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THE LOCAL h-VECTOR OF THE CLUSTER SUBDIVISION OF A

SIMPLEX

CHRISTOS A. ATHANASIADIS AND CHRISTINA SAVVIDOU

Abstract. The cluster complex ∆(Φ) is an abstract simplicial complex, introduced by
Fomin and Zelevinsky for a finite root system Φ. The positive part of ∆(Φ) naturally
defines a simplicial subdivision of the simplex on the vertex set of simple roots of Φ.
The local h-vector of this subdivision, in the sense of Stanley, is computed and the
corresponding γ-vector is shown to be nonnegative. Combinatorial interpretations to the
entries of the local h-vector and the corresponding γ-vector are provided for the classical
root systems, in terms of noncrossing partitions of types A and B. An analogous result
is given for the barycentric subdivision of a simplex.

1. Introduction and results

Local h-vectors were introduced by Stanley [27] as a fundamental tool in his theory of
face enumeration for subdivisions of simplicial complexes. Given a (finite, topological)
simplicial subdivision Γ of the abstract simplex 2V on an n-element vertex set V , the
local h-polynomial ℓV (Γ, x) is defined as an alternating sum of the h-polynomials of the
restrictions of Γ to the faces of 2V (see Section 2 for all relevant definitions). The local
h-vector of Γ is the sequence of coefficients ℓV (Γ) = (ℓ0, ℓ1, . . . , ℓn), where ℓV (Γ, x) =
ℓ0 + ℓ1x+ · · ·+ ℓnx

n.
The importance of local h-vectors stems from their appearance in the locality formula

[27, Theorem 3.2], which expresses the h-polynomial of a simplicial subdivision of a pure
simplicial complex ∆ as a sum of local contributions, one for each face of ∆. Several funda-
mental properties of local h-vectors, including symmetry for all topological subdivisions,
nonnegativity for quasi-geometric subdivisions and unimodality for regular (geometric)
subdivisions, were proven in [27].

The local h-vector of the barycentric subdivision of a simplex affords an elegant in-
terpretation [27, Proposition 2.4] in terms of the combinatorics of permutations. The
focus of this paper is on another example of subdivision of the simplex with remarkable
combinatorial properties, termed as the cluster subdivision. This is the simplicial subdi-
vision of the simplex on the vertex set of simple roots of a finite root system Φ which is
naturally defined by the positive part of the cluster complex ∆(Φ) [18] (see the discussion
below). Our main results compute the local h-vector of the cluster subdivision, providing
combinatorial interpretations for the classical root systems in terms of the combinatorics
of noncrossing partitions (for the deep connections between cluster combinatorics and
noncrossing partitions see, for instance, [3, 9, 24]).

Before proceeding further, we recall the following notation and terminology from [2].
Let Γ be a simplicial subdivision of an (n−1)-dimensional simplex 2V . Since ℓV (Γ, x) has
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symmetric coefficients, there exists [19, Proposition 2.1.1] a unique polynomial ξV (Γ, x) =
ξ0 + ξ1x+ · · ·+ ξ⌊n/2⌋x

⌊n/2⌋ such that

ℓV (Γ, x) =

⌊n/2⌋
∑

i=0

ξix
i(1 + x)n−2i.

Following [2, Section 5], we will refer to ξV (Γ, x) as the local γ-polynomial of Γ (with
respect to V ) and to the sequence ξV (Γ) = (ξ0, ξ1, . . . , ξ⌊n/2⌋) as the local γ-vector of Γ
(with respect to V ). As explained in [2], these concepts play a role in the theory of face
enumeration for flag homology spheres and their flag simplicial subdivisions.

We will show that ξV (Γ, x) has nonnegative coefficients for all cluster subdivisions by
providing combinatorial interpretations in terms of noncrossing partitions, or by explicit
computation. Since cluster subdivisions are geometric and flag, this result provides ev-
idence for a conjecture by the first author [2, Conjecture 5.4], stating that ξV (Γ, x) has
nonnegative coefficients for a family of simplicial subdivisions of the simplex which in-
cludes all flag geometric subdivisions. We will also provide combinatorial interpretations
to the coefficients of ξV (Γ, x) for the barycentric subdivision of the simplex.

The remainder of this section states the main results of this paper in more precise
form. Their proofs are given in Sections 3 and 4, after some of the relevant background on
simplicial complexes, cluster complexes, simplicial subdivisions and noncrossing partitions
is recalled in Section 2. Remarks and related open problems are included in Section 5.

1.1. Cluster subdivisions. Let Φ be a finite root system of rank n, equipped with a
positive system Φ+ and corresponding simple system Π = {αi : i ∈ I}, where I is an
n-element index set. The cluster complex ∆(Φ) was introduced by Fomin and Zelevinsky
in the context of algebraic Y -systems [18]. It is an abstract simplicial complex on the
vertex set Φ+ ∪ (−Π), consisting of the positive roots and the negative simple roots,
which is homeomorphic to the (n − 1)-dimensional sphere. When Φ is crystallographic,
the combinatorics of ∆(Φ) encodes the exchange of clusters in the corresponding cluster
algebra of finite type [17]. An overview of cluster complexes and their connection to
cluster algebras can be found in [16]. The restriction ∆+(Φ) of ∆(Φ) on the vertex set
Φ+, known as the positive part of ∆(Φ), is homeomorphic to the (n−1)-dimensional ball.

The complex ∆+(Φ) has the structure of a (geometric) simplicial subdivision of the
simplex 2Π on the vertex set Π (see Section 2.4). The restriction of this subdivision to
the face {αi : i ∈ J} of 2Π indexed by J ⊆ I is the complex ∆+(ΦJ ), where ΦJ is the
standard parabolic root subsystem of Φ corresponding to J (so that ΦI = Φ). We will
refer to this subdivision as the cluster subdivision associated to Φ and will denote it by
Γ(Φ). We will write

(1) ℓI(Γ(Φ), x) =
n

∑

i=0

ℓi(Φ)x
i

for the local h-polynomial of Γ(Φ) and ℓI(Φ) = (ℓ0(Φ), ℓ1(Φ), . . . , ℓn(Φ)) for the corre-
sponding local h-vector. The relevant definitions lead (see Section 2.4) to the formula

(2) ℓI(Γ(Φ), x) =
∑

J⊆I

(−1)|IrJ | h(∆+(ΦJ ), x),
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where h(∆+(ΦJ ), x) is the h-polynomial of ∆+(ΦJ). The results of [27], mentioned earlier,
imply that ℓI(Γ(Φ), x) has nonnegative and symmetric coefficients for every root system
Φ.

The h-polynomial of ∆+(Φ) admits several combinatorial interpretations [4, Corol-
lary 1.4 and Theorem 1.5] [3, Corollaries 7.4 and 7.5] in terms of order ideals of roots,
hyperplane regions, Weyl group orbits on a finite torus, lattice points and noncrossing
partitions. It was computed explicitly for all irreducible (crystallographic) root systems
in [4, Section 6]. We denote by NCA(n) and NCB(n) the set of noncrossing partitions
of the set {1, 2, . . . , n} and that of Bn-noncrossing partitions, respectively, and refer to
Section 2.5 for the relevant background and any undefined terminology. Our first result
determines the local h-polynomial of Γ(Φ) as follows.

Theorem 1.1. Let ℓI(Γ(Φ), x) =
∑n

i=0 ℓi(Φ)x
i be the local h-polynomial of the cluster

subdivision Γ(Φ), associated to an irreducible root system Φ of rank n and Cartan-Killing
type X . Then ℓi(Φ) is equal to:

• the number of partitions π ∈ NCA(n) with i blocks, such that every singleton block
of π is nested, if X = An,

• the number of partitions π ∈ NCB(n) with no zero block and i pairs {B,−B} of
nonzero blocks, such that every positive singleton block of π is nested, if X = Bn,

• n− 2 times the number of partitions π ∈ NCA(n− 1) with i blocks, if X = Dn.

Moreover, ℓI(Γ(Φ), x) is equal to















































(m− 2)x, if X = I2(m)

8x+ 8x2, if X = H3

42x+ 124x2 + 42x3, if X = H4

10x+ 29x2 + 10x3, if X = F4

7x+ 63x2 + 125x3 + 63x4 + 7x5, if X = E6

16x+ 204x2 + 644x3 + 644x4 + 204x5 + 16x6, if X = E7

44x+ 748x2 + 3380x3 + 5472x4 + 3380x5 + 748x6 + 44x7, if X = E8.

We will write ξI(Φ) = (ξ0(Φ), ξ1(Φ), . . . , ξ⌊n/2⌋(Φ)) for the local γ-vector of Γ(Φ), so
that

(3) ℓI(Γ(Φ), x) =

⌊n/2⌋
∑

i=0

ξi(Φ) x
i(1 + x)n−2i.

Our second result computes the numbers ξi(Φ) (hence, via equation (3), the numbers
ℓi(Φ) as well) explicitly.
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Theorem 1.2. Let Φ be an irreducible root system of rank n and Cartan-Killing type X
and let ξi(Φ) be the integers uniquely defined by (3). Then ξ0(Φ) = 0 and

ξi(Φ) =















































1

n− i+ 1

(

n

i

)(

n− i− 1

i− 1

)

, if X = An

(

n

i

)(

n− i− 1

i− 1

)

, if X = Bn

n− 2

i

(

2i− 2

i− 1

)(

n− 2

2i− 2

)

, if X = Dn

for 1 ≤ i ≤ ⌊n/2⌋. Moreover,

⌊n/2⌋
∑

i=0

ξi(Φ)x
i =


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














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



















(m− 2)x, if X = I2(m)

8x, if X = H3

42x+ 40x2, if X = H4

10x+ 9x2, if X = F4

7x+ 35x2 + 13x3, if X = E6

16x+ 124x2 + 112x3, if X = E7

44x+ 484x2 + 784x3 + 120x4, if X = E8.

The proof of Theorem 1.2, given in Section 3, shows that when X = An (respectively,
X = Bn), the numbers ξi(Φ) enumerate partitions π ∈ NCA(n) (respectively, partitions
π ∈ NCB(n) with no zero block) which have no singleton block, by the number of blocks;
see Propositions 3.1 and 3.2.

When Φ is crystallographic, the cluster complex ∆(Φ) can be realized as the boundary
complex of a simplicial convex polytope [11]. One may deduce from this statement that
Γ(Φ) is a regular (geometric) subdivision of the simplex 2Π. Thus [27, Theorem 5.2]
implies that the local h-vector of Γ(Φ) is unimodal, i.e., ℓ0(Φ) ≤ ℓ1(Φ) ≤ · · · ≤ ℓ⌊n/2⌋(Φ).
The following corollary of Theorem 1.2 provides a stronger statement.

Corollary 1.3. For every root system Φ the local γ-vector of Γ(Φ) is nonnegative, i.e.,
we have ξi(Φ) ≥ 0 for every index i.

1.2. Barycentric subdivisions. Let V be an n-element set. We denote by sd(2V ) the
(first) barycentric subdivision of the simplex 2V and by Sn the set of permutations of
{1, 2, . . . , n}. We recall that for w ∈ Sn, a descent of w is an index 1 ≤ i ≤ n − 1 such
that w(i) > w(i + 1); an excedance of w is an index 1 ≤ i ≤ n such that w(i) > i. The
local h-polynomial of sd(2V ) was computed in [27, Proposition 2.4] as

(4) ℓV (sd(2
V ), x) =

∑

w∈Dn

xex(w),

where Dn is the set of derangements (permutations with no fixed points) in Sn and ex(w) is
the number of excedances of w ∈ Sn. We will provide similar combinatorial interpretations
to the local γ-polynomial of sd(2V ) after we introduce some more terminology.
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For w ∈ Sn, an ascending run (or simply, a run) of w is a maximal string {i, i+1, . . . , j}
of integers, such that w(i) < w(i + 1) < · · · < w(j). A double descent of w is an index
2 ≤ i ≤ n − 1 such that w(i − 1) > w(i) > w(i + 1); a double excedance of w is an
index 1 ≤ i ≤ n such that w(i) > i > w−1(i). A left to right maximum of w is an index
1 ≤ j ≤ n such that w(i) < w(j) for all 1 ≤ i < j.

Theorem 1.4. Let (ξ0, ξ1, . . . , ξ⌊n/2⌋) be the local γ-vector of the barycentric subdivision
sd(2V ) of the (n− 1)-dimensional simplex 2V . Then ξi is equal to each of the following:

(i) the number of permutations w ∈ Sn with i runs and no run of length one,
(ii) the number of derangements w ∈ Dn with i excedances and no double excedance,
(iii) the number of permutations w ∈ Sn with i descents and no double descent, such

that every left to right maximum of w is a descent.

In particular, we have ξi ≥ 0 for all 0 ≤ i ≤ ⌊n/2⌋.

For the first few values of n we have:

⌊n/2⌋
∑

i=0

ξix
i =


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




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


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
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













x, if n = 2, 3

x+ 5x2, if n = 4

x+ 18x2, if n = 5

x+ 47x2 + 61x3, if n = 6

x+ 108x2 + 479x3, if n = 7

x+ 233x2 + 2414x3 + 1385x4, if n = 8

x+ 486x2 + 9970x3 + 19028x4, if n = 9.

The right-hand side of (4) is known as the derangement polynomial of order n; see, for
instance, [12, Section 1], where some of its basic properties are summarized. Theorem 1.4
gives a combinatorial proof of the unimodality of this polynomial, thus answering a ques-
tion of Brenti [8]; see the third comment in Section 5. Moreover, it implies that for given
n, the sum of the coefficients ξi is equal to the total number of permutations in Sn with no
ascending run of length one. Such permutations have been considered (in a more general
context) and enumerated by Gessel [20, Chapter 5].

We should point out that the nonnegativity of the numbers ξi follows from the fact
that the derangement polynomials are (symmetric and) real-rooted [31]. Alternatively,
this can be deduced from [2, Proposition 6.1], which proves the nonnegativity of the local
γ-vector for a family of flag simplicial subdivisions which can be obtained from the trivial
subdivision of a simplex by successive stellar subdivisions.

2. Subdivisions, clusters and noncrossing partitions

This section begins by recalling basic definitions on simplicial complexes, simplicial
subdivisions and their enumerative invariants. Cluster complexes are then reviewed and
cluster subdivisions are formally defined. The section ends with a brief discussion of
noncrossing partitions of types A and B. More information on these topics can be found
in [5, 16, 25, 29] and references therein. Throughout this paper, |S| denotes the cardinality,
and 2S the set of all subsets, of a finite set S.
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2.1. Simplicial complexes. Given a finite set Ω, an (abstract) simplicial complex on
the ground set Ω is a collection ∆ of subsets of Ω such that F ⊆ G ∈ ∆ implies F ∈ ∆.
The elements of ∆ are called faces. The dimension of a face F is defined as one less than
the cardinality of F . The dimension of ∆ is the maximum dimension of a face and is
denoted by dim(∆). Faces of ∆ of dimension zero are called vertices. A face of ∆ which
is maximal with respect to inclusion is called a facet. The simplicial complex ∆ is said
to be pure if all its facets have the same dimension. The link of the face F ∈ ∆ is the
subcomplex of ∆ defined as link∆(F ) = {GrF : G ∈ ∆, F ⊆ G}. The restriction of
∆ on the ground set Ω0 ⊆ Ω is the subcomplex of ∆ consisting of those faces which are
contained in Ω0.

Suppose that Ω1 and Ω2 are two disjoint finite sets. The (simplicial) join ∆1 ∗ ∆2 of
two collections ∆1 and ∆2 of subsets of Ω1 and Ω2, respectively, is the collection whose
elements are the sets of the form F1 ∪ F2, where F1 ∈ ∆1 and F2 ∈ ∆2. The join of two
(or more) simplicial complexes is again a simplicial complex.

Every simplicial complex ∆ has a geometric realization ‖∆‖ [5, Section 9], uniquely
defined up to homeomorphism. All topological properties of ∆ we mention in the sequel
will refer to those of ‖∆‖. In particular, we say that ∆ is a simplicial (topological) ball if
‖∆‖ is homeomorphic to a ball. The boundary of a simplicial d-dimensional ball ∆ is the
subcomplex ∂∆, consisting of all subsets of those (d−1)-dimensional faces of ∆ which are
contained in a unique facet of ∆. The interior of this ball is the set ∆r∂∆; the interior
faces are the elements of ∆r∂∆. For example, the (abstract) simplex 2V , consisting of all
subsets of an n-element set V , is a simplicial (n− 1)-dimensional ball whose only interior
face is V . The join of two (or more) simplicial balls is a simplicial ball whose interior is
equal to the join of the interiors of these balls.

2.2. Simplicial subdivisions. Given a finite set V , a (finite, topological) simplicial
subdivision [27, Section 2] of the abstract simplex 2V is a simplicial complex Γ together
with a map σ : Γ → 2V , such that the following hold for every F ⊆ V : (a) the set
ΓF := σ−1(2F ) is a subcomplex of Γ which is a simplicial ball of dimension dim(F ); and
(b) the interior of ΓF is equal to σ−1(F ). The set σ(E) is called the carrier of the face
E ∈ Γ. The complex ΓF is called the restriction of Γ to F ⊆ V . The subdivision Γ is
called quasi-geometric [27, Definition 4.1 (a)] if there do not exist E ∈ Γ and face F ∈ 2V

of dimension smaller than dim(E), such that the carrier of every vertex of E is contained
in F . Moreover, Γ is called geometric [27, Definition 4.1 (b)] if there exists a geometric
realization of Γ which geometrically subdivides a geometric realization of 2V .

Suppose that Γ is a simplicial subdivision of the simplex 2V and Γ′ is a simplicial
subdivision of the simplex 2V

′

, where V and V ′ are disjoint sets. The join Γ ∗Γ′ naturally
becomes a simplicial subdivision of the simplex 2V ∗ 2V

′

= 2V ∪V ′

if one defines the carrier
of a face E ∪ E ′ ∈ Γ ∗ Γ′ as the union of the carriers of E ∈ Γ and E ′ ∈ Γ′. Given faces
F ⊆ V and F ′ ⊆ V ′, the restriction of Γ ∗ Γ′ to the face F ∪ F ′ of this simplex is then
equal to ΓF ∗ Γ′

F ′.

2.3. Face enumeration. A fundamental enumerative invariant of a simplicial complex
∆ is the h-polynomial, defined by

h(∆, x) =
∑

F∈∆

x|F |(1− x)d−|F |,
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where dim(∆) = d − 1. For the join of two simplicial complexes ∆1 and ∆2 we have
h(∆1 ∗∆2, x) = h(∆1, x)h(∆2, x).

The local h-vector of a simplicial subdivision of a simplex was defined in [27, Defini-
tion 2.1] as follows.

Definition 2.1. Let V be an n-element set and Γ be a simplicial subdivision of the
simplex 2V . The polynomial ℓV (Γ, x) = ℓ0 + ℓ1x+ · · ·+ ℓnx

n defined by

(5) ℓV (Γ, x) =
∑

F⊆V

(−1)n−|F | h(ΓF , x)

is the local h-polynomial of Γ (with respect to V ). The sequence ℓV (Γ) = (ℓ0, ℓ1, . . . , ℓn)
is the local h-vector of Γ (with respect to V ).

The local h-vector ℓV (Γ) = (ℓ0, ℓ1, . . . , ℓn) was shown to be symmetric (meaning that
ℓi = ℓn−i holds for 0 ≤ i ≤ n) for every simplicial subdivision Γ of 2V [27, Theorem 3.3]
and to have nonnegative entries for every quasi-geometric simplicial subdivision Γ of 2V

[27, Corollary 4.7]. Moreover (see [27, Example 2.3]), ℓ0 = 0 and ℓ1 is equal to the number
of interior vertices of Γ, for n ≥ 1.

We recall from the introduction that, given a simplicial subdivision Γ of an (n − 1)-
dimensional simplex 2V , the local γ-polynomial ξV (Γ, x) = ξ0 + ξ1x+ · · ·+ ξ⌊n/2⌋x

⌊n/2⌋ of
Γ (with respect to V ) is uniquely defined by

(6) ℓV (Γ, x) = (1 + x)n ξV

(

Γ,
x

(1 + x)2

)

=

⌊n/2⌋
∑

i=0

ξix
i(1 + x)n−2i.

The following lemma will be used in the proof of Corollary 1.3.

Lemma 2.2. Let V and V ′ be disjoint finite sets. For all simplicial subdivisions Γ of
2V and Γ′ of 2V

′

we have ℓV ∪V ′ (Γ ∗ Γ′, x) = ℓV (Γ, x) ℓV ′(Γ′, x) and ξV ∪V ′ (Γ ∗ Γ′, x) =
ξV (Γ, x) ξV ′(Γ′, x).

Proof. Let n = |V | and n′ = |V ′|. Using the defining equation (5), we find that

ℓV ∪V ′ (Γ ∗ Γ′, x) =
∑

F⊆V

∑

F ′⊆V ′

(−1)|V ∪V ′|−|F∪F ′| h((Γ ∗ Γ′)F∪F ′, x)

=
∑

F⊆V

∑

F ′⊆V ′

(−1)n+n′−|F |−|F ′| h(ΓF ∗ Γ′
F ′, x)

=
∑

F⊆V

∑

F ′⊆V ′

(−1)n−|F | h(ΓF , x) (−1)n
′−|F ′| h(Γ′

F ′, x)

= ℓV (Γ, x) ℓV ′(Γ′, x).

This result and (6) imply that ξV ∪V ′ (Γ ∗ Γ′, x) = ξV (Γ, x) ξV ′(Γ′, x). �
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2.4. Cluster complexes and subdivisions. Let Φ be a finite root system of rank n.
As in the introduction, we will fix a positive system Φ+ with corresponding simple system
Π = {αi : i ∈ I}, where I is an n-element index set, and set Φ≥−1 := Φ+ ∪ (−Π). For
J ⊆ I, the standard parabolic root subsystem ΦJ is endowed with the induced positive
system Φ+

J = Φ+ ∩ ΦJ and corresponding simple system ΠJ = {αi : i ∈ J}.
The cluster complex ∆(Φ) is a simplicial complex on the vertex set Φ≥−1. Its faces

are the sets consisting of mutually compatible elements of Φ≥−1, where compatibility is
a symmetric binary relation on Φ≥−1 defined in [18, Section 3]. We refer the reader to
[18] [16, Section 4.3] for the precise definition of compatibility and collect the properties
of ∆(Φ) and its restriction ∆+(Φ) on the vertex set Φ+ which will be important for us,
in the following proposition. Part (ii) is implicit in [18, Section 3] (see Lemma 3.12 and
the proof of Theorem 1.10 there) and [6, Section 8]. The other parts follow directly from
the results of [18, Section 3].

Proposition 2.3. (i) The cluster complex ∆(Φ) is homeomorphic to an (n − 1)-
dimensional sphere.

(ii) The complex ∆+(Φ) is homeomorphic to an (n− 1)-dimensional ball.
(iii) For J ⊆ I we have link∆(Φ)(−ΠJ ) = ∆(ΦJ ).
(iv) For J ⊆ I, the restriction of ∆(Φ) to the vertex set (ΦJ)≥−1 is equal to ∆(ΦJ )

and that of ∆+(Φ) to the vertex set Φ+
J is equal to ∆+(ΦJ).

(v) If Φ is a direct product Φ1 × Φ2, then ∆(Φ) = ∆(Φ1) ∗ ∆(Φ2) and ∆+(Φ) =
∆+(Φ1) ∗∆+(Φ2). �

The following result of [4] will be needed in Section 3 in order to compute the right-hand
side of (2).

Lemma 2.4. ([4, Proposition 6.1]) For the h-polynomial of ∆+(Φ) we have

h(∆+(Φ), x) =




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
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













































n
∑

i=0

1

i+ 1

(

n

i

)(

n− 1

i

)

xi, if X = An

n
∑

i=0

(

n

i

)(

n− 1

i

)

xi, if X = Bn

n
∑

i=0

((

n

i

)(

n− 2

i

)

+

(

n− 2

i− 2

)(

n− 1

i

))

xi, if X = Dn,

where X is the Cartan-Killing type of Φ. �

We now formally define the cluster subdivision Γ(Φ). Given a positive root α ∈ Φ+,
there is a unique set J ⊆ I such that α is a positive linear combination of the elements
of ΠJ . We call ΠJ the support of α and for E ∈ ∆+(Φ), we denote by σ(E) the union of
the supports of the elements of E. Equivalently, σ(E) is the smallest set ΠJ ⊆ Π such
that α ∈ Φ+

J for every α ∈ E.

Proposition 2.5. The map σ : ∆+(Φ) 7→ 2Π defines a simplicial subdivision Γ(Φ) of the
simplex 2Π, whose local h-polynomial is given by (2).
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α
2

3

2

α  +  α

α   +   α   +   α
1 3

α
1

α
3

2
α   +   α

21

Figure 1. The cluster subdivision of type A3.

Proof. It suffices to show that for every J ⊆ I: (a) σ−1(2ΠJ ) is a subcomplex of ∆+(Φ)
which is homeomorphic to a ball of dimension |J | − 1; (b) σ−1(ΠJ) is the interior of this
ball; and (c) σ−1(2ΠJ ) = ∆+(ΦJ ). Indeed, (a) and (b) confirm that σ defines a simplicial
subdivision of the simplex 2Π and (c) ensures that the restriction of this subdivision to
the face ΠJ of 2Π is equal to ∆+(ΦJ ). Equation (2) is a consequence of the last statement
and Definition 2.1.

Part (c) follows from the definition of the map σ and Proposition 2.3 (iv) and part (a)
follows from (c) and Proposition 2.3 (ii). To verify (b), we may assume that J = I. We
need to show that the boundary of ∆+(Φ) is equal to the union of the subcomplexes
∆+(ΦJ ), where J runs through the proper subsets of I. For that, it suffices to show that
an (n − 2)-dimensional face, say E, of ∆+(Φ) is contained in a unique facet of ∆+(Φ)
if and only if E ∈ ∆+(ΦJ) for some (n − 1)-element set J ⊆ I. This is a consequence
of parts (i) and (iii) of Proposition 2.3. Indeed, part (i) implies that E is contained in
exactly two facets of ∆(Φ). Part (iii) implies that at most one of these contains a negative
simple root and that this is the case if and only if E ∈ ∆+(ΦJ ) for some (n− 1)-element
set J ⊆ I. �

Example 2.6. The complex ∆+(Φ) and cluster subdivision Γ(Φ) are drawn on Figure 1
for the root system Φ of type A3. The simple roots α1, α2, α3 have been labeled so that
α1 is orthogonal to α3.

The subdivision Γ(Φ) triangulates the 2-dimensional simplex 2Π into five 2-dimensional
simplices, which are the facets of ∆+(Φ). There is one interior vertex, namely α1+α2+α3.
The supports of α1+α2 and α2+α3 are equal to {α1, α2} and {α2, α3}, respectively. The
restriction of Γ(Φ) on the face {α1, α2} of 2Π is a subdivision of a 1-dimensional simplex
with one interior vertex, namely α1 + α2. �

Remark 2.7. One can define a cluster complex, and hence a corresponding cluster sub-
division, for every orientation of the Dynkin diagram of Φ [22]; see also [24, Section 7]
(the cluster complex of [18] [16, Section 4.3], treated here, corresponds to the alternating
orientation). By [22, Proposition 3.4] (see also [24, Proposition 7.3]) and the results of [22,
Section 6], the h-vector of the positive part of the cluster complex and the local h-vector
of the corresponding cluster subdivision do not depend on the orientation chosen. �
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5 6 7431 2 98

Figure 2. The noncrossing partition {{1, 5, 6}, {2, 4}, {3}, {7}, {8, 9}}.

We conclude this section with the following lemma, which will be used in the proof of
Corollary 1.3.

Lemma 2.8. If Φ is a direct product Φ1 × Φ2, then Γ(Φ) = Γ(Φ1) ∗ Γ(Φ2).

Proof. This statement follows from Proposition 2.3 (v) and the definitions of the cluster
subdivision and the join of two simplicial subdivisions. �

2.5. Noncrossing partitions. This section summarizes those concepts and results from
the theory of noncrossing partitions which are involved in the statements and proofs of
Theorems 1.1 and 1.2.

The set of noncrossing partitions of {1, 2, . . . , n}, which we will denote by NCA(n), was
introduced and studied by Kreweras [21]. It consists of all set partitions π of {1, 2, . . . , n}
with the following property: if a < b < c < d are such that a, c are contained in a
block B of π and b, d are contained in a block B′ of π, then B = B′. An example of a
noncrossing partition for n = 9 is shown on Figure 2. Among several other fundamental
results, Kreweras [21, Section 4] showed that the cardinality of NCA(n) is equal to the
nth Catalan number 1

n+1

(

2n
n

)

and that

(7)
∑

π∈NCA(n)

xn−|π| =

n
∑

i=0

1

i+ 1

(

n

i

)(

n− 1

i

)

xi.

We will say that a singleton block {b} of π ∈ NCA(n) is nested if some block of π
contains elements a and c such that a < b < c; otherwise we say that {b} is nonnested.
For the example of Figure 2 the singleton block {3} is nested, while {7} is not. Clearly, a
partition π ∈ NCA(n) with nonnested singleton block {b} is determined by its restrictions
to {1, 2, . . . , b− 1} and {b+ 1, . . . , n}, which are again noncrossing partitions.

Noncrossing partitions of type B were defined by Reiner [25] as follows. A set partition
π of {1, 2, . . . , n} ∪ {−1,−2, . . . ,−n} is called a Bn-partition if the following conditions
hold: (a) if B is a block of π, then −B (the set obtained by negating the elements of
B) is also a block of π; and (b) there is at most one block of π (called the zero block, if
present) which contains both i and −i for some i ∈ {1, 2, . . . , n}. Such a partition can be
represented pictorially [1, Section 2] by placing the integers 1, 2, . . . , n,−1,−2, . . . ,−n (in
this order) along a line and drawing arcs above the line between i and j whenever i and j
lie in the same block B of π and no other element between them does. The Bn-partition π
is called noncrossing if no two arcs in this diagram cross. An example for n = 7 appears
in Figure 3. The set of noncrossing Bn-partitions will be denoted by NCB(n).

We will be interested in the enumeration of noncrossing Bn-partitions with no zero
block, by the number of blocks. Although we have not been able to locate the following
statement explicitly in the literature, its proof follows easily from that of [1, Theorem 2.3].
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−2 −4 −5−1 −3 −61 2 3 4 5 6 7 −7

Figure 3. A B7-noncrossing partition.

Lemma 2.9. The number of partitions π ∈ NCB(n) which have no zero block and a total
of k pairs {B,−B} of nonzero blocks is equal to

(

n
k

)(

n−1
k−1

)

.

Proof. The proof of [1, Theorem 2.3], given in [1, Section 4], shows that the partitions
π ∈ NCB(n) which have no zero block and a total of k pairs {B,−B} of nonzero blocks
are in one-to-one correspondence with pairs (S, f), where S is a k-element subset of
{1, 2, . . . , n} and f : S → {1, 2, . . . } is a map whose values sum to n. Since there are

(

n
k

)

ways to choose S and, for any such choice, there are
(

n−1
k−1

)

ways to choose f , the result
follows. �

We will say that a singleton block {b} of π ∈ NCB(n) is nested if some block of π
contains an element which precedes b and one which succeeds b in the linear ordering
1, 2, . . . , n,−1,−2, . . . ,−n; otherwise we say that {b} is nonnested. The example of Fig-
ure 3 has the nonnested positive singleton block {3} and the nested positive singleton
block {7}. A partition π ∈ NCB(n) with nonnested positive singleton block {b} is deter-
mined by its restrictions to {1, 2, . . . , b− 1} and {b+1, . . . , n} ∪ {−b− 1, . . . ,−n}, which
are noncrossing partitions of types A and B, respectively.

3. Proofs for cluster subdivisions

This section provides proofs for Theorems 1.1 and 1.2 and Corollary 1.3. As part
of the proof for the types An and Bn, combinatorial interpretations similar to those of
Theorem 1.1 for the numbers ℓi(Φ) are provided for the numbers ξi(Φ).

As in previous sections, Φ = ΦI will be a finite root system of rank n. We will denote
by D(Φ) the Dynkin diagram of Φ and identify the vertex set of D(Φ) with the n-element
index set I. We will first treat the root systems of types An, Bn and Dn.

3.1. The root system An. The following proposition is the main result of this section.
Note that noncrossing partitions with no singleton block and given number of blocks,
which appear there, were considered and enumerated by Kreweras [21, Section 5].

Proposition 3.1. For the root system Φ of type An the following hold:

• ℓi(Φ) is equal to the number of partitions π ∈ NCA(n) with i blocks, such that
every singleton block of π is nested,

• ξi(Φ) is equal to the number of partitions π ∈ NCA(n) which have no singleton
block and a total of i blocks.

Moreover, we have the explicit formula

(8) ξi(Φ) =















0, if i = 0

1

n− i+ 1

(

n

i

)(

n− i− 1

i− 1

)

, if 1 ≤ i ≤ ⌊n/2⌋.
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For the first few values of n we have

n
∑

i=0

ℓi(Φ)x
i =























































0, if n = 1

x, if n = 2

x+ x2, if n = 3

x+ 4x2 + x3, if n = 4

x+ 8x2 + 8x3 + x4, if n = 5

x+ 13x2 + 29x3 + 13x4 + x5, if n = 6

x+ 19x2 + 73x3 + 73x4 + 19x5 + x6, if n = 7

x+ 26x2 + 151x3 + 266x4 + 151x5 + 26x6 + x7, if n = 8

and

⌊n/2⌋
∑

i=0

ξi(Φ)x
i =















































0, if n = 1

x, if n = 2, 3

x+ 2x2, if n = 4

x+ 5x2, if n = 5

x+ 9x2 + 5x3, if n = 6

x+ 14x2 + 21x3, if n = 7

x+ 20x2 + 56x3 + 14x4, if n = 8.

The Dynkin diagram D(Φ) is a path on the vertex set I. For notational convenience
we set I = {1, 2, . . . , n}, where i and i+ 1 are adjacent in D(Φ) for 1 ≤ i ≤ n− 1.

Proof of Proposition 3.1. We need to compute the right-hand side of (2), so we focus on
h(∆+(ΦJ ), x). Lemma 2.4 and Equation (7) show that

(9) h(∆+(ΦI), x) =
∑

π∈NCA(n)

xn−|π|.

For general J ⊆ I we have a direct product decomposition ΦJ = Φ1 × · · · × Φk into
irreducible subsystems Φ1, . . . ,Φk. The Dynkin diagrams of Φ1, . . . ,Φk are the connected
components of the diagram obtained from D(Φ) by deleting the vertices in IrJ . Since
D(Φ) is a path with no multiple edges, each Φi is again a root system of type A. Denoting
by pi the rank of Φi and using Proposition 2.3 (v) and Equation (9) we find that

h(∆+(ΦJ), x) = h(∆+(Φ1) ∗ · · · ∗∆+(Φk), x) =
k
∏

i=1

h(∆+(Φi), x)

=
k
∏

i=1

∑

π∈NCA(pi)

xpi−|π| =
∑

π∈NCA(J)

xn−|π|,
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where NCA(J) denotes the set of partitions π ∈ NCA(n) such that {a} is a nonnested
singleton of π for every a ∈ IrJ . The previous computation and (2) imply that

(10)
n

∑

i=0

ℓi(Φ)x
i =

∑

J⊆I

(−1)|IrJ |
∑

π∈NCA(J)

xn−|π|.

A simple application of the principle of inclusion-exclusion shows that the right-hand side
of (10) is equal to the sum of xn−|π|, where π runs through those partitions in NCA(n)
which have no nonnested singleton block. This result and the fact that ℓi(Φ) = ℓn−i(Φ)
yield the desired interpretation for ℓi(Φ).

To prove the interpretation claimed for ξi(Φ) we need to show that

(11)
n

∑

i=0

ℓi(Φ)x
i =

⌊n/2⌋
∑

i=0

mi x
i(1 + x)n−2i,

where mi is the number of partitions π ∈ NCA(n) with a total of i blocks, none of which is
a singleton. Let us denote by NCA

0 (n) the subset of NC
A(n) consisting of those noncrossing

partitions, every singleton block of which is nested. We define an equivalence relation on
NCA(n) by declaring two partitions π1 and π2 equivalent if there is a one-to-one correspon-
dence, say f , from the set of nonsingleton blocks of π1 to the set of nonsingleton blocks of
π2 such that for every nonsingleton block B of π1 the sets B and f(B) have the same min-
imum and the same maximum element. For example, the partition in Figure 2 is equiva-
lent to a total of four noncrossing partitions, namely itself, {{1, 5, 6}, {2, 3, 4}, {7}, {8, 9}},
{{1, 6}, {2, 3, 4}, {5}, {7}, {8, 9}} and {{1, 6}, {2, 4}, {3}, {5}, {7}, {8, 9}}.

We leave it to the reader to check that this relation restricts to an equivalence relation
on NCA

0 (n) and that each equivalence class within NCA
0 (n) contains a unique partition π0

having no singleton block. Moreover, for the equivalence class O(π0) of such a partition
π0 ∈ NCA

0 (n) we have
∑

π∈O(π0)

x|π| = xi(1 + x)n−2i,

where i is the number of blocks of π0. Summing the previous equation over all elements
π0 ∈ NCA

0 (n) which have no singleton block we get (11).
Finally, (8) is a consequence of the equality ξi(Φ) = mi and the results of [21, p. 344],

which enumerate noncrossing partitions with no singleton block and given number of
blocks. �

3.2. The root system Bn. This section proves the following statement on the case
X = Bn.

Proposition 3.2. For the root system Φ of type Bn the following hold:

• ℓi(Φ) is equal to the number of partitions π ∈ NCB(n) with no zero block and i
pairs {B,−B} of nonzero blocks, such that every positive singleton block of π is
nested,

• ξi(Φ) is equal to the number of partitions π ∈ NCB(n) which have no zero block,
no singleton block and a total of i pairs {B,−B} of nonzero blocks.



14 CHRISTOS A. ATHANASIADIS AND CHRISTINA SAVVIDOU

Moreover, we have the explicit formula

(12) ξi(Φ) =















0, if i = 0

(

n

i

)(

n− i− 1

i− 1

)

, if 1 ≤ i ≤ ⌊n/2⌋.

For the first few values of n we have

n
∑

i=0

ℓi(Φ)x
i =







































2x, if n = 2

3x+ 3x2, if n = 3

4x+ 14x2 + 4x3, if n = 4

5x+ 35x2 + 35x3 + 5x4, if n = 5

6x+ 69x2 + 146x3 + 69x4 + 6x5, if n = 6

7x+ 119x2 + 427x3 + 427x4 + 119x5 + 7x6, if n = 7

and

⌊n/2⌋
∑

i=0

ξi(Φ)x
i =















































2x, if n = 2

3x, if n = 3

4x+ 6x2, if n = 4

5x+ 20x2, if n = 5

6x+ 45x2 + 20x3, if n = 6

7x+ 84x2 + 105x3, if n = 7

8x+ 140x2 + 336x3 + 70x4, if n = 8.

The Dynkin diagram D(Φ) is a path on the vertex set I = {1, 2, . . . , n} with one double
edge. We will assume that i and i + 1 are adjacent in D(Φ) for 1 ≤ i ≤ n − 1 and that
the double edge connects vertices n− 1 and n.

Proof of Proposition 3.2. A proof which parallels that of Proposition 3.1 can be given as
follows. We denote by NCB

+(n) the set of partitions π ∈ NCB(n) which do not have a
zero block. To compute the right-hand side of (2), we consider h(∆+(ΦJ), x) for J ⊆ I.
Lemmas 2.4 and 2.9, together with some straightforward computations, show that

(13) h(∆+(ΦI), x) =
∑

π∈NCB
+(n)

xn−‖π‖,

where ‖π‖ stands for the number of pairs {B,−B} of (nonzero) blocks of π. For general
J ⊆ I we claim that

(14) h(∆+(ΦJ ), x) =
∑

π∈NCB
+(J)

xn−‖π‖,

where NCB
+(J) denotes the set of partitions π ∈ NCB

+(n) such that {a} is a nonnested
(positive) singleton block of π for every a ∈ IrJ . Given (14), the first statement follows
by an application of inclusion-exclusion, as in the type An case.
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The proof of (14) proceeds without essential change if n− 1 or n does not belong to J .
Otherwise we have {n−1, n} ⊆ J and the argument in the proof of Proposition 3.1 should
be modified as follows. Let b denote the maximum element of IrJ . Then {b+1, . . . , n} is
the vertex set of the Dynkin diagram of one of the irreducible components, say Φk, of ΦJ .
This component is of type B, while each of Φ1, . . . ,Φk−1 is of type A. Moreover, given π ∈
NCB

+(J), the restriction of π on {b+1, . . . , n}∪{−b−1, . . . ,−n} is a noncrossing partition
of type B, while that on the vertex set of the Dynkin diagram of each of Φ1, . . . ,Φk−1

is a noncrossing partition of type A. Thus (14) follows by the computation in proof of
Proposition 3.1 and the use of (9) and (13).

For the second statement, we need to replace the equivalence relation on NCA(n) by
one on NCB

+(n), defined as follows. Suppose that π ∈ NCB
+(n) has a nested positive

singleton block {b}. Then there is a unique block B ∈ π such that replacing the blocks
B,−B, {b} and {−b} of π by the unions B∪{b} and (−B)∪{−b} results in a noncrossing
partition π′ ∈ NCB

+(n). The required equivalence relation on NCB
+(n) is defined as the

finest equivalence relation under which π and π′ are equivalent for all such pairs (π, b). For
example, the partition in Figure 3 is equivalent to exactly one other noncrossing partition,
of which {5, 6, 7,−4} is a block. The proof then proceeds as in the type An case with
only trivial adjustments; the details are left to the reader.

Finally, to deduce the explicit formula (12) we argue as in the proof of Lemma 2.9.
The proof of [1, Theorem 2.3] shows that the partitions π ∈ NCB(n) which have no zero
block, no singleton block and a total of i pairs {B,−B} of nonzero blocks are in one-to-
one correspondence with pairs (S, f), where S is an i-element subset of {1, 2, . . . , n} and
f : S → {2, 3, . . . } is a function whose values sum to n. Clearly, the number of such pairs
is given by the right-hand side of (12) and the proof follows. �

3.3. The root system Dn. This section proves the following part of Theorems 1.1 and
1.2.

Proposition 3.3. For the root system Φ of type Dn we have:

ℓi(Φ) = (n− 2) · # {π ∈ NCA(n− 1) : |π| = i}

=















0, if i = 0

n− 2

i

(

n− 1

i− 1

)(

n− 2

i− 1

)

, if 1 ≤ i ≤ n,

and

ξi(Φ) =















0, if i = 0

n− 2

i

(

2i− 2

i− 1

)(

n− 2

2i− 2

)

, if 1 ≤ i ≤ ⌊n/2⌋.

For the first few values of n we have
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n
∑

i=0

ℓi(Φ)x
i =



















2x+ 6x2 + 2x3, if n = 4

3x+ 18x2 + 18x3 + 3x4, if n = 5

4x+ 40x2 + 80x3 + 40x4 + 4x5, if n = 6

5x+ 75x2 + 250x3 + 250x4 + 75x5 + 5x6, if n = 7

and

⌊n/2⌋
∑

i=0

ξi(Φ)x
i =



























2x+ 2x2, if n = 4

3x+ 9x2, if n = 5

4x+ 24x2 + 8x3, if n = 6

5x+ 50x2 + 50x3, if n = 7

6x+ 90x2 + 180x3 + 30x4, if n = 8.

One can easily deduce from Proposition 3.3 a combinatorial interpretation to the num-
bers ξi(Φ); see also [23, Section 11.3]. We are not aware, however, of one which is analogous
to those in Propositions 3.1 and 3.2 for types An and Bn.

The following notation and enumerative result will be used in the proof of Proposi-
tion 3.3. We will write

Cn(x) :=
∑

π∈NCA(n)

x|π|−1 =
∑

π∈NCA(n)

xn−|π| =

n
∑

i=0

1

i+ 1

(

n

i

)(

n− 1

i

)

xi

and

(15) F (x, t) :=
∑

n≥1

Cn(x) t
n = t+ (1 + x) t2 + (1 + 3x+ x2) t3 + · · ·

Then (see, for instance, [23, Equation (11)] and [28, Exercise 6.36]) we have

(16) F (x, t) = xt F 2(x, t) + (1 + x)t F (x, t) + t.

We will label the vertices of the Dynkin diagram D(Φ) so that i and i+1 are adjacent
in D(Φ) for 1 ≤ i ≤ n− 3, while n− 2 is adjacent to both n− 1 and n.

Proof of Proposition 3.3. Let us write ℓn(x) := ℓI(Γ(Φ), x) =
∑n

i=0 ℓi(Φ)x
i for n ≥ 4. The

proposed formula for ℓi(Φ) is equivalent to the equation

(17) ℓn(x) = (n− 2) · xCn−1(x).

The formula for ξi(Φ) follows from that and the known explicit formula (see [23, Propo-
sition 11.14]) for the γ-polynomial associated to Cn(x). Thus, it suffices to prove (17).

We begin by rewriting the right-hand side of (2) in the following way. For 1 ≤ r ≤ n,
we will denote by Jr the collection of all subsets J ⊆ I which contain {1, 2, . . . , r − 1}
but do not contain r. Using Proposition 2.3 (v) and the type An case of Lemma 2.4, we
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find that

∑

J∈Jr

(−1)|IrJ | h(∆+(ΦJ), x) =



























− ℓn−1(x), if r = 1

−Cr−1(x) ℓn−r(x), if 2 ≤ r ≤ n− 3

0, if r = n− 2,

Cn−2(x)− Cn−1(x), if r = n− 1,

−Cn−1(x), if r = n.

As a result, (2) can be rewritten as

ℓn(x) = h(∆+(ΦI), x) − ℓn−1(x) −

n−3
∑

r=2

Cr−1(x) ℓn−r(x) + Cn−2(x) − 2Cn−1(x).

Thus, using induction on n, it suffices to prove that

h(∆+(ΦI), x) = (n− 2)xCn−1(x) + (n− 3)xCn−2(x)

+
n−3
∑

r=2

(n− r − 2)xCr−1(x)Cn−r−1(x) − Cn−2(x) + 2Cn−1(x)(18)

for n ≥ 4. Let Rn(x) denote the right-hand side of (18) and Sn(x) denote the sum which
appears there. It follows directly from (15) that

∑

n≥4

Sn(x)t
n = xt3F (x, t)

∂F

∂t
(x, t) − xt2F 2(x, t).

Using (16), as well as the equation which results from that by differentiation with respect
to t, we can rewrite the previous equation as

∑

n≥4

2Sn(x)t
n = 2(1 + x)t2F (x, t) + 2t2 − 3tF (x, t) + (t2 − t3 − xt3)

∂F

∂t
(x, t).

Equating the coefficients of tn in the two sides above, we conclude that

2Sn(x) = (n− 4)Cn−1(x) − (n− 4)(1 + x)Cn−2(x)

and hence that

Rn(x) = (n− 2)xCn−1(x) +
n

2
Cn−1(x) + (

n

2
− 1)(x− 1)Cn−2(x).

Equation (18) follows from the formula for h(∆+(ΦI), x), given by the type Dn case of
Lemma 2.4, and the previous expression for Rn(x) by straightforward computation. This
completes the proof of the proposition. �

Proof of Theorems 1.1 and 1.2. The cases X ∈ {An, Bn, Dn} are covered by Proposi-
tions 3.1, 3.2 and 3.3. For X ∈ {F4, E6, E7, E8} the proposed formulas follow from (2)
by explicit computation, based on the formulas for h(∆+(Φ), x) given in [4, Section 6]. It
remains to comment on the cases of types I2(m), H3 and H4.

For types I2(m) and H3, it follows from the theory of local h-vectors (see parts (c) and
(d) of [27, Example 2.3]) that ξI(Γ(Φ), x) = tx, where t is the number of interior vertices
of Γ(Φ). We have t = m − 2 for X = I2(m) and t = 8 for X = H3 (see [6, Figure 1] or
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Remark 1 in Section 5) and the proposed formulas follow. Finally, let X = H4. From (2),
(3) and the fact that ξ0(Φ) = ℓ0(Φ) = 0 we get

ξ1(Φ)x(1 + x)2 + ξ2(Φ)x
2 =

∑

J⊆I

(−1)|IrJ | h(∆+(ΦJ), x).

Setting x = 1 in the previous equality we get

(19) 4ξ1(Φ) + ξ2(Φ) =
∑

J⊆I

(−1)|IrJ | N+(ΦJ),

where N+(Ψ) denotes the number of facets of ∆+(Ψ) (i.e., the number of positive clusters
for the root system Ψ). The right-hand side of (19) can be easily computed by hand (it
equals 208), using [18, Proposition 3.9] and Proposition 2.3 (v). Since ξ1(Φ) = ℓ1(Φ) is
equal to the number of interior vertices of Γ(Φ), we have ξ1(Φ) = 42 (see Remark 1 in
Section 5). It follows from (19) that ξ2(Φ) = 40. �

Proof of Corollary 1.3. Theorem 1.2 shows that the statement holds when Φ is irreducible.
The general case then follows from Lemmas 2.2 and 2.8. �

4. Proof of Theorem 1.4

We first review two of the tools from the combinatorics of permutations which will be
used in the proof of Theorem 1.4. Throughout this section, we will denote by En the set
of permutations in Sn for which every left to right maximum is a descent.

Descents and excedances. Given a permutation w ∈ Sn, we may write w in cycle
form so that each cycle begins with its largest element and the cycles of w are arranged
in the increasing order of their largest elements (this is the standard representation of w,
discussed on [26, p. 17]). We denote by φ(w) the sequence (or word) which is obtained
after removing the parentheses from the cycles of w, considered as a permutation in
Sn. For instance, if n = 9 and w = (5 2 4)(6 1)(8)(9 7 3) in standard cycle form, then
φ(w) = (5, 2, 4, 6, 1, 8, 9, 7, 3) is the permutation in S9 which maps 1 to 5, 2 to itself, 3 to
4 etc. The following properties hold (recall that Dn denotes the set of derangements in
Sn):

(a) the map φ : Sn → Sn is bijective,
(b) φ(Dn) = En,
(c) for w ∈ Sn and 1 ≤ i ≤ n we have w(i) < i if and only if i is a descent of φ(w).

We will denote by φ̂ : Dn → En the bijective map induced by φ on the set Dn.

The Foata-Schützenberger-Strehl action. We will need the following variant of the
Foata-Schützenberger-Strehl action on permutations; see, for instance, [14, Section V.1]
[13, 15]. Up to date expositions and several applications of this construction can be found
in [7, 23].

We let w = (w1, w2, . . . , wn) be a permutation in En, where wi = w(i) for 1 ≤ i ≤ n,
and set w0 = 0 and wn+1 = n + 1. A double ascent of w is an index 1 ≤ i ≤ n such
that wi−1 < wi < wi+1. Given a double ascent or a double descent i of w, we define
the permutation ψi(w) ∈ Sn as follows: If i is a double ascent of w, then ψi(w) is the
permutation obtained from w by moving wi between wj and wj+1, where j is the largest
index satisfying 1 ≤ j < i and wj > wi > wj+1 (note that such an index exists, since



THE LOCAL h-VECTOR OF THE CLUSTER SUBDIVISION 19

3

1

5
6

2

4

9

8

10

7

Figure 4. The permutation w = (7, 3, 1, 5, 6, 9, 8, 2, 4) ∈ E9.

w ∈ En and hence i is not a left to right maximum of w). Similarly, if i is a double descent
of w, then ψi(w) is the permutation obtained from w by moving wi between wj and wj+1,
where j is the smallest index satisfying i < j ≤ n and wj < wi < wj+1 (note that such
an index exists, since wn+1 = n + 1). For instance, for the example of Figure 4 we have
ψ4(w) = (7, 5, 3, 1, 6, 9, 8, 2, 4) and ψ7(w) = (7, 3, 1, 5, 6, 9, 2, 4, 8). Since the values at left
to right maxima are unchanged when passing from w to ψi(w), we have ψi(w) ∈ En in
both cases.

We call two permutations in En equivalent (under the Foata-Schützenberger-Strehl ac-
tion on En) if one can be obtained by applying a sequence of maps of the form ψi to
the other. We leave it to the reader to check that this defines an equivalence relation on
En and that each equivalence class contains a unique element having no double descent.
Moreover, if w ∈ En has no double descent and k double ascents, then the equivalence
class O(w) of w has 2k elements and exactly

(

k
j

)

of them have j descents more than w, so

that

(20)
∑

u∈O(w)

xdes(u) = xdes(w)(1 + x)k = xdes(w)(1 + x)n−2des(w).

Proof of Theorem 1.4. Starting from (4) we find that

ℓV (Γ, x) =
∑

u∈Dn

xex(u) =
∑

u∈Dn

xex(u
−1) =

∑

u∈Dn

xn−ex(u) =
∑

u∈En

xdes(u),

where the last equality uses property (c) for the map φ̂ : Dn → En. Summing (20) over
all equivalence classes of the Foata-Schützenberger-Strehl action on En we get

∑

u∈En

xdes(u) =
∑

w∈Ên

xdes(w)(1 + x)n−2des(w),

where Ên denotes the set of permutations w ∈ En with no double descent. From the
previous equalities and (6) we conclude that ξi is equal to the number of permutations

w ∈ Ên with des(w) = i, so we have derived interpretation (iii) in the theorem. The
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latter and property (c), applied to the map φ̂ : Dn → En, imply that ξi is also equal to
the number of derangements w ∈ Dn with n − i excedances and no index j satisfying
w(j) < j < w−1(j). Passing to the inverse permutation w−1 leads to interpretation (ii) of
the theorem.

Finally, to check the equality between (i) and (ii), we work with descending (instead of

ascending) runs. We observe that the map φ̂ : Dn → En induces a bijection from the set
of derangements w ∈ Dn with no double excedance onto the set of permutations in Sn

with no descending run of length one. Moreover, the number of excedances of such w is
equal to the number of descending runs of φ̂(w) and the proof follows. �

5. Remarks

1. It follows from the results of [27, Section 2] (see also our discussion in Section 2.3) that
ℓ1(Φ) = ξ1(Φ) is equal to the number of interior vertices of Γ(Φ). These vertices are exactly
the positive roots of Φ with support equal to Π (i.e., the positive roots which do not belong
to any proper parabolic root subsystem ΦJ). The number of these roots was computed
by Chapoton [10] and admits an elegant, uniform formula; see [10, Proposition 1.1]. It
would be interesting to find uniform interpretations or formulas for ℓi(Φ) or ξi(Φ) for
other values of i. We are not aware of a simple closed form expression for ℓi(Φ) in the
type An and Bn cases.

2. It is natural to inquire for a more conceptual proof of Proposition 3.3, in the spirit
of those of Propositions 3.1 and 3.2.

3. The unimodality of the derangement polynomials was first proved by Brenti [8,
Corollary 1], who also asked for a combinatorial proof [8, p. 1140]. Such a proof was given
by Stembridge [30, Corollary 2.2]. Theorem 1.4 provides another combinatorial proof (for
a stronger statement). Since the barycentric subdivision sd(2V ) is a regular subdivision
of 2V , the unimodality of the derangement polynomials also follows from (4) and [27,
Theorem 5.2].
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[7] P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Com-
bin. 29 (2008), 514–531.

[8] F. Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math. Soc. 108

(1990), 1133–1141.
[9] F. Chapoton, Enumerative properties of generalized associahedra, Sém. Lothar. Combin. 51 (2004),

Article B51b, 16pp (electronic).
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