
Séminaire Lotharingien de Combinatoire 65 (2011), Article B65b

GENERATOR SETS FOR THE ALTERNATING GROUP

AVIV ROTBART†

Abstract. Although the alternating group is an index 2 subgroup of the symmetric
group, there is no generating set that gives a Coxeter structure on it. Various gener-
ating sets were suggested and studied by Bourbaki, Mitsuhashi, Regev and Roichman,
Vershik and Vserminov, and others. In a recent work of Brenti, Reiner and Roichman,
it is explained that palindromes in Mitsuhashi’s generating set play a role similar to
that of reflections in a Coxeter system.

We study in detail the length function with respect to the set of palindromes.
Results include an explicit combinatorial description, a generating function, and an
interesting connection to Broder’s restricted Stirling numbers.

1. Introduction

The study of parameters (statistics) of the symmetric group and other related groups
is a very active branch of combinatorics in recent years. A major step was made about
one hundred years ago, when MacMahon [6] showed that the parameters major index
and inversion number are equi-distributed on the symmetric group, Sn. This important
result is the foundation of the field, and stimulated many subsequent generalizations
and refinements.

It is well known that several statistics on Sn may be defined via its Coxeter generators
(simple reflections) {si = (i, i+1) | 1 ≤ i ≤ n−1}, or via the transpositions (reflections)
{tij = (i, j) | 1 ≤ i < j ≤ n}. Unfortunately, the alternating group An ⊆ Sn is not
a Coxeter group. Our goal is to study generating sets for the alternating group that
play a role similar to that of reflections in the symmetric group, and to explore the
combinatorial properties of An based on these sets.

A good candidate is the set {s1si+1 = (1, 2)(i+1, i+2) | 1 < i < n−1}. Mitsuhashi [7]
pointed out that these generators for the alternating group play a role similar to that
of the above Coxeter generators of Sn. Regev and Roichman [8] describe a canonical
presentation of the elements in An based on this set. They also calculate the generating
functions of length and other statistics, with respect to this set of generators.

Our work deals with An-statistics calculated with respect to a new set of generators,
{s1tij = (1, 2)(i, j) | 1 ≤ i < j ≤ n}. This set consists of palindromes in Mitsuhashi’s
generators discussed above. As Brenti, Reiner and Roichman [3] explain, these palin-
dromes play a role similar to that of reflections in the symmetric group. The following
diagram describes the relations between the four generating sets mentioned above.
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Sn-Coxeter conjugate by Sn−−−−−−−−−−−→ Sn-Transpositions

C = {si | 1 ≤ i ≤ n− 1} T = {tij | 1 ≤ i < j ≤ n}y multiply by s1

y multiply by s1

An-Coxeter (Mitsuhashi) take palindromes−−−−−−−−−−−−→ An-Transpositions

C(An) = {s1si+1 | 1 < i ≤ n− 1} T (An) = {s1tij | 1 ≤ i < j ≤ n}

Various aspects of the generating set T (An) are studied in this work, including:
canonical forms of elements in An with respect to T (An); length of elements and the
relation between length and number of cycles; a generating function for length expecta-
tion and variance for length; and finally a connection with Broder’s restricted Stirling
numbers [2].

The methods used in this work include: manipulations on generating functions of Stir-
ling numbers; theorems on the number of cycles of a permutation and on the number of
permutations of a given length in Sn; bijections between certain subsets of permutations
in An, Sn and permutations with Broder’s property (see Definition 2.13).

The paper is organized as follows. Detailed background and notations for the sym-
metric and alternating groups, as well as for Stirling numbers, is given in Section 2. In
Section 3 we present the main results achieved in this work. The A canonical presen-
tation is analyzed in Section 4. In Section 5 we discuss refined counts of permutations
in An, while the relation between length and the number-of-cycles statistic is analyzed
in Section 6. In Section 7 we calculate the generating function of length with respect
to the generating set T (An). The expectation and variance of the length function are
studied in Section 8. The relation between our results and restricted Stirling numbers
is analyzed in Section 9.

2. Background

2.1. The Symmetric Group. In this subsection, we present the main notations, def-
initions and theorems on the symmetric group, denoted by Sn.

Notation 2.1. Let n be a nonnegative integer, then [n] := {1, 2, 3, . . . , n} (where [0] :=
∅).

Definition 2.2. Denote by N the set of natural numbers. The symmetric group on
n ∈ N letters (denoted by Sn) is the group consisting of all permutations on n letters,
with composition as the group operation.

Definition 2.3. Given a permutation v ∈ Sn, we say that a pair (i, j) ∈ [n]× [n] is an
inversion of v if i < j and v(i) > v(j). If (i, i + 1) is a transposition of v, then it is
called an adjacent transposition.

Definition 2.4. The Coxeter generators of Sn are

{si = (i, i+ 1) | 1 ≤ i ≤ n− 1},
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i.e., all the adjacent transpositions.

It is a well-known fact that the symmetric group is a Coxeter group with respect
to the above generating set. The following natural statistic describes the length of
permutations in the symmetric group, with respect to the Coxeter generating set:

Definition 2.5. The length of a permutation v ∈ Sn with respect to the Coxeter
generators is defined to be

`C(v) := min{ r ≥ 0 | v = si1 . . . sir for some i1, . . . , ir ∈ [n− 1] }.

Definition 2.6. The inversion number of v ∈ Sn is

inv(v) := |{(i, j) | 1 ≤ i < j ≤ n, v(i) > v(j)}|.

Fact 2.7. For each v ∈ Sn, we have

inv(v) = `C(v).

Another important set of generators for Sn is the set of all transpositions.

Notation 2.8. Denote by T the set of all transpositions in Sn, i.e.,

T = {(i, j) | 1 ≤ i < j ≤ n}.

The definition of length with respect to T is similar.

Definition 2.9. Let v ∈ Sn, then

`T (v) := min{ r ≥ 0 | v = t1 . . . tr, ti ∈ T }.

A well known result describes the connection between the number of cycles and this
length statistics in Sn.

Theorem 2.10. If cyc(v) is the number of cycles in v ∈ Sn, then

`T (v) + cyc(v) = n

This result will be useful in some of the proofs in this work.

2.2. The Alternating Group. In this section we define the alternating group, which
is a subgroup of the symmetric group. We also describe a known generating set for this
group and the corresponding generating function of length.

Definition 2.11. The Alternating Group on n letters, denoted by An, is the group
consisting of all even permutations in the symmetric group Sn; i.e., An := {v ∈ Sn |
sign(v) = 1}.

Following Mitsuhashi [7] we let

ai := s1si = (1, 2)(i, i+ 1) (2 ≤ i ≤ n− 1).

The set C(An) := {ai | 2 ≤ i ≤ n− 1} generates the alternating group on n letters,
An.

Regev and Roichman [8] used Mitsuhashi’s generators to describe a covering map
f : An+1 → Sn, which allows us to translate Sn-identities into corresponding An+1-
identities. They gave a formula for the generating function of length with respect to
these generators.
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Proposition 2.12 ([8, Thm. 6.1]). Denoting by `C(An)(·) is the length with respect to
Mitsuhashi’s generators, we have∑

w∈An+1

q`C(An)(w) = (1 + 2q)(1 + q + 2q2) · · · (1 + q + . . .+ qn−2 + 2qn−1).

2.3. Stirling Numbers. For basic properties of Stirling numbers the reader is referred
to [9]. In this subsection we describe one important generalization of them, Broder’s [2]
restricted Stirling numbers.

Definition 2.13. The unsigned r-restricted Stirling number of the first kind, denoted
by
[
n
k

]
r
, is the number of permutations of the set {1, 2, . . . , n} with k disjoint cycles,

with the restriction that the numbers 1, 2, . . . , r belong to distinct cycles. The case
r = 1 gives the usual unsigned Stirling numbers of the first kind.

Definition 2.14. The Kronecker delta function is defined as follows:

δi,j =

{
1, if i = j;

0, otherwise.

Claim 2.15. r-Stirling numbers of the first kind satisfy the same recurrence relation
as unsigned Stirling numbers of the first kind, except for the initial conditions:[

n

k

]
r

= (n− 1)

[
n− 1

k

]
r

+

[
n− 1

k − 1

]
r

, (r < k < n),

with the following initial conditions:[
n

k

]
r

= 0, (k < r or n < k);[
n

r

]
r

=
(n− 1)!

(r − 1)!
, (r ≤ n);[

n

n

]
r

= 1, (r ≤ n).

Theorem 2.16 ([2, §6.9]). The generating function of unsigned r-restricted Stirling
numbers of the first kind is

n∑
k=0

[
n

k

]
r

· xk =

{
xr(x+ r)(x+ r + 1) · · · (x+ n− 1) if 1 ≤ r ≤ n;

0 otherwise.

Definition 2.17. The r-restricted Stirling number of the second kind, denoted by
{
n
k

}
r
,

is the number of ways to partition the set {1, 2, . . . , n} into k nonempty disjoint subsets
with the restriction that the numbers 1, 2, . . . , r belong to distinct subsets. The case
r = 1 gives the usual Stirling numbers of the second kind.

Claim 2.18. r-restricted Stirling numbers of the second kind satisfy the same recurrence
relation as Stirling numbers of the second kind, except for the initial conditions.{

n

k

}
r

= k ·
{
n− 1

k

}
r

+

{
n− 1

k − 1

}
r

, (r < k < n),
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with the following initial conditions:{
n

k

}
r

= 0, (k < r or n < k);{
n

k

}
r

= rn−r, (r ≤ n);{
n

n

}
r

= 1, (r ≤ n).

Theorem 2.19 ([2, §6.10]). The generating function of r-restricted Stirling numbers
of the second kind is

∞∑
n=0

{
n

k

}
r

· xn =

{
xk

(1−rx)(1−(r+1)x)···(1−kx) , if 1 ≤ r ≤ k;

0, otherwise.

Restricted Stirling numbers of the first and second kind satisfy the same orthogonality
relation as the usual (unsigned) Stirling numbers, as described in the following theorem.

Theorem 2.20 ([2, §4.5]). We have

n∑
k=0

[
n

k

]
r

·
{
k

m

}
r

· (−1)k =

{
(−1)n · δm,n, if r ≤ m ≤ n;

0, otherwise.

2.4. Harmonic Numbers.

Definition 2.21. The n-th harmonic number, denoted by Hn, is the sum of the recip-
rocals of the first n positive integers:

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

Definition 2.22. The generalized n-th harmonic number of order m, denoted by Hn,m,
is

Hn,m = 1 +
1

2m
+

1

3m
+ · · ·+ 1

nm
.

3. Main Results

In this section we present the main results of this paper. Details and proofs will be
given in Sections 4–8.

Let
aij := s1tij = (12)(ij), (1 ≤ i < j ≤ n).

The set of A-transpositions

T (An) := {aij | 1 ≤ i < j ≤ n}
generates the alternating group on n letters. The length of an element v ∈ An can be
naturally defined with respect to the above generators:

`T (An)(v) = min{k ≥ 0 | v = v1 · · · vk, vi ∈ T (An)}.

Notation 3.1. Denote by a(n,m) the number of elements of length m in An.

Our first result is a Stirling-type recursion for a(n,m).
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Proposition 3.2 (Corollary 5.4).

a(n,m) = (n− 1) · a(n− 1,m− 1) + a(n− 1,m), (0 < m < n),

with initial conditions a(n, 0) = 1 for n ≥ 0, and a(n, n) = 0 for n > 0.

The following result relates the length function to the cycle number.

Proposition 3.3 (Corollary 6.4). Let v ∈ An, n ≥ 2, Then

`T (An)(v) =

{
n− cyc(v) if 1,2 are in different cycles of v;

n− cyc(v)− 1 if 1,2 in the same cycle of v.

(For n ≤ 2, An contains only the identity permutation.)
Note that the length function `T (An)(v) is odd if and only if 1, 2 are in the same cycle

in v (see Corollary 6.2).

Proposition 3.4 (Theorem 7.2). For n ≥ 2, we have∑
v∈An

x`T (An)(v) =
n∑

k=0

a(n, k) · xk

= (1 + 2x)(1 + 3x) · · · (1 + (n− 1)x)

=
n−1∏
t=2

(1 + tx).

Theorem 3.5 (Theorem 8.4). The expected value of `T (An) is

E[`T (An)] = n−Hn −
1

2
,

and its variance is

V ar[`T (An)] = Hn −Hn,2 −
1

4
.

Finally, we discuss a certain generalization of Stirling numbers and relate it to our
statistic a(n, k). The generalization discussed is Broder’s restricted Stirling numbers [2],
see Definitions 2.13 and 2.17. The connection was initially established using the On-Line
Encyclopedia of Integer Sequences [11].

Proposition 3.6 (Theorem 9.2). For 0 ≤ k ≤ n− 2, we have

a(n, k) =

[
n

n− k

]
2

4. The A Canonical Presentation

In this section we consider a canonical presentation of elements in An by the corre-
sponding s1tij generators.
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4.1. A Generating Set for An. We let

aij := s1tij = (12)(ij), (1 ≤ i < j ≤ n).

Denote by T (An) := {aij | 1 ≤ i < j ≤ n} the set of A-transpositions.

Definition 4.1. For n ≥ 3 define the following subset of permutations in An:

Rn = {(12)(in) | 1 ≤ i < n} ∪ {e}.

Note 4.2. Rn is a subset of T (An), Rn = (T (An) \ T (An−1)) ∪ {e}.

Theorem 4.3. Let v ∈ An, n ≥ 3. Then there exist unique elements vi ∈ Ri, 3 ≤ i ≤ n,
such that v = v3 · · · vn. Call it the canonical presentation of v.

Lemma 4.4. Let k ∈ N, m1, · · · ,m2k ∈ {1, · · · , n} be distinct and let

v = (m1m2) · · · (m2k−1m2k) ∈ Sn, m1 6= m2, · · · ,m2k−1 6= m2k

be a product of transpositions. Then, for every 1 ≤ i ≤ 2k, there exists a presentation
of v as a product of transpositions in which mi appears in the rightmost factor only.

Proof of Lemma 4.4. We provide a proof for i = 1. First we prove the assertion for the
case k = 2, i.e., for the case where v is a product of two cycles. If {m1,m2}∩{m3,m4} =
∅, then v = (m1m2)(m3m4) = (m3m4)(m1m2), as required. Else, if m2 = m3, then
v = (m1m2)(m2m4) = (m1m2m4) = (m2m4m1) = (m2m4)(m4m1), as required. The
case m2 = m4 is similar. Else, if m1 = m3, then v = (m1m2)(m1m4) = (m2m1m4) =
(m4m2m1) = (m4m2)(m2m1), as required. The case m1 = m4 is similar. If m1 = m3

and m2 = m4, then v is the identity, thus its cycles are disjoint and commute with each
other. All possible cases were checked and thus we are finished.

Now we turn to the general case, where v is a product of k cycles. By induction
the lemma applies also for this case as we can perform the same steps described in the
simple case repeatedly until the desired form of v is achieved. �

Proof of Theorem 4.3. We proceed by induction on n. For n = 3, we have

A3 = {(12)(13), (12)(23), e} = R3,

and thus the claim holds. Now assume that each w ∈ An−1, n ≥ 4, has a unique
canonical presentation w = w3 · · ·wn−1, wi ∈ Ri. We will show that, if v ∈ An, then v
has a unique canonical presentation as well. This follows actually from Lemma 4.4. We
assume that v ∈ An \An−1, otherwise the proof follows immediately from the induction
hypothesis. First we apply Lemma 4.4 to v to get n in the rightmost factor only. We
have v = g1 · · · gk = g1 · · · gk−1(12)(12)gk with n in gk only. Now, since g1 · · · gk−1(12) ∈
An−1, according to the induction hypothesis it has a unique canonical presentation, say
w1 · · ·wt. Thus we have v = w1 · · ·wt(12)gk and this is unique canonical presentation
for v, because (12)gk is unique. �

By Theorem 4.3, we obtain the following corollary.

Corollary 4.5. The set of A-transpositions, T (An) := {aij | 1 ≤ i < j ≤ n}, generates
the alternating group on n letters.

Definition 4.6. For v ∈ An with the canonical presentation v = v3 · · · vn, let

ˆ̀(v) = #{i | vi 6= e}.
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Theorem 4.7. For all v ∈ An,

ˆ̀(v) = `T (An)(v).

In other words the length of the canonical presentation coincides with the natural
length with respect to the generating set T (An).

Proof of Theorem 4.7. It suffices to show that, if ˆ̀(v) = r, then v can not be presented
as a product of less than r generators. For n = 3 it was shown that A3 = R3, thus
all the elements in A3 are of length 1, except for the identity e whose length is 0. For
n > 3 denote the length of the canonical presentation of v by ˆ̀(v) = r. Denote the
shortest presentation of v by v2 = b1 · · · bk, bi ∈ T (An). Then `T (An)(v) = k. Now we
can apply the corollary of Lemma 4.4 described in the proof of Theorem 4.3 to turn v2
into a canonical presentation of v, say v′2, with `T (An)(v

′
2) = k. Since v1 and v′2 are two

canonical presentations of the same permutation, according to Theorem 4.2 they are
actually the same presentation, i.e., r = k. �

In the rest of this paper, we explore the natural length function with respect to T (An).
For this purpose, we use the equivalence to the length of the canonical expression proved
above, as needed.

5. Counting Permutations in An

In this section we study the number of permutations in An of a given length with
respect to T (An). A Stirling-type recurrence relation for this statistic is described.

Definition 5.1. Let
A(n,m) = {v ∈ An | `T (An)(v) = m}

and
a(n,m) = |A(n,m)|.

Proposition 5.2. For n ≥ 3,

a(n, 1) = a(n− 1, 1) + n− 1.

Proof of Proposition 5.2. By Definition 4.1, Rn \ {e} is the subset of generators of An

that do not belong to An−1; namely Rn \ {e} = (T (An) \ T (An−1)) = {(12)(nj) | 1 ≤
j < n}. These are the generators that involve the new letter n. Thus |Rn| = n.

For every n, A(n, 1) = T (An), and since T (An) = T (An−1) ∪ (Rn \ {e}) (this is a
disjoint union), we conclude a(n, 1) = a(n− 1, 1) + n− 1. �

Theorem 5.3. We have

A(n,m) = A(n− 1,m− 1) ·Rn ∪ A(n− 1,m),

where the union on the right-hand side is a disjoint union.

Proof of Proposition 5.3. We prove the claim by two-sided set inclusion. First we prove
that A(n,m) ⊇ A(n − 1,m − 1) · Rn ∪ A(n − 1,m). Note that the right-hand side
of the equation is a disjoint union, according to the properties of the An canonical
presentation.

On the other hand, we also have A(n− 1,m) ⊆ A(n,m) because a permutation v of
length m in An−1 is also of length m in An. The new generators in An can not shorten
the length of v because they involve the new letter n which is a fixed point in v.
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Let v ∈ A(n−1,m−1), and consider its canonical presentation. Multiply v by w ∈ Rn

from the right side to have the canonical presentation of a permutation v · w ∈ An of
length m− 1 + 1 = m, i.e., v · w ∈ A(n,m).

We showed that each part of the union on the right-hand side of the equation is
contained in the left-hand side, therefore the union itself is also contained in the left-
hand side. This proves the first inclusion. Now we show that A(n,m) ⊆ A(n− 1,m−
1) ·Rn ∪ A(n− 1,m). Let v ∈ A(n,m).

(1) If n is a fixed point in v, then v ∈ A(n− 1,m) with the same canonical presen-
tation.

(2) Otherwise, n is not a fixed point, and therefore the canonical presentation of v
reads as follows:

v = r1 · · · rk−1︸ ︷︷ ︸
∈ A(n− 1,m− 1)

· rn︸︷︷︸
∈ (Rn \ {e})

, ri ∈ Ri, 1 ≤ i ≤ n.

We have rn ∈ Rn \ {e} because n is not a fixed point and must appear in the
presentation. The above canonical presentation of v establishes the required
inclusion.

�

From Proposition 5.2 and Theorem 5.3 we can conclude the following relation.

Corollary 5.4. For 1 ≤ m ≤ n− 2, we have

a(n,m) = a(n− 1,m− 1) · (n− 1) + a(n− 1,m).

6. Relation between Length and Cycle Number

In this section we show that the length `T (An)(·) and the number of cycles cyc(·) are
strongly related statistics on An.

Observation 6.1. For n ≥ 3, and v ∈ A(n, 1), cyc(v) = n− 2.

In other words, the number of cycles in a generator of An is n− 2.

Proof of Observation 6.1. Every generator v ∈ An is of the form (12)(in), where 1 ≤
i < n. If i = 1, or i = 2, then v has one cycle of length 3 and n− 3 cycles of length 1
(fixed points). This sums to n − 2 cycles. Otherwise i > 2, and then v has two cycles
of length 2 and n− 4 more cycles of length 1. This also sums to n− 2 cycles in v. �

Corollary 6.2. For every n ≥ 2 and v ∈ An, the letters 1, 2 are in the same cycle in
v if and only if `T (An)(v) is odd.

Proof of Corollary 6.2. If v ∈ An is of length one, 1, 2 share the same cycle since the
structure of a generator is (12)(ij). In length two, 1, 2 appear in different cycles because
of the multiplication process described in the proof of Theorem 5.3. For length three,
1, 2 are in the same cycle according to the same process, and so on and so forth. For odd
length, the letters 1, 2 are in the same cycle, and for even length they are in different
cycles. This proves both implications of the equivalence. �
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Theorem 6.3. For n ≥ 3 and v ∈ An, we have

cyc(v) =

{
n− `T (An)(v) if `T (An)(v) is even,

n− `T (An)(v)− 1 if `T (An)(v) is odd.

Proof of Theorem 6.3. We proceed by induction on n. For n = 3, we have

A3 = {(12)(13) = (213), (12)(23) = (123), e = (1)(2)(3)},
and the claim follows. Assume that, for each v ∈ An, we have

cyc(v) =

{
n− `T (An)(v) if `T (An)(v) is even,

n− `T (An)(v)− 1 if `T (An)(v) is odd.

Now, w ∈ An+1 can be obtained in two ways by Theorem 5.3. First, by multiplying
v ∈ An by r ∈ Rn+1, and secondly by adding the letter n + 1 as fixed point to some
v ∈ An. Both cases will be analyzed.

(1) In this case w = vr for v ∈ An, r ∈ Rn+1. If `T (An)(v) is even, then, by
Corollary 6.2, the letters 1, 2 are in different cycles in v, and therefore they will
be in the same cycle in w, thus cyc(w) = cyc(v)−1 (see Theorem 5.3 for details).
The length of w is `T (An+1)(w) = `T (An)(v) + 1. By the induction hypothesis,

cyc(w) = cyc(v)− 1 = n− `T (An)(v)− 1 = n− `T (An+1)(w) = (n+ 1)− `T (An+1)(w)− 1,

as required. If `T (An)(v) is odd, then, by Corollary 6.2 and Theorem 5.3,
cyc(w) = cyc(v) + 1 and `T (An+1)(w) = `T (An)(v) + 1. By the induction hy-
pothesis,

cyc(w) = cyc(v)+1 = n−`T (An)(v)−1+1 = n−`T (An+1)(w)+1 = (n+1)−`T (An+1)(w),

as required.
(2) In this case w = v for some v ∈ An, where the letter n+ 1 is a fixed point in w.

Here, cyc(w) = cyc(v) + 1 and `T (An+1)(w) = `T (An)(v). If `T (An)(v) is even,

cyc(w) = cyc(v) + 1 = n− `T (An)(v) + 1 = n− `T (An+1)(w) + 1 = (n+ 1)− `T (An+1)(w),

as required, and, if `T (An)(v) is odd,

cyc(w) = cyc(v)+1 = n−`T (An)(v)−1+1 = n−`T (An+1)(w) = (n+1)−`T (An+1)(w)−1,

as required.

In both cases the relation between cycle number and length holds, therefore the theorem
is proved. �

Corollary 6.2 and Theorem 6.3 imply the following relation.

Corollary 6.4. Let v ∈ An.

(6.1) `T (An)(v) =

{
n− cyc(v) if 1, 2 are in different cycles of v,

n− cyc(v)− 1 if 1, 2 are in the same cycle of v.

Equation (6.1) provides a simple way to find the length of a permutation v given as
a product of disjoint cycles.

Theorem 6.3 implies that all the permutations of the same length in An have the
same number of cycles.
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Definition 6.5.

m(n, k) = number of cycles in a permutation v ∈ An of length `T (An)(v) = k.

7. Generating Function of Length in An

An explicit formula for the generating function of the length in An, with respect to
the generating set T (An), is given in this section.

According to Theorem 6.3, the number m(n, k), of cycles in a permutation v ∈ An

of length k, can be calculated by the following formula:

(7.1) m(n, k) =

{
n− k, if k is even,

n− k − 1, if k is odd.

A well known result in Sn is

(7.2) m(n, k) = n− k

where the length k is taken with respect to the generating set T = {(ij) | 1 ≤ i < j ≤
n}, that is, all the transpositions in Sn. Since the number of cycles in a permutation
is independent of the generating set, from Equations (7.1) and (7.2) we can conclude
that, for v ∈ An, we have

(7.3) `T (v) =

{
`T (An)(v), if `T (An)(v) is even,

`T (An)(v) + 1, if `T (An)(v) is odd,

where `T (v) is the length with respect to T . Note that, in each of the cases, `T (v) is
even, which complies with the fact that we deal with even permutations in Sn. From
Equation (7.3) we can conclude that the number of permutations of even length k in
Sn equals the sum of the number of permutations of lengths k and k − 1 in An. Since
the number of permutations of length k in Sn with respect to T is the unsigned Stirling
number of the first kind c(n, n− k), we can deduce the following equation for even k:

(7.4) c(n, n− k) = a(n, k) + a(n, k − 1).

A further consequence is the following.

Claim 7.1. Equation (7.4) holds also for odd k ∈ N.

Proof of Claim 7.1. Let k+1 be even. Using the recursive relation of Stirling numbers,
we can expand the left-hand of Equation (7.4) to obtain

c(n, n− (k + 1)) = c(n− 1, n− (k + 1)− 1) + c(n− 1, n− (k + 1)) · (n− 1)

= c(n− 1, n− 1− (k + 1)) + c(n− 1, n− 1− ((k + 1)− 1)) · (n− 1)

= c(n− 1, n− k − 2) + c(n− 1, n− 1− k) · (n− 1).

Rearrangement of terms gives the following result:

(n− 1) · c(n− 1, n− 1− k) = c(n, n− k − 1)− c(n− 1, n− k − 2).
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The expressions at the right-hand side represent even length, so we can use Equa-
tion (7.4) and Conclusion 5.4 to obtain the desired result:

(n− 1)·c(n− 1, n− 1− (k − 1)) = a(n, k) + a(n, k − 1)− a(n− 1, k)− a(n− 1, k − 1)

= a(n− 1, k − 1) · (n− 1) + a(n− 1, k) + a(n− 1, k − 2) · (n− 1)

+ a(n− 1, k − 1)− a(n− 1, k)− a(n− 1, k − 1)

= a(n− 1, k − 1) · (n− 1) + a(n− 1, k − 2) · (n− 1).

Dividing both sides by (n− 1), we deduce, for odd k, the equation

c(n− 1, n− 1− k) = a(n− 1, k) + a(n− 1, k − 1).

�

The following generating function for unsigned Stirling numbers of the first kind is
well known [4, pp. 213]:

(7.5)
n∑

k=1

c(n, k) · xn−k = (1 + x)(1 + 2x) · · · (1 + (n− 1)x).

By Equation (7.4), we have
n∑

k=0

c(n, n− k) · xk =
n∑

k=0

a(n, k) · xk +
n∑

k=0

a(n, k − 1) · xk.

Using Equation (7.5) for the left-hand side, we obtain

(1 + x)(1 + 2x) · · · (1 + (n− 1)x)

=
n∑

k=0

a(n, k) · xk + x ·
n∑

k=0

a(n, k − 1) · xk−1 = (1 + x) ·
n∑

k=0

a(n, k) · xk.

Dividing both sides by (x + 1), we get the generating function of length in An with
respect to the generating set T (An).

Theorem 7.2. We have
n∑

k=0

a(n, k) · xk = (1 + 2x)(1 + 3x) · · · (1 + (n− 1)x)(7.6)

=
n−1∏
t=2

(1 + tx).

8. Expectation and Variance

In this section, the expectation and variance of the length function in An are studied.

Definition 8.1. Let A be a finite set, and s : A→ R a real function. The expectation
of s is defined by

E[s] :=
1

|A|
∑
a∈A

s(a),

and the variance of s is defined by

V ar[s] := E[s2]− E2[s].
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Given a generating function of s, we can use it to calculate these statistics. The
following formulas are well-known.

Proposition 8.2. Let

Fs(x) :=
∑
a∈A

xs(a)

be the generating function of s. Then

E[s] =
1

|A|
F ′s(x)

∣∣∣∣∣
x=1

,

and

V ar[s] =
1

|A|

[
F ′′s (x) + F ′s(x)− 1

|A|
(F ′s(x))2

]∣∣∣∣∣
x=1

.

Definition 8.3. We recall the definitions of harmonic numbers (see Definitions 2.21
and 2.22),

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
and generalized harmonic numbers,

Hn,m = 1 +
1

2m
+

1

3m
+ · · ·+ 1

nm

Theorem 8.4. The expected value of `T (An) is

E[`T (An)] = n−Hn −
1

2
,

and its variance is

V ar[`T (An)] = Hn −Hn,2 −
1

4
.

Proof of Theorem 8.4. Compute the derivative of the generating function with respect
to length (see Theorem 7.2) as a product of functions:( n−1∏

t=2

(1 + tx)

)′
=

( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx
.

Thus, by Proposition 8.2,

E[`T (An)] =
1

|An|

( n−1∏
t=2

(1+tx)

) n−1∑
t=2

t

1 + tx

∣∣∣∣∣
x=1

=
2

n!
·n!

2

(
n−2−

n−1∑
t=2

1

1 + t

)
= n−Hn−

1

2
.

For the variance, we have( n−1∏
t=2

(1 + tx)

)′′
=

[( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx

]′
=

( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx

n−1∑
t=2

t

1 + tx
+

( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

−t2

(1 + tx)2
,
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and thus

V ar[`T (An)] =
1

|An|

[( n−1∏
t=2

(1 + tx)

)′′
+

( n−1∏
t=2

(1 + tx)

)′
− 1

|An|

(( n−1∏
t=2

(1 + tx)

)′)2]
x=1

=
2

n!

[( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx

n−1∑
t=2

t

1 + tx
+

( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

−t2

(1 + tx)2

+

( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx
− 2

n!

(( n−1∏
t=2

(1 + tx)

) n−1∑
t=2

t

1 + tx

)2]
x=1

=
2

n!

[
n!

2

(
n−Hn −

1

2

)2

+
n!

2

(
2Hn +

1

4
− n−Hn,2

)
+
n!

2

(
n−Hn −

1

2

)
− 2

n!

(
n!

2
(n−Hn −

1

2

)2]
= Hn −Hn,2 −

1

4
.

�

9. Connection with Restricted Stirling Numbers

This section discusses the relation between our statistic a(n,m) and 2-restricted Stir-
ling numbers of the first kind (see Broder [2, §1]). This relation was initially observed
using the On-Line Encyclopedia of Integer Sequences [11].

Recall Definition 2.13 of the r-restricted Stirling numbers of the first kind,
[
n
k

]
r
. We

shall use it with r = 2. The number
[
n
k

]
1

= c(n, k) is the usual (unrestricted) Stirling
number of the first kind.

Claim 9.1 (See Broder [2, § 3, Thm. 3] for a generalized version). We have

c(n, k) =

[
n

k

]
2

+

[
n

k + 1

]
2

.

Theorem 9.2. The number of permutations in An of length `T (An)(·) = k is equal to a
corresponding 2-restricted Stirling number. Namely,

a(n, k) =

[
n

n− k

]
2

, (0 ≤ k ≤ n− 2).

We give two proofs to Theorem 9.2. The first proof is algebraic, and the second
consists of a direct bijection between two sets.

Proof of Theorem 9.2. From Claims 9.1 and 7.1 we can deduce the following equation:

a(n, k) + a(n, k − 1) =

[
n

n− k

]
2

+

[
n

n− k + 1

]
2

, (0 ≤ k ≤ n− 1).

Now the theorem can be proved by induction on k. By assumption, n ≥ 2. For k = 0,
we have a(n, 0) = 1 and

[
n
n

]
2

= 1. The claim a(n, k) =
[

n
n−k

]
2

now follows by induction
on k. �
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Definition 9.3. Let

P (n, k) = {v ∈ Sn | cyc(v) = k and 1, 2 are in different cycles in v}.

We now present an explicit bijection between the sets A(n, k) and P (n, n− k).

A Bijective Proof of Theorem 9.2. Define a map f : A(n, k)→ P (n, n− k) by

f(v) =

{
v if `T (An)(v) is even,

(1, 2)v if `T (An)(v) is odd.

We will show that f is one-to-one and onto P (n, n− k).

(1) Consider v1, v2 ∈ A(n, k) with f(v1) = f(v2). If v1, v2 are both of even length,
or both of odd length, then, by the definition of f , v1 = v2. If v1 is of even
length and v2 is of odd length or vice versa, then, by the definition of f and
the fact that f(v1) = f(v2), v1 = (1, 2)v2. This contradicts the assumption that
v1, v2 ∈ A(n, k), and is therefore impossible. Since only the first case is feasible,
v1 = v2 and f is one-to-one.

(2) Consider w ∈ P (n, n − k). The length of w in Sn, `T (w), is k. If k is even,
then w ∈ An. By Corollaries 6.2 and 6.4, we have `T (An)(w) = k, therefore
w ∈ A(n, k) and f(w) = w. If k is odd, then (1, 2)w ∈ An. By Corollaries 6.2 and
6.4, we have `T (An)((1, 2)w) = k, therefore (1, 2)w ∈ A(n, k) and f((1, 2)w) = w.
This proves that f is onto P (n, n− k).

�
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