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PP

Plane Partition

two-dimensional array
T = (Tij)1<i,j

m;,; € N with finite sum
7w =i

Tij = Tiy1,; and

Tij = Tij+1
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PP

Plane Partition (3D Ferrers diagram)

two-dimensional array
T = (Tij)1<i,j

m;,; € N with finite sum
7w =D

Tij = Tit1,; and

Tij = T 41
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SPP

Symmetric Plane Partition

e two-dimensional array
™= (Tij)1<ij

e 7;; € N with finite sum
7w =i

e m;j > mit1,; and
Tij 2 Tij+1

® Mij =i
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CSPP

Cyclically Symmetric Plane Partition

e two-dimensional array
™= (Tij)1<ij

e 7;; € N with finite sum
7w =i

e m;j > mit1,; and
Tij 2 Tij+1

e cyclically symmetric
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TSPP

Totally Symmetric Plane Partition

two-dimensional array
T = (Tij)i<ij

m;,; € N with finite sum
| =X i

> Tit1,; and

>

7Ti7j
Tij 2 Tij+1
Tij = T

cyclically symmetric

3D Ferrers diagram is invariant
under the action of Ss.
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Theorem: There are

Il =i

TSPP Count

I

1<i<j<k<n

itj+tk-1
itj+k—2

TSPPs in [0,n)%.
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TSPP Count

k1
Theorem: There are H % TSPPs in [0,7n])3.
1<i<j<hen TR

Proof: See

e John Stembridge, The enumeration of totally symmetric plane
partitions, Advances in Mathematics 111 (1995), 227-243.

e George E. Andrews, Peter Paule, and Carsten Schneider,
Plane Partitions VI. Stembridge’s TSPP theorem,
Advances in Applied Mathematics 34 (2005), 709-739.

e Christoph Koutschan, Eliminating Human Insight: An
Algorithmic Proof of Stembridge’'s TSPP Theorem,
Contemporary Mathematics 517 (2010), 219-230.
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Example: TSPP and orbits
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Let T'(n) denote set of TSPPs with largest part at most 7.

78

£



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&.

e



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&.

e



Let T'(n) denote set of TSPPs with largest part at most 7.

78

£



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&].

e



Let T'(n) denote set of TSPPs with largest part at most 7.

78

£



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&].

e



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&].

e



Let T'(n) denote set of TSPPs with largest part at most 7.

78

£



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&].

e



Let T'(n) denote set of TSPPs with largest part at most 7.

.M‘&].

e



Let T'(n) denote set of TSPPs with largest part at most 7.
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Let T'(n) denote set of TSPPs with largest part at most 7.

¢ + 4+ ¢ o+ &+ 4
_ q5
=l+q+¢F+3+¢ =
l—q
_ 1 — gitith1
q-TSPP conjecture: Z g™/ 5l = H e
=€T(n) 1<i<j<k<n
. i +j+k—1
Stembridge's theorem: T (n)| = H L
=+ 1+ +k—2
1<i<j<k<n

F7aY
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The ¢-TSPP conjecture

Conjectured independently by
George Andrews and David Robbins (ca. 1983)

Last surviving conjecture of the collection by Richard Stanley:
A baker’s dozen of conjectures concerning plane partitions (1986)
(alternating sign matrix conjecture, TSPP conjecture, etc.)

Conjecture 7. (see [11, Case 4]). The number of totally symmetric
plane partitions with largest part < n is equal to

T - 0 i+j+k-1 .
n  Igi<j<k<n 1+j+k-2
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The g-TSPP conjecture

Conjectured independently by
George Andrews and David Robbins (ca. 1983)

Last surviving conjecture of the collection by Richard Stanley:
A baker’s dozen of conjectures concerning plane partitions (1986)
(alternating sign matrix conjecture, TSPP conjecture, etc.)

Note. All quantities arising in connection with Conjecture 7 have
natural g-analogues. The g-analogue of Tn is
1.gi*itk-1
I .
Tal®) = 1cicjcken 1-7*7%K2

The q-analogue of the number of totally symmetric nlane nartitions with
largest part < n is the pelynomial Né(B;qJ defined in [11], where

B = B(n,n,n) and G = 53 =

All these problems had been solved, except one: ¢-TSPP.
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Determinantal formulation

Also in Stanley's paper, we find:

Note. It is mot hard to show that the number of totally symmetTic
plane partitions with largest part < n is also equal to
L
e} the sum of the minors of all orders (including the
void.minor equal to 1) of the matrix whose (i,j)-entry is [j.L} for

01, j=n-1.
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Okada’'s determinant

Soichi Okada: On the generating functions for certain classes of
plane partitions, Journal of Combinatorial Theory, Series A (1989).

Rewrite “the sum of all minors” as a single determinant!
The ¢-TSPP conjecture is true if

1 — gitith=1 2
det (aijh<ijen =[] <1_q+j+k—z) =: bu.
1<i<j<k<n

where

o Tivi—2 i+j—1 ,
aij=q"" 1([ iil } +Q[ ]Z ])‘i‘(l—f—qz)dz‘,j_(si,j—&-l.
q q
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Zeilberger's holonomic ansatz

Doron Zeilberger: The HOLONOMIC ANSATZ Il. Automatic
DISCOVERY(!) and PROOF(!!) of Holonomic Determinant
Evaluations, Annals of Combinatorics (2007).

Problem: Given a; ; and b,, # 0. Show det (a; j)1<i j<n = bn.

Method: “Pull out of the hat” a function ¢, ; and prove

Cnn =1 (n>1),

n

ch,jai,j =0 (1 << n),
j=1

n

b

> cujng = = (n=1).
=1 n—1

Then det (a@j)lgi,jgn = b,, holds.
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

bn = det (aij)i<ij<n = Z an,j (

n+j Mn
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

bn det (aij)1<ij<n
= =hi= =Y a
bn—l bn—l Z o

+]M
n—l

=iCn,j
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

by det (aij)i<ij<n — Za UMy
bp—1 bn—1 " bt
=:iCn,j
(=)™ Mo
Cnn = —
bn—1
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

bp  det(aij)i<ij<n Z " My
- - an7]
bn—l bn—l n—l
=:Cn,j
Cnmn =1
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

by det(aij)i<ij<n _ " M,
= E :an,J
bn—l bn—l 'fl—
=:Cn,j
Cnm =1

Now copy the i-th row (1 <4 < n) into the n-th row:

O_Za” 1) M,
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

by det(aij)i<ij<n _ " M,
= E :an,J
bn—l bn—l 'fl—
=:Cn,j
Cnm =1

Now copy the i-th row (1 <4 < n) into the n-th row:

+JM
O—Zam o

=Cn,j

.M.M.
%



Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

n
bn,  det(a;j)1<ij<n =S
bn—l bn—l T
7=1

Cnm =1

Now copy the i-th row (1 <4 < n) into the n-th row:

n

0= aijen,

J=1
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Zeilberger's holonomic ansatz

Laplace expansion w.r.t. the n-th row:

n
j=1

Cnm =1

Now copy the i-th row (1 <4 < n) into the n-th row:

n

0= aijen,

J=1
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Zeilberger's holonomic ansatz

Problem: Given ;5 and bn 75 0. Show det (ai7j)1§i7j§n = bn.

Method: “Pull out of the hat” a function ¢, ; and prove

Cpn =1 (n>1),

n
ch,jai,j =0 (1 <1< TL),
j=1

n
Z bn,

Cn,jan,j = b (n Z 1).
j=1 n—1

Then det (ai7j)1§i7jsn = b, holds.
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Advocatus Diaboli

What if det (a;;)i<ij<m = 0
for some m?77?

Then ¢, ; is not uniquely deter-
mined!

Proof is wrong!
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Advocatus Diaboli

What if det (a;;)i<ij<m = 0
for some m?77?

Then ¢, ; is not uniquely deter-
mined!

Proof is wrong!

No! Argue by induction on n. .
£



Holonomic systems

Of course, it is unlikely to get a closed-form description for ¢, ;
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Holonomic systems
Of course, it is unlikely to get a closed-form description for ¢, ;!

Instead we aim at some “suitable description”, viz. implicitly via
linear recurrences (“holonomic system”) plus initial values.
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Holonomic systems
Of course, it is unlikely to get a closed-form description for ¢, ;!

Instead we aim at some “suitable description”, viz. implicitly via
linear recurrences (“holonomic system”) plus initial values.

Example: The binomial coefficient f, , = (Z) can be described by
(77, —k + 1)fn+1,k = (n + 1)fn,k
(k + l)fn,kJrl = (n - k)fn,k

foo =1
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Holonomic systems
Of course, it is unlikely to get a closed-form description for ¢, ;!
Instead we aim at some “suitable description”, viz. implicitly via

linear recurrences (“holonomic system”) plus initial values.

n

Example: The binomial coefficient f, , = (k) can be described by

(n—k+1forre = +1)fug
(k+ Dok = (n—Fk)fuk
foo = 1
Analogously, we get for the g-binomial coefficient f, ; = [Z]q:
(an - qk)fnﬂ,k = (qk+n+1 - qk)fn,k
(@ =) farrr = (@ =)V
Joo =1
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Holonomic systems
Of course, it is unlikely to get a closed-form description for ¢, ;!
Instead we aim at some “suitable description”, viz. implicitly via

linear recurrences (“holonomic system”) plus initial values.

Example: The binomial coefficient f, , = (Z) can be described by

(77, —k+ l)fnJrl,k = (n + 1)fn,k
(k + l)fn,kJrl = (n - k)fn,k
foo = 1

All linear combinations of shifts are again valid recurrences:
(n—=k)forikr1 — (n+ 1) fare1 =0
(k+Dfopiprr —(n—k+1Dfrp16=0
(n+Dforikrr—n—k+1)forip—n+1)far1 =0
They form a left ideal in some noncommutative operator algebra.
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Holonomic systems
Of course, it is unlikely to get a closed-form description for ¢, ;!

Instead we aim at some “suitable description”, viz. implicitly via
linear recurrences (“holonomic system”) plus initial values.

But there is no reason why ¢, ; should admit such a recursive
description.
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Guessing

Manuel Kauers guessed some recurrences for ¢, ;.
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Guessing
Manuel Kauers guessed some recurrences for ¢, ;.

Their Grobner basis has the form

Ocn,j+4 = Ocnj+ Ocnjr1+ Ocnjre + Ocnjts
+ O cnt2,j + Ocnta,j41
Ocnt1543 = Ocnj + Ocnj1 + Ocnjte + Ocn,j+3

+ O cnt1,j + Ocnt1j+1 + Ocnt,j+2
+ O cng2, + Ocng241 + Ocnga,j

Ocnt2jrz = Ocnyj+ Ocnjr1 + Ocnjtr2 + Ocnj+3
+ O ent2,5 + Ocnt2,+1
Ocnyzjt1 = Ocnj+Ocnjr1 + Ocnjra + Ocn,jt3

+ O ent1j + Ocnttjr1 + Ocnprjre
+ O cnyaj + Ocnyaj+1 + Ocnys,j

OcCnta,j = Ocnj+ Ocnjr1 + Ocnjra + Ocnjts
+ O cenyaj + Ocnya i1

where each () is a polynomial in Q[q, ¢?, ¢"] of total degree < 100. .g:}.



Guessing
Manuel Kauers guessed some recurrences for ¢, ;.

The staircase of the Grobner basis:
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Guessing
Manuel Kauers guessed some recurrences for ¢, ;.

The total size is 244MB (several 1000 pages of paper)!

Great! We found the certificate for the determinant evaluation!
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Advocatus Diaboli

The guessed recurrences can be
artifacts, that do not describe
the true function ¢, ;!!!
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Artifacts?

The guessed recurrences are very unlikely to be artifacts for several
reasons:

e solutions of a dense overdetermined linear systems
e many polynomial coefficients factor nicely

e recurrences produce correct values for ¢, ; that were not used
for guessing

.M.M.
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Advocatus Diaboli
Convincing, but not a proof!
And even if the recursive de-

scription of ¢, ; is correct, this
wouldn't prove anything yet!!!

Show:

Can =1
n
E :Cn,jaw 0
Jj=1
n

by,

E :Cn,jaw
- bn—l
j=1

GM.E.
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The first identity

Prove the identities using the recursive description of ¢, ;.

How to prove ¢, , =1 for all n > 17
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The first identity

Prove the identities using the recursive description of ¢, ;.
How to prove ¢, , =1 for all n > 17

e We find an element in the annihilating ideal of ¢, ; of the form

PuCntov,j+v = Po—1Cntv—1,j4+v—1 T+ P1Cn+1,j+1 + P0Cn,j

with v € N and p; € Q[q, ¢/, ¢™].
e Substituting j — n yields a recurrence for the diagonal
sequence ¢y, p,.
e Show that the corresponding operator factors into P, P> where
P, corresponds to ¢, 41041 = Cnyn-
e Show thatci 1 = =cpp = 1.
— works with v = 7.

.M.M.
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Advocatus Diaboli

The leading coefficient p7 could
have singularities!!!
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Advocatus Diaboli

The leading coefficient p7 could
have singularities!!!

Forn > 7 we have p7(q,¢") # 0.

GM.E.
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The third identity

Recall: .

> engng ="

— TL,] TL,] bnfl

7=1
with

L R 1+7—1 -
aij=qt1 <[ -/ ] —i—q[ J ] > +(144")8;ij— 0 j+1-
1—1 7
q q
gives
- b
n
(1+q") = o1+ Y ;= ;
=1 n—1

with

. n+7j—2 n+j—1
chi=q"7" ([ J ] +q[ ’ ])cn,j
n—1 q n q



The third identity

bn

?
bnfl

n
How to prove (1+4¢") —cppn—1+ Zcéz,j =
j=1

e Compute an annihilating ideal for c;” via closure properties.
I

e Find a relation in this ideal of the form

/ / /
pvcn_,_l,’j + -+ plcm_l’j +p06n7j = tn7]’+1 — th’

where the p,, ..., po are rational functions in Q(q,¢") and ¢, ;

is a Q(q,¢’, ¢")-linear combination of certain shifts of c;z,j'

o Creative telescoping yields a recurrence for the sum.
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n
How to prove (1+4¢") —cppn—1+ Zcéz,j =
j=1

The third identity

by, ?
bnfl
Compute an annihilating ideal for c;w via closure properties.

Find a relation in this ideal of the form

/ / A .
PoCrgpj T T P1C 1 +P0Ch; = tnjr1 — tn,

where the p,, ..., po are rational functions in Q(q,¢") and ¢, ;
is a Q(q,q’, ¢")-linear combination of certain shifts of ¢/

n)j ’

Creative telescoping yields a recurrence for the sum.
Closure properties yield a recurrence for the left-hand side.
Recurrence for right-hand side is a right factor.

Compare finitely many initial values (again v = 7).

.M.M.
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A computational challenge

How to find the certificate
Pl @, 4" )+ F00(0, 4" )y = o1 — by

where tn,j = rl(q7 q”7 qj)C;z+3,j+2 —+ -+ 7’10((]7 qn7 q])cgz,]?
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A computational challenge

How to find the certificate

Pl @, 4" )+ F00(0, 4" )y = o1 — by

where tn,] = 7’1((1, q”7 qj)C;z+3,j+2 —+ -+ 7’10((]7 qn, q])c;z,]?

Zeilberger’s slow algorithm: eliminate (e.g. with Grobner
bases) the variable ¢7.

Input recurrences have j-degrees between 24 and 30 (in the
g = 1 case). After 48h, this was reduced to 23.

Estimate: 1677721600 days
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A computational challenge

How to find the certificate

Pl @, 4" )+ F00(0, 4" )y = o1 — by

where tn,] = 7’1((1, q”7 qj)C;z+3,j+2 —+ -+ 7’10((]7 qn, q])c;z,]?

Takayama'’s algorithm: a faster variant which is also based
on elimination.
Estimate: 52428800 days
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A computational challenge

How to find the certificate

Pl @, 4" )+ F00(0, 4" )y = o1 — by

where tn,] = 7’1((1, q”7 qj)C;z+3,j+2 —+ -+ 7’10((]7 qn, q])c;z,]?

Chyzak's algorithm:  ansatz with unknown p;(q,q")
and 7,(q,¢",¢’). Leads to a coupled first-order parametrized
linear system of ¢-difference equations.

Estimate: co?
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A computational challenge

How to find the certificate

Pl @, 4" )+ F00(0, 4" )y = o1 — by

where ty; = 11(¢,¢", ¢ )3 42+ +710(0, ", )y 7

CK'’s polynomial ansatz: refine

L
e(@.q" ) = reala.d") (@)

=0

Leads to a linear system over Q(q, ¢").
We used this ansatz for proving TSPP (took about 40 days).
Estimate: 4000 days
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A computational challenge

How to find the certificate

Pl @, 4" )+ F00(0, 4" )y = o1 — by

where tn,] = 7’1((1, q”7 qj)C;z+3,j+2 —+ -+ 7’10((]7 qn, q])c;z,]?

CK’s rational ansatz: ansatz with

A L IAYPYAY,
(0, " ¢) = Zl:d():(kq,l (qqn7 qu)>((1 )

where the denominators d; can be “guessed” by looking at
the leading coefficients of the Grobner basis.
Leads to a linear system over Q(q, ¢") with 377 unknowns.
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A computational challenge

Even generating this linear system (reducing the ansatz with the
Grobner basis) would already consume too much memory!

.M.M.
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A computational challenge

Even generating this linear system (reducing the ansatz with the
Grobner basis) would already consume too much memory!

We use homomorphic images (modular computations):
e do all computations modulo some prime
e plug in concrete integral values for ¢ and ¢"
e requires special modular GB reduction

e fixing ¢ and varying ¢" (and vice versa) allows to estimate the
necessary interpolation points:
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A computational challenge

Even generating this linear system (reducing the ansatz with the
Grobner basis) would already consume too much memory!

We use homomorphic images (modular computations):
e do all computations modulo some prime
e plug in concrete integral values for ¢ and ¢"
e requires special modular GB reduction

e fixing ¢ and varying ¢" (and vice versa) allows to estimate the
necessary interpolation points:

e 1167 interpolation points for ¢
e 363 interpolation points for ¢"

e each case takes about a minute (GB reduction, linear solving,
for sufficiently many primes)

e estimated computation time: 1167 - 363 - 60s = 294 days! N
£



Further improvements

efficient Grobner basis reduction procedure

combination of arithmetic in Q and in Z,

rewrite polynomials that have to be evaluated in compact form
build matrices efficiently

discard redundant equations

compute parallel

normalize w.r.t. a certain component in order to minimize the
number of interpolation points

guess small factors in the components of the solution

.M.M.
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Guess small factors

Compute, for example,
e with ¢ =19
e modulo the prime 2147483629

Assume we obtain as solution (after factoring):
(¢" +19)(q" + 2147483628)(¢*" + 381q¢™ + 2147483610) ...
Presumably the true solution (for symbolic ¢ and over Q) is

(" + )" =)@+ (@ +q+1)q" —q)...

Many such small factors can be guessed from modular results!

All these optilnizations reduced the actual computation to 35 days.
78
A



Advocatus Diaboli

The polynomial degrees of the
solution are not known: not
enough interpolation points???

The size of the integer co-
efficients is not known: not
enough primes???

The guessed small factors can
be wrong!!!
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Advocatus Diaboli

The polynomial degrees of the
solution are not known: not
enough interpolation points???

The size of the integer co-
efficients is not known: not
enough primes???

The guessed small factors can
be wrong!!!

The final result was reduced
once again with the Grobner
basis  (non-modular)  and
yielded 0.
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Result
The certificate for the third identity has a size of 7 Gigabytes.
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Result
The certificate for the third identity has a size of 7 Gigabytes.

Its principal part confirms the conjectured evaluation

1 — gitith=1 2
bn = H (1 _qi+j+k—2) .

1<i<j<k<n

.M.M.
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The second identity

n
ch,jai,j =0 (1 < < n)
7j=1

Strategy similar as before, but one variable more. This means:
e linear system over Q(q, ¢*, ¢")
e (at least) two creative telescoping relations are necessary

.M.M.
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Advocatus Diaboli

Zeros in the denominators of
the delta part???

Singularities in the leading coef-
ficients of the principal parts???
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Advocatus Diaboli

Zeros in the denominators of
the delta part???

Singularities in the leading coef-
ficients of the principal parts???

There are only finitely many
which can be checked sepa-
rately.
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Quod erat demonstrandum.

THEOREM (KKZ). Let 7/S3 denote the set of orbits of a plane
partition 7 under the action of the symmetric group Ss.
Then the orbit-counting generating function is given by

itj+k—1

]__

€T (n) 1<i<j<k<n

where T'(n) denotes the set of totally symmetric plane partitions
with largest part at most n.

.M.M.
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