
Séminaire Lotharingien de Combinatoire 65 (2011), Article B65a

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION

MANUEL KAUERS ∗

Abstract. We take some items from a textbook on inequalities and show how to prove
them with computer algebra using the Cylindrical Algebraic Decomposition algorithm.
This is an example collection for standard applications of this algorithm, intended as a
guide for potential users.

1. Introduction

This article does not contain original work. Everything said here has already been said
before in one way or another. But there are things that are important enough to be
said more than once. I believe that computer algebra tools for handling inequalities are
among them. Although meanwhile powerful enough to compete with hand-crafted proofs,
computer algebra for inequalities is not yet used as routinely as, for instance, summation
algorithms are. This may be because algorithms for inequalities are a bit more difficult
to use, or because a certain knowledge of the computational background is necessary to
understand why their output is indeed rigorous, or because they have a bad reputation of
requiring an unreasonably high amount of memory and computation time.

The purpose of this article is to give an example oriented tutorial for Collins’s Cylindrical
Algebraic Decomposition (CAD) algorithm [4]. The reader I have in mind is too busy
to waste valuable time on doing problems related to polynomial inequalities by hand,
wants to know to what extent computer algebra can do such tasks, wants to know which
algorithms exist and how they are used, but does not necessarily care what these algorithms
do internally. The article, in short, summarizes a part of the invited lecture I gave at
the 65-th Séminaire Lotharingien de Combinatoire in Strobl, Austria, September 12–15,
2010. This lecture covered three aspects: (a) basic concepts and standard applications
of CAD, (b) computational internals of the CAD algorithm, and (c) applications of CAD
to inequalities about recursively defined objects. On the last part, which may be most
relevant to combinatorialists, I have already published a survey article [6] describing my
own work. This overview is still more or less up to date, only little [10, 7] has happened
afterwards in this direction. Also for the second part, there are various good references
available with all the details for those who want to write their own code [3, 1]. So it seems
sensible to address only the first part here.

Originally, CAD was invented in order to do quantifier elimination over the reals: given
a quantified formula, it finds a formula without quantifiers which is equivalent over the

∗ Supported by the Austrian FWF grant Y464-N18.

2 MANUEL KAUERS

reals to the input formula. But it can do more. CAD should really be considered as a
general tool for dealing with subsets of Rn that can be described by polynomial equations
and inequalities (semialgebraic sets). The CAD algorithm brings descriptions of such sets
into some sort of standardized form from which the answers to a number of otherwise
non-trivial questions can be easily extracted. Among many other things, we can

• decide whether or not a given semialgebraic set is empty, finite, open, closed, con-
nected, or bounded;

• decide whether or not a given semialgebraic set is contained in another one;
• determine the (topological) dimension of a given semialgebraic set;
• determine a sample point of a given nonempty semialgebraic set;
• determine the number of points of a given finite semialgebraic set;
• determine a tight bounding box of a given bounded semialgebraic set;
• determine the connected components of a given semialgebraic set;
• determine the boundary, the closure, or the interior of a given semialgebraic set;
• determine the projection of a given semialgebraic set inRn to a coordinate subspace
Rk (k < n).

The plan here is to give an example oriented introduction for those who want to learn how
to do basic maneuvers with CAD without reading long justifications of technical details
that are more relevant for implementors than for users. The goal is to explain what CAD
is and how it can be used, rather than how it can be computed.

2. A First Example

Let us start with Item 1.16 of the inequality collection [9]:
√

a2 − b2 +
√

2ab − b2 > a (0 < b < a).

First of all, there is no need to prove such a statement by hand. CAD can do it for us.
For example, using Mathematica’s built-in implementation (developed by Adam Strzeboń-
ski [11]), it is a matter of typing a single command:

In[1]:= CylindricalDecomposition[Implies[0 < b < a,
√

a2 − b2 +
√

2ab − b2 > a], {a, b}]

Out[1]= True

This result means that the logical statement Implies[. . .] in the input is equivalent to the
logical statement True in the output in the sense that, for all real numbers a, b, the former
statement is true if and only if the latter statement is true. In other words, the inequality
is proven.

The inequality becomes false when the coefficient 2 inside the second square root is replaced
by 1. CAD detects this. It does, however, not simply return “false”. Instead:

In[2]:= CylindricalDecomposition[Implies[0 < b < a,
√

a2 − b2 +
√

ab − b2 > a], {a, b}]

Out[2]= a ≤ 0 ∨
(

a > 0 ∧
(

b < 4
5a ∨ b ≥ a

))

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 3

This output describes precisely the coordinates of all the points (a, b) ∈ R2 for which the
implication in the input holds. In other words, we have found

{ (a, b) ∈ R2 : 0 < b < a ⇒
√

a2 − b2 +
√

ab − b2 > a }
= { (a, b) ∈ R2 : a ≤ 0 ∨ (a > 0 ∧ (b < 4

5
a ∨ b ≥ a)) }.

The latter description can be read as an instruction for constructing points in the set: “First
choose a as you like. Then, if a ≤ 0, then you may also choose b as you like. Otherwise, if
a > 0, then you may choose b either smaller than 4

5
a (with the specific a chosen before) or

greater than or equal to the chosen a.” A possible choice is thus (a, b) = (1, 1/3).

Rather than answering simply the question whether a specific formula is true or not, the
CAD algorithm determines where the formula is true. When it returned True before, it
really meant that the formula holds “for all a, b ∈ R subject to no restrictions”, that is, it
holds for all a, b ∈ R. The formula in the second calculation is true for some a, b, and false
for others, and CAD provided us with a description of the region where it holds true. An
output False would have meant that there do not exist any points (a, b) at all for which
the formula is true.

The precise structure of the output formulas computed by CAD will be described in some
more detail in Section 4 below. One of its key features is that formulas with quantifiers
(forall, exists) can be turned into quantifier free ones. For example,

In[3]:= CylindricalDecomposition[

ForAll[{a, b}, Implies[0 < b < a,
√

a2 − b2 +
√

ab − b2 > a]], {}]

Out[3]= False

asserts that the implication

0 < b < a ⇒
√

a2 − b2 +
√

ab − b2 > a

does not hold for all real numbers a, b but suppresses the information on where to find
counterexamples.

We can also combine quantified variables with unquantified (“free”) variables. We have
seen that the inequality at the beginning of this section becomes false when replacing the
coefficient 2 inside the second square root by 1. But which numbers can we put in place
of this 2 without making the inequality false? The question is easily answered by typing

In[4]:= CylindricalDecomposition[

ForAll[{a, b}, Implies[0 < b < a,
√

a2 − b2 +
√

uab − b2 > a]], {u}]

Out[4]= u ≥ 2

This result means that the quantified formula ForAll[. . .] in the input is equivalent to the
unquantified formula u ≥ 2 in the output in the sense that for all real numbers u, the
former statement is true if and only if the latter statement is true. In other words, the
coefficient 2 cannot be improved.

4 MANUEL KAUERS

We may allow for more freedom by introducing more parameters. For example, we can
extend the range for u to u ≥ 1 by doing an appropriate scaling on right hand side, as the
following calculation tells us:

In[5]:= CylindricalDecomposition[

ForAll[{a, b}, Implies[0 < b < a,
√

a2 − b2 +
√

uab − b2 > va]], {u, v}]

Out[5]=
(

1 ≤ u ≤ 2 ∧ v ≤
√

u − 1
)

∨ (u > 2 ∧ v ≤ 1)

This means that for any choice u ≥ 1, there is a choice for v (depending on the chosen u)
that makes the inequality valid. For example, choosing u = 3

2
and v = 1

2

√
2 gives the new

inequality
√

a2 − b2 +
√

3
2
ab − b2 > 1

2

√
2a (0 < b < a).

Another idea is to restrict the range of b from (0, a) to (0, va) for some constant v. Asking
for the possible combinations (u, v) that make the formula valid in the restricted range, we
obtain the following.

In[6]:= CylindricalDecomposition[

ForAll[{a, b}, Implies[0 < b < va,
√

a2 − b2 +
√

uab − b2 > a]], {u, v}]

Out[6]=

(

u ≤ −1 ∧ −1 ≤ v ≤ 0
)

∨
(

−1 < u < 0 ∧ u ≤ v ≤ 0
)

∨
(

u = 0 ∧ v = 0
)

∨
(

0 < u ≤ 2 ∧ 0 ≤ v ≤ 4u

u2 + 4

)

∨
(

u > 2 ∧ 0 ≤ v ≤ 1
)

This means that for every choice of u, we can find some v that makes the formula true.
For instance, for the specific choice u = 1/2 we can take any v in the range from 0 to
4u/(u2 + 4) = 8/17 according to the fourth part of the formula. For example, v = 1/3
would do.

Output 6 is optimized for finding solutions (u, v) by first deciding on a choice for u and then
selecting some v which fits to the chosen u. If we have some specific v in mind and want to
find a suitable u for this specific v, then the output is not very helpful. We should redo the
computation with v as primary variable and u as secondary variable. In Mathematica, this
is specified by the second argument of the command CylindricalDecomposition. Putting
{v, u} instead of {u, v} there gives

In[7]:= CylindricalDecomposition[

ForAll[{a, b}, Implies[0 < b < va,
√

a2 − b2 +
√

uab − b2 > a]], {v, u}]

Out[7]=

(

−1 ≤ v < 0 ∧ u ≤ v
)

∨ v = 0 ∨
(

0 < v ≤ 1 ∧ u ≥ 2

v
− 2

v

√

1 − v2
)

Now it is apparent that we cannot find any u for v with |v| > 1. This was not evident
from Output 6. Also, we can now easily determine a suitable u for, say v = 3

5
. The

third part of Output 7 advises us that the good choices for u are precisely those where
u ≥ 2

3/5
− 2

3/5

√

1 − (3/5)2 = 2
3
. We have found the new inequality

√
a2 − b2 +

√

2
3
ab − b2 > a (0 < b < 3

5
a).

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 5

Figure 1. a) algebraic decomposition of P b) completion of P to a cylin-
drical algebraic decomposition

It would be easy to continue producing further variations. The reader shall feel encouraged
to discover some interesting ones on her or his own as an exercise.

3. The Geometric Point of View

A finite set P = {p1, . . . , pm} of polynomials in the variables x1, . . . , xn naturally induces
a decomposition of Rn into cells, the so-called algebraic decomposition. By a cell, we
mean here a connected subset of Rn where all the pi have the same sign and which is
maximal in the sense that making the set larger would necessarily violate sign invariance
or connectedness.

As an example, the set P = {x2 +y2 −4, (x−1)(y−1)−1} induces a decomposition of R2

into 13 cells as depicted in Figure 1a: five “areas”, six “arcs” where one of the polynomials
is zero but the other is not, and two isolated points on where both polynomials are zero.
Note that 0 is considered as a sign of its own: sgn(0) := 0.

If an algebraic decomposition of Rn is cylindrical, then for every k = 1, . . . , n, the cells of
the decomposition can be divided into groups so that all cells of one group have the same
x1, . . . , xk-coordinates. The precise definition is inductive:

• one dimension: Every algebraic decomposition of R is cylindrical.
• n dimensions: An algebraic decomposition of Rn is cylindrical if

– the projection of any two cells down to Rn−1 is either identical or disjoint, and
– the projections of all the cells down to Rn−1 form a cylindrical algebraic de-

composition of Rn−1.

The algebraic decomposition shown in Figure 1a is not cylindrical, because we can find
pairs of cells (for example: the upper and the lower circle arc) which when projected to
the horizontal axis have images that are neither identical nor disjoint. In order to make

6 MANUEL KAUERS

the decomposition cylindrical, we can refine it by adding a suitable univariate polynomial
in x to P . Collins’s algorithm finds this additional polynomial. Geometrically, adding a
univariate polynomial means that we use vertical lines to split cells into smaller cells such
as to satisfy the condition from the definition. In the example, a suitable polynomial is
(x2−4)(x−1)(x4−2x3−2x2+8x−4). The first factor corresponds to the vertical tangents
of the circle, the second to the vertical asymptote of the hyperbola, and the third to the
two intersection points of circle and hyperbola (Figure 1b).

Observe how the cells in Figure 1b are arranged into vertical stacks (“cylinders”): there
are three cells stacked over the the range −∞ < x < −4, five with x = −4, seven with
−4 < x < α where α is the leftmost real root of the polynomial X4 − 2X3 − 2X2 +8X − 4,
and so on.

In the case of more than two variables, we may have to add more than one polynomial to
make an algebraic decomposition cylindrical. For example, P = {x2 + y2 + z2 − 1} splits
R3 into the interior, the boundary, and the exterior of the unit ball. This decomposition
is not cylindrical. To make it cylindrical, we may first add x2 + y2 − 1 to P , which
geometrically corresponds to putting a cylinder around the unit ball. Now every cell in the
decomposition projects down to either the interior or the boundary or the exterior of the
unit disk. But this is not enough. As the notion of being cylindrical applies recursively,
we must also add x2 − 1 to P corresponding to the two vertical tangents of the unit circle,
or in the original picture, two vertical tangent planes. The resulting decomposition is then
cylindrical (Figure 2).

One way of looking at Collins’s algorithm is to say that it takes as input a finite set P
of polynomials and produces as output another finite set Q of polynomials such that the
algebraic decomposition induced by P ∪ Q is cylindrical. The output of the algorithm is
rigorous in the sense that the decomposition of P ∪ Q is really cylindrical and not in any
sense an approximation. A formal proof of the cylindricity could in principle be composed
out of the intermediate expressions the CAD algorithm encounters during the computation,
but checking such a proof would merely amount to redoing the whole calculation. The
situation is therefore somewhat different from some summation algorithms which compute
closed forms of symbolic sums along with a proof object (the so called “certificate”) that
can be easily checked independently of the computation. For CAD, you have to trust the
program. Implementations that I consider trustworthy include Mathematica’s built-in, the
free software QEPCAD [2], and Redlog [5].

4. The Logical Point of View

Individual cells in a cylindrical algebraic decomposition can be described by logical combi-
nations of polynomial equations and inequalities. More generally, we may consider formulas
which are constructed from variables, rational numbers, arithmetic operations (+, −, ·, /),
equality and inequality relations (=, 6=, <, >, ≤, ≥), logical connectives (∧, ∨, . . .) and
quantifiers (∀, ∃) according to the usual syntactic rules.

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 7

Figure 2. cylindrical algebraic decomposition of the unit ball

Some implementations allow some further functions to appear in formulas, for instance
absolute values, minima and maxima, or algebraic functions. This is certainly convenient,
but it does not make the theory more general, because formulas involving such functions
can be easily rewritten into equivalent formulas which do not. For example,

0 ≤ max(x − y, x + y) ≤
√

x2 + y2

can be rephrased as

∀ z :
(

z ≥ 0∧z2 = x2+y2
)

⇒
(

x−y ≥ x+y∧0 ≤ x−y ≤ z
)

∨
(

x−y < x+y∧0 ≤ x+y ≤ z
)

in a preprocessing step.

If formulas are interpreted in the theory of real numbers, then a formula without free
variables is either true or false. A formula with k free variables can be regarded as a
function Rk → {true, false} which assigns to every point (ξ1, . . . , ξk) ∈ Rk the truth value
of the formula obtained by replacing the free variables by the numbers ξ1, . . . , ξk. Two
formulas are equivalent if they represent the same function. Note that although we use

8 MANUEL KAUERS

formulas to make statements about (sets of) real numbers, the formula themselves are not
allowed to contain arbitrary real numbers but only rational ones.

Rephrased in terms of formulas, an alternative way of looking at Collins’s algorithm is to
say that it takes a formula as input and produces as output an equivalent formula which
has a special structure. This special structure can be described recursively as follows:

• one variable: A formula in one variable x is in CAD format if it is of the form

Φ1 ∨ Φ2 ∨ · · · ∨ Φm,

where each Φk is of the form x < α or α < x < β or x > β or x = γ for some real
algebraic numbers α, β, γ (α < β) and any two Φk are mutually inconsistent.

• n variables: A formula in n variables x1, . . . , xn is in CAD format if it is of the form

(Φ1 ∧ Ψ1) ∨ (Φ2 ∧ Ψ2) ∨ · · · ∨ (Φm ∧ Ψm),

where the Φk are such that Φ1 ∨ · · · ∨Φm is in CAD format with respect to x1 and
the Ψk are satisfiable formulas which are in CAD format with respect to x2, . . . , xn

whenever x1 is replaced by a real algebraic number satisfying Φk.

Examples for formulas of this form have already been given in Section 2.

Note that the CAD format is defined in such a way that it naturally describes a union
of some cells in a cylindrical algebraic decomposition of Rn as explained in the previous
section. Once a formula has been brought to this format, the questions stated in the
introduction become easy to answer. For example, in order to determine the dimension of
a semialgebraic set, observe that a formula in CAD format can be expanded into a finite
disjunction of formulas of the type

Ω1 ∧ Ω2 ∧ · · · ∧ Ωn,

where each Ωi is either an inequality xi < α(x1, . . . , xi−1) or α(x1, . . . , xi−1) < xi <
β(x1, . . . , xi−1) or xi > β(x1, . . . , xi−1) or an equality xi = γ(x1, . . . , xi−1) for some al-
gebraic functions α, β, γ. Each of these conjunctions Ω1 ∧ Ω2 ∧ · · · ∧ Ωn describes an
individual cell in the cylindrical decomposition of Rn, and the dimension of that cell is
obviously n − E where E is the number of indices i for which Ωi is not an inequality but
an equality. For a semialgebraic set consisting of several cells, we simply determine the
dimension for each cell in this way and take the maximum.

Quantifier elimination is also easy. Assume for example that we have a formula

(Φ1 ∧ Ψ1) ∨ (Φ2 ∧ Ψ2) ∨ · · · ∨ (Φm ∧ Ψm)

in CAD format, say in two variables x1, x2. Then the quantified formula

∃ x2 ∈ R : (Φ1 ∧ Ψ1) ∨ (Φ2 ∧ Ψ2) ∨ · · · ∨ (Φm ∧ Ψm)

is easily seen to be equivalent to the quantifier free formula

Φ1 ∨ Φ2 ∨ · · · ∨ Φm

which only contains only x1.

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 9

For the universal quantifier, we have to go through the Ψi and check which of them represent
the whole real line, i.e., which of them are of the form

x2 > α ∨ x2 = α ∨ α < x2 < β ∨ x2 = β ∨ β < x2 < γ ∨ x2 = γ ∨ · · · ∨ x2 = δ ∨ x2 > δ.

(Good implementations will simplify such subformulas to True.) If it turns out that the
relevant Ψi are Ψ3, Ψ7 and Ψ28, for example, then the quantified formula

∀ x2 ∈ R : (Φ1 ∧ Ψ1) ∨ (Φ2 ∧ Ψ2) ∨ · · · ∨ (Φm ∧ Ψm)

is equivalent to the quantifier free formula

Φ3 ∨ Φ7 ∨ Φ28.

Because of the recursive nature of formulas in CAD format, the case of more variables (and
possibly more quantifiers) can be handled in quite the same way. The only issue to take
care of is that the CAD format is with respect to a variable order which is compatible with
the order of the quantifiers.

Quantifier elimination is the most important application of the CAD algorithm, and most
implementations include elimination of quantifiers as a built-in feature, so that the user
typically does not need to bother about choosing an appropriate variable order or con-
structing a quantifier free formula by picking the right parts out of a lengthy formula
produced by the CAD algorithm. It is nevertheless useful to know what is going on behind
the curtain, because it can give hints how to manually prepare the input so that a CAD
computation can terminate more quickly.

5. Further Examples

Let us return to the inequality collection [9]. It contains many inequalities which can be
checked by a simple CAD calculation.

5.1. Solving.

• Item 1.38 asks: For what values of x is it true that

2 < (3x2 − 15x + 16)/(x2 − 4x + 3) < 3?

Solution:

In[8]:= CylindricalDecomposition[2 < (3x2 − 15x + 16)/(x2 − 4x + 3) < 3, {x}]

Out[8]= 2 < x < 7
3 ∨ x > 5

• Item 1.51 asks: For which values of a does the following inequality hold:

−1 <
1

2a
[1 − a −

√

(1 − a)2 − 4a2] < +1?

Solution:

In[9]:= CylindricalDecomposition[−1 < 1/(2a)(1 − a − Sqrt[(1 − a)2 − 4a2]) < 1, {a}]

Out[9]= −1 < a < 0 ∨ 0 < a < 1
3

10 MANUEL KAUERS

• Item 1.8 asks: Solve the pair of inequalities

2x − y

y
< 0,

2y − x

x
< 0 (x, y 6= 0).

Solution:

In[10]:= CylindricalDecomposition[{x 6= 0, y 6= 0,
2x − y

y
< 0,

2y − x

x
< 0}, {x, y}]

Out[10]= (x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0)

• Item 1.29 asks: Determine the region of the xy-plane in which the point (x, y) must
lie in order that its coordinates satisfy the inequality

(x2 − 4xy)/(x2 + 3xy + 2y2) < 0.

Solution:

In[11]:= CylindricalDecomposition[(x2 − 4xy)/(x2 + 3xy + 2y2) < 0, {x, y}]

Out[11]=
(

x < 0 ∧
(

y < 1
4x ∨ −1

2x < y < −x
))

∨
(

x > 0 ∧
(

−x < y < −1
2x ∨ y > 1

4x
))

• Item 1.39 asks: In a Cartesian coordinate system, find the region of the plane for
which

1◦ : xy(x2 − y2) > 0, 2◦ : (x2 − 1)(x2 − y2) < 0.

Solution:

In[12]:= CylindricalDecomposition[{xy(x2 − y2) > 0, (x2 − 1)(x2 − y2) < 0}, {x, y}]

Out[12]= (x < −1∧y > −x)∨(−1 < x < 0∧x < y < 0)∨(0 < x < 1∧0 < y < x)∨(x > 1∧y < −x)

• Item 1.49 asks: Find the region of the xy-plane for which the following inequalities
are simultaneously satisfied:

x2 < 7y, y2 > 5x, y2 < 8x, x2 > 2y.

Solution:

In[13]:= CylindricalDecomposition[{x2 < 7y, y2 > 5x, y2 < 8x, x2 > 2y}, {x, y}]

Out[13]=

(

3
√

20 < x ≤ 3
√

32 ∧
√

5x < y <
x2

2

)

∨
(

3
√

32 < x ≤ 3
√

245 ∧
√

5x < y < 2
√

2x
)

∨
(

3
√

245 < x <
3
√

392 ∧ x2

7
< y < 2

√
2x

)

• Item 2.29 asks: For what values of x is

(a − x)6 − 3a(a − x)5 + 5
2
a2(a − x)4 − 1

2
a4(a − x)2 < 0?

Solution:

In[14]:= CylindricalDecomposition[
(a − x)6 − 3a(a − x)5 + 5/2a2(a − x)4 − 1/2a4(a − x)2 < 0, {a, x}]

Out[14]=

(

a < 0 ∧ (1
2(1 +

√
3)a < x < a ∨ a < x < 0 ∨ 0 < x < 1

2(1 −
√

3)a)
)

∨
(

a > 0 ∧ (1
2(1 −

√
3)a < x < 0 ∨ 0 < x < a ∨ a < x < 1

2(1 +
√

3)a)
)

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 11

Some manual clean-up of this output gives the equivalent answer

x 6= 0 ∧ x 6= a ∧ 1

2
(1 −

√
3) <

x

a
<

1

2
(1 +

√
3).

• Item 1.58 asks: Determine pairs of integers, x and y, which satisfy simultaneously

y − |x2 − 2x| + 1
2

> 0, y + |x − 1| < 2.

Solution: First we determine all the real solutions via

In[15]:= CylindricalDecomposition[{y−Abs[x2−2x]+1

2
> 0, y+Abs[x−1] < 2}, {x, y}]

Out[15]=

(1

2
(3 −

√
15) < x ≤ 0 ∧ 1

2
(2x2 − 4x − 1) < y < x + 1

)

∨
(

0 < x ≤ 1 ∧ 1

2
(−2x2 + 4x − 1) < y < x + 1

)

∨
(

1 < x ≤ 2 ∧ 1

2
(−2x2 + 4x − 1) < y < 3 − x

)

∨
(

2 < x <
1

2
(1 +

√
15) ∧ 1

2
(2x2 − 4x − 1) < y < 3 − x

)

This restricts the possible values for x to 0, 1, 2. For these three particular values,
the corresponding inequalities for y specialize as follows:

x = 0 : −1
2

< y < 1,

x = 1 : 1
2

< y < 2,

x = 2 : −1
2

< y < 1.

Therefore, the only integral solutions are (0, 0), (1, 1), and (2, 0).

5.2. Proving.

• Item 1.22 claims: If

f(a, b, c, d) = (a − b)2 + (b − c)2 + (c − d)2 + (d − a)2

then for a, b, c, d with a < b < c < d we have

f(a, c, b, d) > f(a, b, c, d) > f(a, b, d, c).

Proof:

In[16]:= f [a , b , c , d] = (a − b)2 + (b − c)2 + (c − d)2 + (d − a)2;
In[17]:= CylindricalDecomposition[

ForAll[{a, b, c, d}, a < b < c < d, f [a, c, b, d] > f [a, b, c, d] > f [a, b, d, c]], {}]

Out[17]= True

• Item 1.52 claims: If a and b (ab 6= 0) are arbitrary real numbers, then at least one
of the following inequalities is valid:

∣

∣

∣

∣

∣

a +
√

a2 + 2b2

2b

∣

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

∣

a −
√

a2 + 2b2

2b

∣

∣

∣

∣

∣

< 1.

Proof:

12 MANUEL KAUERS

In[18]:= CylindricalDecomposition[

ForAll[{a, b}, ab 6= 0, Abs[
a+

√
a2+2b2

2b
] < 1 ∨ Abs[

a−

√
a2+2b2

2b
] < 1], {}]

Out[18]= True

• Item 1.53 claims:

∣

∣

∣

∣

x2 − 2x + 3

x2 − 4x + 3

∣

∣

∣

∣

≤ 1 ⇒ x ≤ 0.

Proof:

In[19]:= CylindricalDecomposition[Abs[(x2 − 2x + 3)/(x2 − 4x + 3)] ≤ 1, {x}]

Out[19]= x ≤ 0

• Item 1.59 claims: a2 + b2 + c2 ≥ |bc + ca + ab|
Proof:

In[20]:= CylindricalDecomposition[ForAll[{a, b, c}, a2+b2+c2 ≥ Abs[bc+ca+ab]], {}]

Out[20]= True

• Item 1.60 claims: a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0 (a, b, c ≥ 0).
Proof:

In[21]:= CylindricalDecomposition[
ForAll[{a, b, c}, Min[a, b, c] ≥ 0,

a(a − b)(a − c) + b(b − c)(b − a) + c(c − a)(c − b) ≥ 0], {}]

Out[21]= True

• Item 1.61 claims: ab
a+b

+ cd
c+d

≤ (a+c)(b+d)
a+b+c+d

(a, b, c, d > 0).
Proof:

In[22]:= CylindricalDecomposition[

ForAll[{a, b, c, d}, Min[a, b, c, d] > 0,
ab

a + b
+

cd

c + d
≤ (a + c)(b + d)

a + b + c + d
], {}]

Out[22]= True

• Item 1.7 claims: If a, b, c, d are real numbers and if ad− bc = 1, then a2 + b2 + c2 +
d2 + ac + bd > 1.
Proof:

In[23]:= CylindricalDecomposition[
ForAll[{a, b, c, d}, ad − bc == 1, a2 + b2 + c2 + d2 + ac + bd > 1], {}]

Out[23]= True

The bound 1 on the right hand side is not sharp. To find the best bound, redo the
computation with a symbolic bound M .

In[24]:= CylindricalDecomposition[
ForAll[{a, b, c, d}, ad − bc == 1, a2 + b2 + c2 + d2 + ac + bd > M], {M}]

Out[24]= M <
√

3

This is essentially the statement of Item 1.23 and an example for quantifier elimi-
nation.

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 13

5.3. Quantifier Elimination.

• Item 1.30 asks: Find the region of the plan in a Cartesian coordinates system whose
points (x, y) satisfy the condition

∣

∣|x + a| − |y − a|
∣

∣ < a (a > 0).

Solution:

In[25]:= CylindricalDecomposition[ForAll[a, a > 0, Abs[Abs[x + a] − Abs[y − a]] <
a], {x, y}]

Out[25]= x == −y

• Item 1.34 asks: For what value or values of a is the condition

(x2 + ax + 1)/(x2 + 4x + 8) < 8

satisfied for all real x?
Solution:

In[26]:= CylindricalDecomposition[ForAll[x, (x2 + ax + 1)/(x2 + 4x + 8) < 8], {a}]

Out[26]= −10 < a < 74

• Item 1.35 asks: Determine k such that for all real x

|(x2 − kx + 1)/(x2 + x + 1)| < 3.

Solution:

In[27]:= CylindricalDecomposition[ForAll[x, Abs[(x2 − kx + 1)/(x2 + x + 1)] < 3], {k}]

Out[27]= −5 < k < 1

• Item 1.53 claims: p+m
p+m

≥ x2
−2mx+p2

x2+2mx+p2 ≥ p−m
p+m

(p > m > 0)

Solution: Let us drop the condition p > m > 0 and let CAD determine the region
in the pm-plane where the inequality holds.

In[28]:= CylindricalDecomposition[

ForAll[x,
p + m

p + m
≥ x2 − 2mx + p2

x2 + 2mx + p2
≥ p − m

p + m
], {p, m}]

Out[28]= (p < 0 ∧ p < m <= 0) ∨ (p > 0 ∧ 0 <= m < p)

• Item 7.5 claims: If the sum of four positive numbers is 4c and the sum of their
squares is 8c2, then none of the numbers can exceed (1 +

√
3)c.

Proof: Let a1, a2, a3, a4 be the four positive numbers. Without loss of generality,
a1 ≥ a2 ≥ a3 ≥ a4. Then it suffices to prove the claim for a1.

In[29]:= CylindricalDecomposition[
Exists[{a2, a3, a4}, a1 ≥ a2 ≥ a3 ≥ a4 > 0 ∧ a1 + a2 + a3 + a4 == 4c

∧ a2
1
+ a2

2
+ a2

3
+ a2

4
== 8c2], c, a1]

Out[29]= c > 0 ∧ 2c < a1 ≤ (1 +
√

3)c

This implies in particular that the bound is sharp.

14 MANUEL KAUERS

• Item 11.15 asks: Which conditions must be satisfied by the coefficients a, b, c, d, e, f
for the function

ax2 + 2bxy + cy2 + 2dx + 2ey + f

to be positive for all real values of x and y?
Solution:

In[30]:= CylindricalDecomposition[
ForAll[{x, y}, ax2 + 2bxy + cy2 + 2dx + 2ey + f > 0], {a, b, c, d, e, f}]

produces an answer within a few minutes. It is a bit lengthy (some three pages),
so we do not reprint it here. Let us instead just show the output for the case when
a, b, c are restricted to the positive numbers.

In[31]:= CylindricalDecomposition[
ForAll[{x, y}, Min[a, b, c] > 0

∧ ax2 + 2bxy + cy2 + 2dx + 2ey + f > 0], {a, b, c, d, e, f}]

Out[31]= a > 0∧b > 0∧
((

c =
b2

a
∧e =

cd

b
∧f >

de

b

)

∨
(

c >
b2

a
∧

((

d < 0∧f >
ae2 − 2bde + cd2

ac − b2

)

∨
(

d = 0 ∧
((

e < 0 ∧ f >
ae2

ac − b2

)

∨ (e = 0 ∧ f > 0) ∨
(

e > 0 ∧ f >
ae2

ac − b2

)))

∨
(

d >

0 ∧ f >
ae2 − 2bde + cd2

ac − b2

))))

• Item 1.57 asks: Find lower and upper bounds for the function

(x2 − 2x cos a + 1)/(x2 − 2x cos b + 1).

Solution: First we have to get rid of the trigonometric functions because CAD
can only deal with polynomial expressions. In the present case this is easily done
by replacing cos a and cos b by new variables A and B, respectively, which are
constrained to the interval [−1, 1]. Then

In[32]:= CylindricalDecomposition[

ForAll[x, Abs[A] ≤ 1 ∧ Abs[B] ≤ 1, L ≤ x2
−2xA+1

x2
−2xB+1

≤ U], {A, B, L, U}]

Out[32]= A < −1∨
(

A = −1∧
(

B < −1∨
(

−1 < B < 1∧L ≤ 0∧U ≥ − 2

B − 1

)

∨B > 1
))

∨
(

−1 <

A < 1 ∧
(

B < −1 ∨
(

−1 < B < A ∧ L ≤ A − 1

B − 1
∧ U ≥ A + 1

B + 1

)

∨ (B = A ∧ L ≤ 1 ∧ U ≥

1) ∨
(

A < B < 1 ∧ L ≤ A + 1

B + 1
∧ U ≥ A − 1

B − 1

)

∨ B > 1
))

∨
(

A = 1 ∧
(

B < −1 ∨
(

−1 <

B < 1 ∧ L ≤ 0 ∧ U ≥ 2

B + 1

)

∨ B > 1
))

∨ A > 1

HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION 15

implies the following sharp upper and lower bounds in terms of A and B:

−1 < A ≤ B < 1 : L =
1 + A

1 + B
U =

1 − A

1 − B

−1 < B ≤ A < 1 : L =
1 − A

1 − B
U =

1 + A

1 + B

|A| = 1 ∧ |B| 6= 1 : L = 0 U =
2

1 + AB
.

Bounds which are independent of A and B cannot be given because

In[33]:= CylindricalDecomposition[

ForAll[{x, A, B}, Abs[A] ≤ 1 ∧ Abs[B] ≤ 1, L ≤ x2
−2xA+1

x2
−2xB+1

≤ U], {L, U}]

Out[33]= False

6. Further Remarks

Our example collection hopefully sustains the claim that the CAD algorithm is useful.
It was not unintentional that the examples we have chosen are simple enough that they
could as well be done by hand with a reasonable effort. The point is that even in such
situations CAD is is more reliable, gives best-possible answers, saves working time, and
shortens proofs compared to traditional paper and pencil reasoning.

Sometimes it is possible to rephrase a problem as a formula with polynomial inequalities
which is so involved that it seems completely hopeless to prove it by hand. In such situa-
tions, even if CAD is applicable in principle, it is often not successful in practice, because
the runtime and memory requirements of the CAD algorithm can easily become too astro-
nomic to get a computation done. The question is then whether the problem at hand can
be broken by paper and pencil reasoning into smaller pieces which can then be solved by
CAD in a reasonable amount of time. An example can be found in [8].

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry,
volume 10 of Algorithms and Computation in Mathematics. Springer, 2nd edition, 2006.

[2] Chris W. Brown. QEPCAD B – a program for computing with semi-algebraic sets. Sigsam Bulletin,
37(4):97–108, 2003.

[3] Bob F. Caviness and Jeremy R. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic

Decomposition, Texts and Monographs in Symbolic Computation. Springer, 1998.
[4] George E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical

algebraic decomposition. Lecture Notes in Computer Science, 33:134–183, 1975.
[5] Andreas Dolzmann and Thomas Sturm. Redlog: computer algebra meets computer logic. Sigsam

Bulletin, 31(2):2–9, 1997.
[6] Manuel Kauers. Computer algebra and special function inequalities. In Tewodros Amdeberhan and

Victor H. Moll, editors, Tapas in Experimental Mathematics, volume 457 of Contemporary Mathemat-

ics, pages 215–235. AMS, 2008.
[7] Manuel Kauers and Veronika Pillwein. When can we decide that a P-finite sequence is positive? In

Proceedings of ISSAC’10, 2010. 195–202.

16 MANUEL KAUERS

[8] Manuel Kauers, Veronika Pillwein, and Susanne Saminger-Platz. Dominance in the family of Sugeno–
Weber t-norms. Technical Report, 2010, arχiv:1007.5442.

[9] Dragoslav S. Mitrinović. Elementary Inequalities. P. Noordhoff Ltd., 1964.
[10] Veronika Pillwein. Positivity of certain sums over Jacobi kernel polynomials. Advances in Applied

Mathematics, 41(3):365–377, 2008.
[11] Adam Strzeboński. Solving systems of strict polynomial inequalities. Journal of Symbolic Computa-

tion, 29:471–480, 2000.

Manuel Kauers, Research Institute for Symbolic Computation, J. Kepler University Linz,

Austria

E-mail address: mkauers@risc.uni-linz.ac.at

