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TCSP

P

TotallyCyclically Symmetric Plane

Partition

(3D Ferrers diagram)

17 =
5 + 4 + 3 + 2 + 1 + 1 + 1

• two-dimensional array
π = (πi,j)1≤i,j

• πi,j ∈ N with finite sum
|π| =

∑
πi,j

• πi,j ≥ πi+1,j and
πi,j ≥ πi,j+1

• πi,j = πj,i

• cyclically symmetric

3D Ferrers diagram is invariant
under the action of S3.
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TSPP Count

Theorem: There are
∏

1≤i≤j≤k≤n

i + j + k − 1
i + j + k − 2

TSPPs in [0, n]3.

Example: (n = 2)

∏
1≤i≤j≤k≤2

i + j + k − 1
i + j + k − 2

=
2
1
· 3
2
· 4
3
· 5
4

= 5.



TSPP Count

Theorem: There are
∏

1≤i≤j≤k≤n

i + j + k − 1
i + j + k − 2

TSPPs in [0, n]3.

Proof: See

• John Stembridge, The enumeration of totally symmetric plane
partitions, Advances in Mathematics 111 (1995), 227–243.

• George E. Andrews, Peter Paule, and Carsten Schneider,
Plane Partitions VI. Stembridge’s TSPP theorem,
Advances in Applied Mathematics 34 (2005), 709–739.

• Christoph Koutschan, Eliminating Human Insight: An
Algorithmic Proof of Stembridge’s TSPP Theorem,
Contemporary Mathematics 517 (2010), 219–230.
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Let T (n) denote set of TSPPs with largest part at most n.

q0 q1 q2 q3 q4+ + + + =

= 1 + q + q2 + q3 + q4 =
1− q5

1− q

q-TSPP conjecture:
∑

π∈T (n)

q|π/S3| =
∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

Stembridge’s theorem: |T (n)| =
∏

1≤i≤j≤k≤n

i + j + k − 1
i + j + k − 2
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The q-TSPP conjecture

Conjectured independently by
George Andrews and David Robbins (ca. 1983)

Last surviving conjecture of the collection by Richard Stanley:
A baker’s dozen of conjectures concerning plane partitions (1986)

(alternating sign matrix conjecture, TSPP conjecture, etc.)

All these problems had been solved, except one: q-TSPP.
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Determinantal formulation

Also in Stanley’s paper, we find:



Okada’s determinant

Soichi Okada: On the generating functions for certain classes of
plane partitions, Journal of Combinatorial Theory, Series A (1989).

Rewrite “the sum of all minors” as a single determinant!

The q-TSPP conjecture is true if

det (ai,j)1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
1− qi+j+k−1

1− qi+j+k−2

)2

=: bn.

where

ai,j := qi+j−1

([
i + j − 2

i− 1

]
q

+ q

[
i + j − 1

i

]
q

)
+(1+qi)δi,j−δi,j+1.



Zeilberger’s holonomic ansatz

Doron Zeilberger: The HOLONOMIC ANSATZ II. Automatic
DISCOVERY(!) and PROOF(!!) of Holonomic Determinant
Evaluations, Annals of Combinatorics (2007).

Problem: Given ai,j and bn 6= 0. Show det (ai,j)1≤i,j≤n = bn.

Method: “Pull out of the hat” a function cn,j and prove

cn,n = 1 (n ≥ 1),
n∑

j=1

cn,jai,j = 0 (1 ≤ i < n),

n∑
j=1

cn,jan,j =
bn

bn−1
(n ≥ 1).

Then det (ai,j)1≤i,j≤n = bn holds.



Zeilberger’s holonomic ansatz

Laplace expansion w.r.t. the n-th row:

bn

bn

bn−1

= det (ai,j)1≤i,j≤n

det (ai,j)1≤i,j≤n

bn−1

(q2n; q)2n
(qn; q2)2n

=
n∑

j=1

an,j (−1)n+jMn,j

n∑
j=1

an,j
(−1)n+jMn,j

bn−1︸ ︷︷ ︸
=: cn,j

n∑
j=1

an,jcn,j

cn,n =
(−1)n+nMn,n

bn−1
1

Now copy the i-th row (1 ≤ i < n) into the n-th row:

0 =
n∑

j=1

ai,j (−1)n+jMn,j

n∑
j=1

ai,j
(−1)n+jMn,j

bn−1︸ ︷︷ ︸
= cn,j

n∑
j=1

ai,jcn,j
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Advocatus Diaboli

What if det (ai,j)1≤i,j≤m = 0
for some m???

Then cn,j is not uniquely deter-
mined!

Proof is wrong!

No! Argue by induction on n.
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Holonomic systems
Of course, it is unlikely to get a closed-form description for cn,j!

Instead we aim at some “suitable description”, viz. implicitly via
linear recurrences (“holonomic system”) plus initial values.

Example: The binomial coefficient fn,k =
(
n
k

)
can be described by

(n− k + 1)fn+1,k = (n + 1)fn,k

(k + 1)fn,k+1 = (n− k)fn,k

f0,0 = 1

Analogously, we get for the q-binomial coefficient f̄n,k =
[
n
k

]
q
:

(qn+1 − qk)f̄n+1,k = (qk+n+1 − qk)f̄n,k

(q2k+1 − qk)f̄n,k+1 = (qn − qk)f̄n,k

f̄0,0 = 1

All linear combinations of shifts are again valid recurrences:

(n− k)fn+1,k+1 − (n + 1)fn,k+1 = 0
(k + 1)fn+1,k+1 − (n− k + 1)fn+1,k = 0
(n + 1)fn+1,k+1 − (n− k + 1)fn+1,k − (n + 1)fn,k+1 = 0

They form a left ideal in some noncommutative operator algebra.

But there is no reason why cn,j should admit such a recursive
description.
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They form a left ideal in some noncommutative operator algebra.

But there is no reason why cn,j should admit such a recursive
description.



Holonomic systems
Of course, it is unlikely to get a closed-form description for cn,j!

Instead we aim at some “suitable description”, viz. implicitly via
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Guessing

Manuel Kauers guessed some recurrences for cn,j .

Their Gröbner basis has the form

©cn,j+4 = ©cn,j +©cn,j+1 +©cn,j+2 +©cn,j+3

+© cn+2,j +©cn+2,j+1

©cn+1,j+3 = ©cn,j +©cn,j+1 +©cn,j+2 +©cn,j+3

+© cn+1,j +©cn+1,j+1 +©cn+1,j+2

+© cn+2,j +©cn+2,j+1 +©cn+3,j

©cn+2,j+2 = ©cn,j +©cn,j+1 +©cn,j+2 +©cn,j+3

+© cn+2,j +©cn+2,j+1

©cn+3,j+1 = ©cn,j +©cn,j+1 +©cn,j+2 +©cn,j+3

+© cn+1,j +©cn+1,j+1 +©cn+1,j+2

+© cn+2,j +©cn+2,j+1 +©cn+3,j

©cn+4,j = ©cn,j +©cn,j+1 +©cn,j+2 +©cn,j+3

+© cn+2,j +©cn+2,j+1

where each © is a polynomial in Q[q, qj , qn] of total degree ≤ 100.

The staircase of the Gröbner basis:The total size is 244MB (several 1000 pages of paper)!

Great! We found the certificate for the determinant evaluation!



Guessing

Manuel Kauers guessed some recurrences for cn,j .
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The staircase of the Gröbner basis:The total size is 244MB (several 1000 pages of paper)!

Great! We found the certificate for the determinant evaluation!



Guessing

Manuel Kauers guessed some recurrences for cn,j .
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Advocatus Diaboli

The guessed recurrences can be
artifacts, that do not describe
the true function cn,j!!!



Artifacts?

The guessed recurrences are very unlikely to be artifacts for several
reasons:

• solutions of a dense overdetermined linear systems

• many polynomial coefficients factor nicely

• recurrences produce correct values for cn,j that were not used
for guessing



Advocatus Diaboli

Convincing, but not a proof!

And even if the recursive de-
scription of cn,j is correct, this
wouldn’t prove anything yet!!!

Show:

cn,n = 1
n∑

j=1

cn,jai,j = 0

n∑
j=1

cn,jan,j =
bn

bn−1



The first identity

Prove the identities using the recursive description of cn,j .

How to prove cn,n = 1 for all n ≥ 1?

• We find an element in the annihilating ideal of cn,j of the form

pvcn+v,j+v = pv−1cn+v−1,j+v−1 + · · ·+ p1cn+1,j+1 + p0cn,j

with v ∈ N and pi ∈ Q[q, qj , qn].
• Substituting j → n yields a recurrence for the diagonal

sequence cn,n.

• Show that the corresponding operator factors into P1P2 where
P2 corresponds to cn+1,n+1 = cn,n.

• Show that c1,1 = · · · = cv,v = 1.

−→ works with v = 7.
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Advocatus Diaboli

The leading coefficient p7 could
have singularities!!!

For n ≥ 7 we have p7(q, qn) 6= 0.



Advocatus Diaboli

The leading coefficient p7 could
have singularities!!!

For n ≥ 7 we have p7(q, qn) 6= 0.



The third identity
Recall:

n∑
j=1

cn,jan,j =
bn

bn−1

with

ai,j = qi+j−1

([
i + j − 2

i− 1

]
q

+ q

[
i + j − 1

i

]
q

)
+(1+qi)δi,j−δi,j+1.

gives

(1 + qn)− cn,n−1 +
n∑

j=1

c′n,j =
bn

bn−1

with

c′n,j = qn+j−1

([
n + j − 2

n− 1

]
q

+ q

[
n + j − 1

n

]
q

)
cn,j



The third identity

How to prove (1 + qn)− cn,n−1 +
n∑

j=1

c′n,j =
bn

bn−1
?

• Compute an annihilating ideal for c′n,j via closure properties.

• Find a relation in this ideal of the form

pvc
′
n+v,j + · · ·+ p1c

′
n+1,j + p0c

′
n,j = tn,j+1 − tn,j

where the pv, . . . , p0 are rational functions in Q(q, qn) and tn,j

is a Q(q, qj , qn)-linear combination of certain shifts of c′n,j .

• Creative telescoping yields a recurrence for the sum.

• Closure properties yield a recurrence for the left-hand side.

• Recurrence for right-hand side is a right factor.

• Compare finitely many initial values (again v = 7).
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A computational challenge

How to find the certificate

pv(q, qn)c′n+v,j + · · ·+ p0(q, qn)c′n,j = tn,j+1 − tn,j

where tn,j = r1(q, qn, qj)c′n+3,j+2 + · · ·+ r10(q, qn, qj)c′n,j?

Zeilberger’s slow algorithm: eliminate (e.g. with Gröbner
bases) the variable qj .
Input recurrences have j-degrees between 24 and 30 (in the
q = 1 case). After 48h, this was reduced to 23.
Estimate: 1677721600 days

Takayama’s algorithm: a faster variant which is also based
on elimination.
Estimate: 52428800 days

Chyzak’s algorithm: ansatz with unknown pi(q, qn)
and rk(q, qn, qj). Leads to a coupled first-order parametrized
linear system of q-difference equations.
Estimate: ∞?

CK’s polynomial ansatz: refine

rk(q, qn, qj) =
L∑

l=0

rk,l(q, qn)(qj)l.

Leads to a linear system over Q(q, qn).
We used this ansatz for proving TSPP (took about 40 days).
Estimate: 4000 days

CK’s rational ansatz: ansatz with

rk(q, qn, qj) =
∑L

l=0 rk,l(q, qn)(qj)l

dk(q, qn, qj)

where the denominators dk can be “guessed” by looking at
the leading coefficients of the Gröbner basis.
Leads to a linear system over Q(q, qn) with 377 unknowns.
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Leads to a linear system over Q(q, qn) with 377 unknowns.



A computational challenge

How to find the certificate

pv(q, qn)c′n+v,j + · · ·+ p0(q, qn)c′n,j = tn,j+1 − tn,j

where tn,j = r1(q, qn, qj)c′n+3,j+2 + · · ·+ r10(q, qn, qj)c′n,j?

Zeilberger’s slow algorithm: eliminate (e.g. with Gröbner
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A computational challenge

Even generating this linear system (reducing the ansatz with the
Gröbner basis) would already consume too much memory!

We use homomorphic images (modular computations):

• do all computations modulo some prime

• plug in concrete integral values for q and qn

• requires special modular GB reduction

• fixing q and varying qn (and vice versa) allows to estimate the
necessary interpolation points:

• 1167 interpolation points for q

• 363 interpolation points for qn

• each case takes about a minute (GB reduction, linear solving,
for sufficiently many primes)

• estimated computation time: 1167 · 363 · 60s = 294 days!
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• do all computations modulo some prime

• plug in concrete integral values for q and qn

• requires special modular GB reduction

• fixing q and varying qn (and vice versa) allows to estimate the
necessary interpolation points:

• 1167 interpolation points for q

• 363 interpolation points for qn

• each case takes about a minute (GB reduction, linear solving,
for sufficiently many primes)

• estimated computation time: 1167 · 363 · 60s = 294 days!



Further improvements

• efficient Gröbner basis reduction procedure

• combination of arithmetic in Q and in Zp

• rewrite polynomials that have to be evaluated in compact form

• build matrices efficiently

• discard redundant equations

• compute parallel

• normalize w.r.t. a certain component in order to minimize the
number of interpolation points

• guess small factors in the components of the solution



Guess small factors

Compute, for example,

• with q = 19
• modulo the prime 2147483629

Assume we obtain as solution (after factoring):

(qn + 19)(qn + 2147483628)(q2n + 381qn + 2147483610) . . .

Presumably the true solution (for symbolic q and over Q) is

(qn + q)(qn − 1)(q2n + (q2 + q + 1)qn − q) . . .

Many such small factors can be guessed from modular results!

All these optimizations reduced the actual computation to 35 days.



Advocatus Diaboli
The polynomial degrees of the
solution are not known: not
enough interpolation points???

The size of the integer co-
efficients is not known: not
enough primes???

The guessed small factors can
be wrong!!!

The final result was reduced
once again with the Gröbner
basis (non-modular) and
yielded 0.
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Result
The certificate for the third identity has a size of 7 Gigabytes.

Its principal part confirms the conjectured evaluation

bn =
∏

1≤i≤j≤k≤n

(
1− qi+j+k−1

1− qi+j+k−2

)2

.
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The second identity

n∑
j=1

cn,jai,j = 0 (1 ≤ i < n).

Strategy similar as before, but one variable more. This means:

• linear system over Q(q, qi, qn)
• (at least) two creative telescoping relations are necessary



Advocatus Diaboli

Zeros in the denominators of
the delta part???

Singularities in the leading coef-
ficients of the principal parts???

There are only finitely many
which can be checked sepa-
rately.
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the delta part???
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ficients of the principal parts???

There are only finitely many
which can be checked sepa-
rately.



Quod erat demonstrandum.

Theorem (KKZ). Let π/S3 denote the set of orbits of a plane
partition π under the action of the symmetric group S3.
Then the orbit-counting generating function is given by

∑
π∈T (n)

q|π/S3| =
∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

where T (n) denotes the set of totally symmetric plane partitions
with largest part at most n.



Acknowledgements

Thanks to

• the RISC sysadmins for providing the necessary resources,

• Victor Moll for hosting me in New Orleans,

• Manuel Kauers for guessing and advising,

• Doron Zeilberger for offering a noble prize!

No thanks to

• the cleaning professional who unplugged and messed up my
computations!



Acknowledgements

Thanks to

• the RISC sysadmins for providing the necessary resources,

• Victor Moll for hosting me in New Orleans,

• Manuel Kauers for guessing and advising,

• Doron Zeilberger for offering a noble prize!

No thanks to

• the cleaning professional who unplugged and messed up my
computations!


