
$12,34 \mapsto 23$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$
$12,34 \mapsto 23 \mapsto 12,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$
$12,34 \mapsto 23 \mapsto 12,34$

Example (continued): $N N\left(\mathfrak{S}_{4}\right)$

$12 \mapsto 23,34 \mapsto 12,24 \mapsto 13 \mapsto 34 \mapsto 12,23 \mapsto 13,34 \mapsto 24 \mapsto 12$
$12,23,34 \mapsto 13,24 \mapsto 14 \mapsto \emptyset \mapsto 12,23,34$
$12,34 \mapsto 23 \mapsto 12,34$

The type A : Non-crossing handshake configurations

- \mathcal{T}_{n} set of non-crossing handshake configurations of $2 n$,
- $\mathcal{C}_{2 n}$-action on \mathcal{T}_{n} by cyclic permutation of $\{1, \ldots, 2 n\}$.

Theorem

- $\left(\mathcal{T}_{n}, \operatorname{Cat}\left(\mathfrak{S}_{n} ; q\right), \mathcal{C}_{2 n}\right)$ exhibits the CSP.
- We can construct a bijection

$$
\psi_{1}: \mathcal{T}_{n} \xrightarrow{\sim} N C\left(\mathfrak{S}_{n}\right),
$$

such that $\psi_{1} \circ c=\mathbf{K} \circ \psi_{1}$, and a bijection

$$
\psi_{2}: N N\left(\mathfrak{S}_{n}\right) \xrightarrow{\sim} \mathcal{T}_{n},
$$

such that $\psi_{2} \circ \mathbf{P}=c \circ \psi_{2}$.

- The construction can be easily generalized to type B.

Towards a uniform bijection

- The bijection in type A can be generalized to type B, but so far not to type D,
- the exceptional types can be checked by computer.

What does this have to do with a uniform bijection?

Towards a uniform bijection

Theorem (Conjectured by D. Armstrong in all types)

Let L, R be a bipartition of the simple transpositions such that L and R pairwise commute, and let c be the associated bipartite Coxeter element. $\psi=\psi_{1} \circ \psi_{2}: N N\left(\mathfrak{S}_{n}\right) \xrightarrow{\sim} N C\left(\mathfrak{S}_{n}, c=c_{L} c_{R}\right)$ is the unique bijection with the following inductive property:

$$
\begin{aligned}
\psi: \emptyset & \mapsto c_{L}, \\
\psi \circ \mathbf{P} & =\mathbf{K} \circ \psi, \\
\psi(I) & =\left.\prod_{s \in L \backslash \text { supp } I} s \quad \psi\right|_{\text {supp } /}(I)
\end{aligned}
$$

Remark

- The theorem gives an inductively defined uniform definition of a bijection between non-nesting and non-crossing partitions in types A and B.

