
Séminaire Lotharingien de Combinatoire 65 (2011), Article B65e

PARKING FUNCTIONS AND LABELED TREES

ANTÓNIO GUEDES DE OLIVEIRA AND MICHEL LAS VERGNAS

Abstract. We define a bijection between the set of parking functions of size n and the
set of rooted (labeled) forests with n vertices for which the number of “probes” of the
function is the number of inversions of the tree. This definition is not recursive.

1. Introduction

It is well-known that the set of parking functions of size n and the set of rooted
(labeled) forests with n vertices are in bijection. In fact, G. Kreweras, in [6], after
finding a common enumerator of parking functions by the total number of probes and of
rooted forests by the number of inversions, even constructs a bijection that sends parking
functions with k probes to forests with k inversions. However, his definition is recursive,
and, in [9, Exercise 4], Stanley asks for a direct bijection with this property, unknown
until [7], where a bijection with the required property was given. The present article
gives a second answer to the problem and may be seen as an alternative to the work of
Shin (see also [8]), which was the starting point for our investigation. For the relation
between Shin’s bijection and ours, see Remark 3.5.

The structure of the paper is as follows: In Section 2, we introduce the notions related
with parking functions that will be used afterwards, and we collect some well-known
results. It will be seen that Lemma 2.5 plays a rôle (not noted before, we believe) that is
central in our construction.

Section 3 deals with rooted forests with n labeled vertices (naturally identified with
trees with n+1 labeled vertices): by using the depth-first search algorithm, it establishes
a variant of a well-known bijection between permutations and decreasing trees, which
will be extended to parking functions, on the one hand, and to general labeled trees, on
the other hand. The depth-first search algorithm is also used to find the inverse of the
bijection.

2. Parking functions

As usual, we represent, for a natural number n, the set {1, 2, . . . , n} by [n] and denote
by Sn the set of permutations of [n]; the set of all autofunctions of [n] is denoted Fn.

Definition 2.1. We say that f ∈ Fn is a parking function if:
∣

∣f−1
(

[i]
)
∣

∣ ≥ i , i = 1, 2, . . . , n.

We call n the length of f and denote by PFn the set of all parking functions of length n.

Based on [3] and on a construction of H. O. Pollak referred to therein, let us define,
for a function f : [n]→ [n + 1], the new function g = P (f) : [n]→ [n + 1] recursively as
follows:

• g(1) = f(1);

2 A. GUEDES DE OLIVEIRA AND M. LAS VERGNAS

• Suppose g(j) is defined for j < i; then define:

k0 = min
{

k ≥ 0: k + f(i) 6≡ g(j) (mod n+ 1), ∀ j < i
}

and

g(i) ≡ k0 + f(i) (mod n + 1) (remember that 1 ≤ g(i) ≤ n + 1)

Note that P (f) is injective by definition. Suppose that n + 1 /∈ P (f)([n]) and so, in
particular, that n + 1 /∈ f([n]). Then f(i) ≤ P (f)(i) for all i ≤ n and P (f) = f if and
only if f is itself injective (in short, we may say the equality holds if and only if f ∈ Sn).
More generally, if n+1 /∈ P (f)([n]) then we may write P (f) ∈ Sn. We have the following
lemma.

Lemma 2.2. A function f ∈ Fn is a parking function if and only if n + 1 /∈ P (f)([n]).

Proof. Since P (f) is injective, there exists a unique k ∈ [n + 1] \ P (f)([n]). Suppose
k ≤ n. Then P (f) maps injectively f−1

(

[k]
)

into [k − 1], by definition, and hence f is
not a parking function. The converse is similar. �

By this lemma, we view the operator P as a function from PFn to Sn. We call Π(f) :=
P (f)−1 the parking scheme of f ∈ PFn. Note that, for f ∈ PFn, P (f)(i) is simply the
first k ≥ f(i) that is different from every P (f)(j) with j < i, in the recursion above.

The lemma also explains the name “parking function”, apparently coined by A.G.Kon-
heim and B. Weiss in [5]: suppose the drivers of n cars want to park on a one-way street
with n parking spaces, where each driver has a special preference for a space, say, the
i-th driver that enters the street wants to park in space f(i). The driver does so if the
space is free, or else (s)he probes the next space, and so on, and parks in the next free
space, if there is still one available. Then f is a parking function exactly when all drivers
can park their cars in the street. Clearly, if f is a parking function then Π(f)(i) is the
number of the car that, at the end, is parked in space i.

Keeping the colorful setting, the definition of P (f) rests in the following idea: just
imagine that instead of a one-way street we have a one-way roundabout with parking
spaces labeled 1, 2, . . . , n + 1, so that all cars can park in all cases — and there will
still be an empty space at the end. Clearly, the parking functions are those functions for
which the empty space at the end is the space numbered n+1. This is an idea of Pollak,
used to easily count the number of parking functions. It is a matter of fact that there
are as many functions with this particular empty space as with any other empty space.
To justify this, just imagine that we rotate the labels of the spaces in the roundabout,
and the values given by the functions accordingly. More precisely, we have the following
lemma.

Lemma 2.3. The number of parking functions of size n is given by

|PFn| = (n+ 1)n−1.

Proof. Suppose that f is a function f : [n] → [n + 1]. As in the beginning of the
proof of Lemma 2.2, there exists k ≤ n + 1 such that [n + 1] \ P (f)([n]) = {k}. Define

f̃ : [n]→ [n+1] by f̃(i) ≡ f(i)+n+1−k (mod n+1). Then P (f̃)(i) ≡ P (f)(i)+n+1−k
(mod n+ 1) and so f̃ ∈ PFn. Hence, the number of parking functions of length n is the
number (n+ 1)n of functions from [n] to [n+ 1] divided by n+ 1. �

PARKING FUNCTIONS AND LABELED TREES 3

Given σ ∈ Sn, the number of parking functions f ∈ PFn such that σ = P (f) can be
easily determined from the definition of P . Before establishing this number, we introduce
some further notation:

Definition 2.4. For any function f ∈ PFn, define pr(f) to be the vector P (f)− f . The
total number of probes of f , denoted by Pr(f), is the sum of the coordinates of pr(f).
In symbols,

Pr(f) =

(

n + 1

2

)

−
∑

i≤n

f(i).

If σ is a permutation, let, for every i ≤ n, dpσ(i) be the number of elements of σ([i−1])
that are smaller than σ(i) and consecutive to it. That is,

dpσ(i) := σ(i)−min
{

k ∈ σ([i]) : {k, k + 1, . . . , σ(i)} ⊂ σ([i])
}

,

We define the depth of σ ∈ Sn to be

dp(σ) :=
(

dpσ(1),dpσ(2), . . . ,dpσ(n)
)

and, in general, the depth of f ∈ PFn to be

dp(f) := dp(P (f))− P (f) + f.

Lemma 2.5. For every σ ∈ Sn and for every f ∈ PFn,

(2.1) P (f) = σ holds if and only σ(i)− f(i) ≤ dpσ(i).

Moreover,

(2.2)
∣

∣P−1(σ)
∣

∣ =
n
∏

i=1

(1 + dpσ(i)) .

Proof. By definition of depth,

σ(i)− f(i) ≤ dpσ(i) ⇐⇒ {f(i), f(i) + 1, . . . , σ(i)} ⊂ σ ([i])

⇐⇒ {f(i), f(i) + 1, . . . , σ(i)− 1} ⊂ σ ([i− 1]) ,

where the last equivalence holds since σ is injective. This explains (2.1), and (2.2) is an
obvious consequence of it. �

As an example, let us consider f = (1, 8, 5, 2, 7, 4, 4, 8, 1) ∈ PF9 and evaluate σ = P (f).
Since there are no repeated elements in f before i = 7, σ(i) = f(i) for i ≤ 6. Then σ(7) ≥
4 must be different from 4 and from 5 (these are “spaces already occupied”). Hence,
σ(7) = 6. In the same way, σ(8) ≥ 8, σ(8) 6= 8 and hence σ(8) = 9, and, finally, σ(9) = 2.
Therefore, P (f) = σ = (1, 8, 5, 2, 7, 4, 6, 9, 3) and Π(f) = σ−1 = (1, 4, 9, 6, 3, 7, 5, 2, 8).
Finally, dp(P (f)) = (0, 0, 0, 1, 0, 0, 2, 5, 2) and dp(f) = (0, 0, 0, 1, 0, 0, 0, 4, 0).

3. Rooted labeled forests

A rooted (labeled) forest is a labeled graph where the connected components are trees
with a distinguished vertex or root. By joining to the graph a new vertex connected
with the roots of all trees, we construct a bijection between the set of rooted forests with
n vertices and the set of trees with n + 1 vertices, known to have (n + 1)n−1 elements
by Cayley’s Theorem (for a proof, see [1, Chapter 19], where four very elegant proofs
can be found). See Figure 1, below. Here, we consider only labeled trees with vertices
1, 2, . . . , n+ 1 for a given n.

4 A. GUEDES DE OLIVEIRA AND M. LAS VERGNAS

One of the goals of this paper is to establish a new, direct (i.e., non-recursive) bijection
from the set of parking functions of a given length and the set of rooted labeled forests
with the same number of vertices. Moreover, we want the bijection to fulfil some extra
conditions.

In a labeled tree, an inversion (of k) is a pair (i, k) of vertices such that k < i and k
belongs to the (unique) path connecting i to the vertex n+1. We denote by invT (k) the
number of inversions of k. In the tree of Figure 1(a), the index of any vertex k is exactly
invT (k). G. Kreweras, in [6], after finding a common generating function for parking
functions enumerated by the total number of probes and for rooted forests enumerated
by the number of inversions, constructs recursively a bijection that sends functions with
k probes to forests with k inversions1. Our bijection does this as well. Consequently, it
can be seen as an answer to [9, Exercise 4], where a direct bijection with this property is
asked for.

A tree with no inversions is said to be decreasing. Let, for σ = (a1, . . . , an) ∈ Sn,
σ = (a1, . . . , an, n + 1), and let T = φ(σ) be the tree with labels [n + 1] constructed as
follows: a vertex i is connected with k, if i < k, and if ak is the smallest element greater
than and on the right (in σ) of ai. Let, for example, σ be (1, 8, 5, 2, 7, 4, 6, 9, 3); then 1 is
connected with 4 since 4 > 1 and 2 = σ4 and 1 = σ1. Hence, a natural way to represent
this graph can be obtained as follows: take α = σ −1 ∈ Sn+1 and, from left to right, just
connect each vertex to the next greater vertex (possibly n + 1). In the same example,

α = (1, 4, 9, 6, 3, 7, 5, 2, 8, 10), and T = 14 9 6 3 7 5 2 8 10 . We say that T is represented
linearly. In Figure 1(b) the same tree is represented as usual. Note that T is decreasing,
by definition. It is well known that φ is a bijection (cf. for example [10, page 25]). In
fact, we will prove it here in Lemma 3.2 below, since we will use an explicit form of the
inverse. Note that φ is a bijection between Sn ⊂ PFn, the set of functions with zero
probes, and the set of labeled trees with zero inversions. Our bijection (which we call φ
as well) extends φ in such a way that the images of all elements of P−1(σ) are (special)
relabelings of φ(σ).

Before proceeding to the definition of (the extended) φ, let us introduce some new
concepts that will be necessary in the sequel.

Definition 3.1. Given any tree T , consider the depth-first search algorithm that starts
with vertex n+1 and at each step goes to the least adjacent vertex not yet visited, if any,
or else it backtracks2. If vj is the j-th vertex visited (for the first time) by the search,
define the permutation of T by:

p(T) := (vn+1, vn, . . . , v1 = n+ 1).

Hence, the elements of p(T) are in postorder.
We say that a vertex k follows the vertex i in T , k 6= i, if it is visited for the first time

between the first and the last visit to i. We denote the set of vertices that follow a vertex
i in T by fol T (i).

A descendant of a vertex i in T is a vertex k < i that follows i. These vertices form a
set denoted by desc T (i). The depth of a vertex i in T is the number dtT (i) of descendants
of i and the depth of T is the vector dt(T) =

(

dtT (1), dtT (2), . . . , dtT (n)
)

.

1In fact, Kreweras works with what he calls “suites majeures de portée n”, that can be seen as the
functions g : [n]→ [n] such that f(i) = n+ 1− g(i) defines a parking function.

2See [4] for related constructions.

PARKING FUNCTIONS AND LABELED TREES 5

5
0

8
0

6
0

3
2

2
0

7
1

4
0

9
0

1
2

10

1
10

4
9

9
8

6
7

3
6

7
5

5
4

2
3

8
2

1

10

(a) 5 8 6 3 2 7 4 9 1 10 =

φ(1, 8, 5, 2, 7, 4, 4, 8, 1)

(b) 1 4 9 6 3 7 5 2 8 10 =

φ(1, 8, 5, 2, 7, 4, 6, 9, 3)

Figure 1. The number of inversions of each vertex appears as an index in
(a), whereas in (b) the indices show the order in which depth-first search
on the tree visits the vertices.

In the tree T of Figure 1(a), for example, after starting with 10, 1 is visited, then 9, then
4, 7, 2, 3, 6, 8 and finally 5. Hence p(T) = (5, 8, 6, 3, 2, 7, 4, 9, 1, 10) and, for example,
fol T (3) = {6, 8}, whereas desc T (3) = ∅. In the same tree, dt(T) = (0, 0, 0, 0, 0, 0, 4, 0, 1).

Figure 1(b) gives us an example that will be generalized in Lemma 3.2 below: if
σ = (1, 8, 5, 2, 7, 4, 6, 9, 3) ∈ S9, then (1, 4, 9, 6, 3, 7, 5, 2, 8) = σ−1. Let T be the tree in
this figure; we have dtT (8) = 5 and dtT (9) = 2. Note that 5 is also the eighth component of
the depth of σ (cf. Definition 2.4) and 2 is the ninth component. More precisely, whereas
{6, 3, 7, 5, 2} = desc T (8), σ

(

{6, 3, 7, 5, 2}
)

= {4, 5, 6, 7, 8}, σ(8) = 9 and {4, 5, 6, 7, 8, 9} is
the interval of form {k, k+1, . . . , 9} contained in σ([8]) that is maximal for this property,
which means dpσ(8) = 5.

In fact, this idea is the crux of our construction. It is implicit in [7], but we believe it
was unobserved before. We formalize it in Lemma 3.3. Before, we recall some properties
of this construction.

Let α := p(T) =: (a1, a2, . . . , an+1 = n + 1).

• Suppose i = aj . By definition, either fol T (i) = ∅ or there exists k < j such that
folT (i) = {ak, ak+1, . . . , aj−1}. The subgraph induced by this set of vertices is also
a tree.
• Given any vertex i = aj , there is a unique k > j such that i is connected to ak.
In other words, in α, any vertex is connected to a unique vertex in its right-hand
side. The vertex ak is the leftmost (i.e., the last visited) ancestor of i.
• Hence, if j < p < l and aj is connected to al, then ap must be connected to
some aq with p < q < l. Therefore, there exists a planar representation of the
tree T where all vertices are in a line — ordered according to p. Note that, by
Lemma 3.2 below, if T = φ(σ) for some σ ∈ Sn this is the linear representation
already described.

6 A. GUEDES DE OLIVEIRA AND M. LAS VERGNAS

• If fol T (i) = {al, al+1, . . . , aj−1} and l > 1, then al−1 is precisely the rightmost
element connected with some ap with p > j.
• Passing from a vertex to its neighbor on the right in α, we obtain a path between
any vertex and n + 1. Since T is a tree, thus, a vertex v follows a vertex i in T
if and only if i belongs to the path that connects v to n + 1. Hence, invT (i) =
|fol T (i)| − dtT (i) for every i = 1, . . . , n + 1. In particular, a tree is decreasing if
and only if every vertex that follows a given vertex i is its descendant.

It is now easy to prove Lemma 3.2. Note that Sn is the set of parking functions with
zero probes, whereas the decreasing trees are the labeled trees with zero inversions.

Lemma 3.2. The map φ as defined before maps Sn bijectively onto the set of decreasing
trees with labels [n+ 1]. More precisely,

p (φ(σ)) = σ −1 for every σ ∈ Sn;(3.3)

T = φ
(

p(T)−1
)

for every decreasing tree T .(3.4)

Proof. We prove that φ is injective; surjectivity is a consequence of (3.4). We assume
that σ 6= σ′ are two bijections with associated trees T and T ′. We assume also that
σ(i) 6= σ′(i) but σ(j) = σ′(j) for i < j < n + 1. Let a = σ(i) and b = σ′(i), and suppose
without loss of generality that a < b. Then, in T there exists an edge e = a σ(k) with
i < k ≤ n+ 1. Note that we must have a = σ(l) for some l < i, but since b > a the edge
e cannot belong to T ′. Hence T 6= T ′.

Statement (3.3) is a consequence of this fact and of (3.4).
For the proof of (3.4), let again α = p(T) = (a1, a2, . . . , an+1 = n + 1) and i ≤ n + 1

with i = aj. In order to prove the first statement, we prove that the leftmost (in α)
ancestor of i, k, is also the leftmost element greater than i. We already know that k > i
since T is decreasing. Suppose that k = al and there exists m = ap > i with j < p < l;
we may and will assume that p is minimal for this property. Then m is a descendant of k
but i is not a descendant of m, and so there is a first common ancestor of i and m that is
either k or a descendant of k. Finally, there exist x and y adjacent to this ancestor and
in the path connecting m and i to it, respectively. Note that x < y, m ≤ x and y is on
the left of m and on the right of i, contrary to the definition of m. �

Lemma 3.3. For every permutation σ ∈ Sn,

dp(σ) = dt(φ(σ)).

Proof. Define, for 1 ≤ i ≤ n, mi := min
{

k ∈ σ([i]) : {k, k + 1, . . . , σ(i)} ⊂ σ([i])
}

, and
suppose mi > 1. In other words, mi is defined by σ−1(mi − 1) > i and σ−1(k) < i for
every mi ≤ k < σ(i). Hence, the set of descendants of i in T = φ(σ) is σ−1

(

{mi, mi +

1, . . . , σ(i)}
)

\ {i}. �

PARKING FUNCTIONS AND LABELED TREES 7

1

4

9

63

752

8

10

→
63

752

8

1

9

4

10

→
63

752

8

4

9

1

10

→
73

652

8

4

9

1

10

→
5

76

32

8

4

9

1

10

→
5

86

32

7

4

9

1

10

φ(1,8,5,2,7,4,6,9,3) φ(1,8,5,2,7,4,6,9,2) φ(1,8,5,2,7,4,6,9,1) φ(1,8,5,2,7,4,5,9,1) φ(1,8,5,2,7,4,4,9,1) φ(1,8,5,2,7,4,4,8,1)

Figure 2. Rewriting process

Let us now proceed to the definition of φ. Let T be a labeled tree and i and k be two
vertices such that k ∈ desc T (i), (and hence, k < i). Similar to [2], define π(T ; i, k) as the
labeled tree that is obtained from T by replacing each label l by π(l), where:

π(l) =

min {m ∈ desc T (i) ∪ {i} : m > l} if k ≤ l < i and l ∈ desc T (i);

k if l = i;

l if l /∈ desc T (i) or l < k or l > i.

It is convenient to define also T = π(T ; i, i) for every i ∈ [n].
Now, given the parking function f ∈ PFn, let σ = P (f), α = σ −1, T = φ(σ) and

T0 = T . For each i ≤ n, let desc T (i) =
{

ai1 > · · · > ai
dpσ(i)

}

be written in decreasing

order, and ai0 = i. Finally, define recursively

Ti = π
(

Ti−1; i, a
i
σ(i)−f(i)

)

, 1 ≤ i ≤ n,

and φ(f) = Tn.
Note that if pi := σ(i)− f(i) > 0 then the permutation that changes the labels of Ti−1

into the labels of Ti is the cycle γi = (aipi a
i
pi−1 · · · a

i
2 a

i
1 i) = (aipi a

i
pi−1) · · · (a

i
2 a

i
1) (a

i
1 i).

Let once more π be their product, ordered according to i. For example, in Figure 1, the
initial T (that is, φ(σ)) is the tree represented in (b). The vertices of T are relabeled in
φ(f) by π = γ9 ◦ γ8 ◦ γ7 = (1 4)(4 9)(7 8)(3 6)(6 7) = (4, 2, 6, 9, 5, 8, 3, 7, 1): vertex 1 of the
tree in Figure 1(b) is relabeled 4 in the tree of Figure 1(a), the label of 2 is kept, and so
on, 3 is relabeled 6, etc.

It follows immediately from the previous definition that the number of inversions of
φ(f) is the total number of probes of f , Pr(f). More precisely, if this construction is
combined with Lemma 3.3, the following result is implied.

Theorem 3.4. For every f ∈ PFn,

dp(f) = dt(φ(f)) ◦ π.

Remark 3.5. Suppose the tree T ′ = Φ(f) is given and T ′ is the relabeling by π ∈ Sn,
also given, of T = Φ(P (f)), as in Figure 3.5 (see Lemma 3.6, below). Then, the easiest
way to recover f is as follows: for every i ∈ [n], f(i) = P (f)(i) − invT ′(π(i)) and the
P (f)(i)’s are in postorder. Hence, in Figure 3.5, we obtain f(i) by reading the blue index
near to the vertex labeled i in (b) and subtracting from it the red index near to the
corresponding position in (a).

In fact, by Lemma 3.2, the blue index near to i is P (f)(i). In order to see that

pr(f) = invT ′ ◦ π,

8 A. GUEDES DE OLIVEIRA AND M. LAS VERGNAS

5

86

3
2

2

7
1

4

9

1
2

10

π
←− [

5
7

6
4

3
5

7
6

2
8

8
9

1
1

4
2

9
3

10

(a) T ′ = φ(1, 8, 5, 2, 7, 4, 4, 8, 1) (b) T = φ(1, 8, 5, 2, 7, 4, 6, 9, 3)

Figure 3. In (b) the indices show postorder.

note that pr(f) = dp(P (f))−dp(f) is equal to dt(φ(P (f)))−dt(φ(f))◦π by Theorem 3.4,
and so is the difference between the number of followers and descendants of π(i) in T ′.

If we replace our tree T ′ = π(T) by the tree T of [7], then our T is Shin’s D, the
red labels in (a) form Shin’s tree I and the blue labels in (b) form C. Proceeding as
indicated above, we would then obtain Shin’s related parking function instead of f . On
the other hand, our construction of T ′ = Φ(f) and Shin’s corresponding construction are
both based on T = Φ(P (f)), and both proceed by relabeling T , although by two different
processes.

Note that, in the previous example, we have as well π = γ8 ◦γ7 ◦γ9 (cf. Figure 2), since
desc T (9) ∩ desc T (8) = ∅ and desc T (7) ⊂ desc T (8). In general, given two vertices v and
w of a tree T , either neither of the vertices follows the other one and then there exists no
vertex following both vertices, or one of the vertices follows the other, say v ∈ fol T (w),
and then fol T (v) ⊂ fol T (w). In other words, we may take the sets of followers of the
vertices ordered reversely to any depth-first search, independently of the way siblings
(adjacent vertices following the same vertex) are ordered. We will use this in the proof
of Lemma 3.6 below, where we assume, for the purpose of recovering the order of the
transpositions in π, that p(f) = π ◦ p(σ).

We may write f = σ − ek1 − · · · − ekPr(f)
, where ek = (0, . . . , 0, 1, 0, . . . , 0) as usual

(i.e., 1 is the k-th coordinate) and k1 ≤ · · · ≤ kPr(f)
3. The sequence of trees obtained by

changing the labels transposition by transposition is then clearly φ(σ−ek1), φ(σ−ek1−ek2),
etc. (which, in particular, by Lemma 2.5, are images by φ of parking functions with the
same parking scheme). By definition, the number of probes increases in each step by one.
But note that also the number of inversions increases by one, since the labels we switch in
each step are consecutive within the set of descendants of some vertex (including possibly
the vertex itself).

On the other hand, note that the inversion corresponding to the transposition (aij+1 a
i
j)

is (aij , a
i
j+1) in a certain intermediate tree, but not necessarily in the final one. As an

3The order may be different according to the last paragraph. Both ideas are illustrated in Figure 2.

PARKING FUNCTIONS AND LABELED TREES 9

example, note that in Figure 1 the transposition (6 7) in (b) gives rise to the inversion
(8, 3) in (a), and not to (7, 6). Let us have a closer look at this.

Lemma 3.6. Let f ∈ PFn, p = Pr(f), σ = P (f), T = φ(σ), T ′ = φ(f) be the relabeling
of the vertices of T by π ∈ Sn and β = p(T ′). Suppose that the inversions of T ′, of the
form (β(ak), β(bk)) say, are defined such that

bk > bk+1 or

bk = bk+1 and β(ak) < β(ak+1).

Then

π−1 = (β(a1) β(b1)) (β(a2) β(b2)) · · · (β(ap) β(bp)).

Proof. The permutation π has been defined as a product of transpositions, say

π = (c1 d1) (c2 d2) · · · (cp dp) (ck < dk , k ≤ p).

According to the previous remarks, we have p(f) = π ◦ p(σ). We generalize π by con-
sidering, for 1 ≤ k ≤ p, πk = (c1 d1) (c2 d2) · · · (ck dk). Note that, in φ(f), to the
transposition (ck dk) there corresponds the inversion (πk(ck), πk(dk)), and note that

(3.5)
(

πk(ck) πk(dk)
)

= πk (ck dk) πk
−1.

Finally, note that, if γi = (cj dj) · · · (ck dk) for some j < k, then, by definition:

• dk = i and cl, dl 6= i for l > k. Hence, πk(i) = π(i).
• dl = cl+1 for j ≤ l < k. Hence, πk(dk) = πk−1(ck) = πk−1(dk−1). Continuing in
this way, we obtain that πl(dl) = π(i) for every j ≤ l ≤ k.
• cl−1 < cl for every j < l ≤ k; γi(ci−1) = ci < di = γi(ci) and every γm with m > i
either increases di or both ci and di, keeping its order.

In short, we have proved that:

β(al) = πl(cl) and β(bl) = πl(dl) , for 1 ≤ l ≤ p;

hence, by (3.5),

(β(a1) β(b1)) · · · (β(ap) β(bp)) = π1(c1 d1)π1
−1π2(c2 d2)π2

−1π3(c3 d3)π3
−1 · · ·πp(cp dp)πp

−1

= π1
−1π2(c2 d2)π2

−1π3(c3 d3)π3
−1 · · ·πp(cp dp)πp

−1

= π2
−1π3(c3 d3)π3

−1 · · ·πp(cp dp)πp
−1

= πp
−1

= π−1.

�

As an example, note that in the tree of Figure 1(a), since β = (5, 8, 6, 3, 2, 7, 4, 9, 1, 10),
the ordered set of inversions is {(4, 1), (9, 1), (8, 7), (6, 3), (8, 3)}; hence π−1 = (4 1) (9 1)
(8 7) (6 3) (8 3) = (9, 2, 7, 1, 5, 3, 8, 6, 4).

Put together, Lemma 2.3 and Lemma 3.6 imply that φ is a bijection. In fact, suppose
φ(f) = φ(g) for two parking functions f and g of size n. By Lemma 3.6, we then get
φ(P (f)) = φ(P (g)) and hence P (f) = P (g). But, by definition of φ, we must have
P (f)− f = P (g)− g, and hence f = g.

10 A. GUEDES DE OLIVEIRA AND M. LAS VERGNAS

4. Acknowledgements

We thank the referee for slightly changing our definition of inversion, which has led
to Remark 3.5. The work of the first author was supported, in part, by Fundação para
a Ciência e a Tecnologia (FCT) through the Centro de Matemática da Universidade do
Porto (CMUP).

References

[1] M. Aigner and G. Ziegler, Proofs from THE BOOK (2nd ed.). Berlin, New York: Springer-Verlag
(2002) (4-th edition in 2009).

[2] J. S. Beissinger, “On external activity and inversions in trees”, J. Combin. Theory Ser. B 33 (1982),
87–92.

[3] D. Foata and J. Riordan, “Mappings of acyclic and parking functions”, Aequationes Math. 10 (1974),
10–22.

[4] I. Gessel and D. L. Wang, “Depth-first search as a combinatorial correspondence”, J. Combinatorial

Theory Ser. A 26 (1979), 308–313.
[5] A. G. Konheim and B. Weiss, “An occupancy discipline and applications”, SIAM J. Appl. Math.

14 (1966), 1266–1274.
[6] G. Kreweras, “Une famille de polynômes ayant plusieurs propriétés énumeratives”, Per. Math. Hung.

11 (1980), 309–320.
[7] H. Shin, “A new bijection between forests and parking functions”, arχiv: 0810.0427v2 [math.CO].

See also: www.emis.de/journals/SLC/wpapers/s61vortrag/shin.pdf
[8] H. Shin and J. Zeng, “A further correspondence between

(

b c; b
)

-parking functions and
(

b c; b
)

-
forests”, DMTCS Proceedings, 21st International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC 2009), 793–804.

[9] R. P. Stanley, “An introduction to Hyperplane Arrangements”, in Geometric Combinatorics (E.
Miller, V. Reiner, and B. Sturmfels, eds.), IAS/Park City Mathematics Series, vol.13, American
Mathematical Society, Providence, RI (2007), 389–496.

[10] R. P. Stanley, “Enumerative Combinatorics,” vol. I, Cambridge Studies in Advanced Mathematics
49, Cambridge University Press, Cambridge, New York, 7th printing, (2006).

CMUP and Departamento de Matemática, Fac. de Ciências, Universidade do Porto
E-mail address : agoliv@fc.up.pt

Combinatoire et Optimisation, CNRS and Université Pierre et Marie Curie (Paris 6)
E-mail address : mlv@math.jussieu.fr

