
Sminaire Lotharingien de Combinatoire 66 (2012), Article B66dGOG AND MAGOG TRIANGLES, AND THE SCHÜTZENBERGERINVOLUTIONHAYAT CHEBALLAH AND PHILIPPE BIANEAbstrat. We desribe an approah to �nding a bijetion between Alternating SignMatries and Totally Symmetri Self-Complementary Plane Partitions, whih is basedon the Shützenberger involution. In partiular, we give an expliit bijetion betweenGog and Magog trapezoids with two diagonals.1. Introdution1.1. Alternating Sign Matries. An alternating sign matrix (ASM) is a square ma-trix with entries in {−1, 0,+1} suh that, along eah line and along eah olumn, thenon-zero entries alternate in sign, the sum of the entries in eah line and in eah olumnbeing equal to 1. The number of suh matries of size n is
An =

n−1
∏

j=0

(3j + 1)!

(n+ j)!
= 1, 2, 7, 42, 429, . . .(1.1)as proved by Zeilberger [11℄ and Kuperberg [8℄. More of this story an be found in [2℄.There have been still other proofs sine then, e.g., [4℄.It has been known for a long time (see [1℄) that the numbers An also ount the numberof Totally Symmetri Self-Complementary Plane Partitions (TSSCPP), however noexpliit bijetion between these lasses of objets has been onstruted, and �ndingone is a major open problem in ombinatoris.In this paper we propose an approah to this question whih is based on the Shützen-berger involution. More preisely, we onsider Gog and Magog triangles (in the termi-nology of Zeilberger), whih are triangular arrays of positive integers, satisfying somegrowth onditions, in simple bijetion with ASMs and TSSCPPs, respetively. The ba-si idea underlying our approah is that these triangles are examples of Gelfand�Tsetlinpatterns to whih one an apply some known transformations, suh as the Shützen-berger involution. In fat we onjeture the existene of a bijetion between Gog andMagog triangles whih an be obtained in two steps: �rst by making a �modi�ation�of a Gog triangle, based on its inversion pattern, then by applying the Shützenbergerinvolution. This bijetion should also preserve trapezoids, whih are partiular lassesof triangles, and whih are equi-enumerous, due to Zeilberger's result [11℄. As a �rststep towards a full bijetion we onstrut here a bijetion between (n, 2) Gog and Magogtrapezoids (the terminology is explained below).The paper is organized as follows. In Setion 2 we introdue the de�nitions ofGelfand�Tsetlin triangles, the Gog and Magog triangles and trapezoids, and the Shüt-zenberger involution. In Setion 3 we give a bijetion between (n, 2) Gog and Magogtrapezoids.



2 HAYAT CHEBALLAH AND PHILIPPE BIANEWe thank the referees of this paper for their onstrutive omments leading to im-provements in the presentation.2. Gog and Magog triangles and trapezoids2.1. Gelfand-Tsetlin.De�nition 1. AGelfand�Tsetlin triangle of size n is a triangular arrayX = (xi,j)n>i>j>1of positive integers
xn,1 xn,2 . . . xn,n−1 xn,n

xn−1,1 xn−1,2 . . . xn−1,n−1

. . . . . . . . .

x2,1 x2,2

x1,1suh that, whenever the entries belong to the array, one has
xi+1,j 6 xi,j 6 xi+1,j+1.In other words, the triangle is made of n diagonals in the Northwest-Southeast (NW-SE) diretion, of lengths n, n−1, . . . , 2, 1 (from left to right), and it is weakly inreasingin the SE and in the NE diretions. For example,
1 2 2 3 6

1 2 2 5
2 2 4

2 4
3

6>is a Gelfand�Tsetlin triangle of size 5.Gog and Magog triangles will be obtained from Gelfand�Tsetlin triangles by imposingfurther onditions on the entries.2.2. Gog.2.2.1. Triangles.De�nition 2. A Gog triangle of size n is a Gelfand�Tsetlin triangle suh that
(i) xi,j < xi,j+1, j < i 6 n− 1in other words, suh that its rows are stritly inreasing, and suh that
(ii) xn,j = j, 1 6 j 6 n.Here is an example with n = 5:

1 2 3 4 5
1 3 4 5

1 4 5
2 4

3There is a simple bijetion between Gog triangles and alternating sign matries (see,e.g., [2℄). If (Mij)16i,j6n is an ASM of size n, then the matrix M̃ij =
∑n

k=iMij has



GOG, MAGOG, AND SCHÜTZENBERGER 3exatly i − 1 entries 0 and n − i + 1 entries 1 in row i. Let (xij)j=1,...,i be the indies(in inreasing order) of the olumns ontaining an entry 1 in row n− i+ 1 of M̃ . Thetriangle X = (xij)n>i>j>1 is the Gog triangle orresponding to M .For example, the above Gog triangle orresponds to the following alternating signmatrix












0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0











2.2.2. Trapezoids.De�nition 3. An (n, k) Gog trapezoid (for k ≤ n) is a Gog triangle of size n, X =
(xi,j)n>i>j>1 suh that(2.1) xi,j = j for i− j ≥ k.Below is a (5, 2) Gog trapezoid.

1 2 3 4 5
1 2 4 5

1 3 4
1 3

2The entries outside the box are frozen by ondition (2.1).2.3. Magog.2.3.1. Triangles.De�nition 4. A Magog triangle of size n is a Gelfand�Tsetlin triangle suh that
xi,i 6 i, 1 6 i 6 n.The set of Magog triangles of size n is in simple bijetion with the set of TotallySymmetri Self Complementary Plane Partitions (see [2℄).2.3.2. Trapezoids.De�nition 5. An (n, k) Magog trapezoid (with k 6 n) is a Magog triangle X =

(xi,j)n>i>j>1, suh that xi,j = 1 for i− j ≥ k.Below is a (5, 2) Magog trapezoid.
1 1 1 2 4

1 1 2 2
1 1 2

1 1
1Again, the entries outside the box are frozen.



4 HAYAT CHEBALLAH AND PHILIPPE BIANE2.4. Remark. Our de�nitions of trapezoids di�er from Zeilberger's [11℄ de�nitions inthat we hop o� the last diagonals instead of the �rst ones. One an add a parameter
m to the de�nition; thus, an (n, k,m) Gog (respetively Magog) trapezoid will be an
(n, k) Gog (respetively Magog) trapezoid suh that

xi,j = max(j, xm,m−j+i) for m < i ≤ j + k − 1(respetively xi,j = 1 for j ≤ n−m).Here is a (5, 2, 3) Gog trapezoid:
1 2 3 4 5

1 2 3 5
1 2 5

2 3
3This is the smallest (entrywise) Gog triangle ontaining the boxed entries.On the other hand, here is a (5, 2, 3) Magog trapezoid:

1 1 1 2 4
1 1 2 4

1 1 2
1 1

1These trapezoids are in one-to-one orrespondene with the trapezoids de�ned by Krat-tenthaler in [7℄; more preisely, if aij is an (m,n, k) Gog trapezoid aording to Krat-tenthaler's de�nition, then the numbers m + n + 1 − aij , suitably reindexed, form thenonfrozen entries of an (n + m,n, k) Gog trapezoid aording to our de�nition, andsimilarly the bij entries of an (m,n, k) Magog trapezoid aording to Krattenthaler'sde�nition orrespond to the nonfrozen entries of an (n +m,n, k) Magog trapezoid a-ording to our de�nition.2.5. Shützenberger involution.2.5.1. Gelfand�Tsetlin triangles label bases of irreduible representations of general lin-ear groups. As suh, they are in simple bijetion with semi-standard Young tableaux(SSYT). It follows that the Shützenberger involution, whih is de�ned on SSYTs, anbe transferred to Gelfand�Tsetlin triangles. The following desription of this involutionhas been studied by Berenstein and Kirillov [6℄.First de�ne operators sk, for k 6 n−1, ating on the set of Gelfand�Tsetlin trianglesof size n. If X = (xi,j)n>i>j>1 is suh a triangle, the ation of sk on X is given by
skX = (x̃i,j)n>i>j>1 with

x̃i,j = xi,j , if i 6= k,

x̃k,j = max(xk+1,j, xk−1,j−1) + min(xk+1,j+1, xk−1,j)− xi,j .It is understood that max(a, b) = max(b, a) = a and min(a, b) = min(b, a) = a if theentry b of the triangle is not de�ned. The geometri meaning of the transformation ofan entry is the following: in row k, any entry xk,j is surrounded by four (or less if it is



GOG, MAGOG, AND SCHÜTZENBERGER 5on the boundary) numbers, inreasing from left to right:
xk+1,j xk+1,j+1

xk,j

xk−1,j−1 xk−1,jThese four numbers determine a smallest interval ontaining xk,j , namely
[max(xk+1,j, xk−1,j−1),min(xk+1,j+1, xk−1,j)] ,and the transformation maps xk,j to its mirror image with respet to the enter of thisinterval.De�ne ωj = sjsj−1 · · · s2s1.De�nition 6. The Shützenberger involution, ating on Gelfand�Tsetlin triangles ofsize n, is given by the formula

S = ω1ω2 · · ·ωn−1.It is a non trivial result that S is an involution (see [6℄), and it oinides with theShützenberger involution when transferred to SSYTs. Note that the sk do not satisfythe braid relations.Below, we give an example of the ation of the Shützenberger involution S =
ω1ω2ω3 = s1s2s1s3s2s1 on a Gelfand�Tsetlin triangle of size 4, the entries to be hangedbeing in red:

1 2 2 5
2 2 4

2 3
2

s1
1 2 2 5

2 2 4
2 3

3

s2

1 2 2 5
2 2 4

2 4
3

s3
1 2 2 5

1 2 5
2 4

3

s1
1 2 2 5

1 2 5
2 4

3

s2
1 2 2 5

1 2 5
1 4

3

s1
1 2 2 5

1 2 5
1 4

2



6 HAYAT CHEBALLAH AND PHILIPPE BIANE2.5.2. One an ompute the rightmost diagonal of SX .Lemma 1. Let X = (Xi,j) be a Gelfand�Tsetlin triangle and Y = SX its image underthe Shützenberger involution. Then
Ynn = Xnn(2.2)
Ykk = max

n=j0>j1>j2>...>jn−k≥1

[(

n−k−1
∑

i=0

Xji+i,ji −Xji+1+i,ji+1

)

+Xjn−k+n−k,jn−k

](2.3) for 1 ≤ k < n.Proof. We reall the desription of the Shützenberger involution in terms of wordsand the Robinson�Shensted orrespondene. To the Gelfand�Tsetlin triangle X let usassoiate the semi-standard Young tableau, with entries in [1, n], suh that the shapeof the tableau formed with letters u ≤ i is the partition Xij , j = 1, . . . , i. For example,our Gelfand�Tsetlin triangle
1 2 2 3 6

1 2 2 5
2 2 4

2 4
3orresponds to the tableau (in Frenh notation)

5

4 5

3 3

2 2 5

1 1 1 2 4 5To suh a tableau we assoiate the word w obtained by reading the tableau from topto bottom and from left to right. In our example, this is
w = 5 | 4 5 | 3 3 | 2 2 5 | 1 1 1 2 4 5.Then we perform the Shützenberger involution on the word: we read it bakwards andreplae eah letter i by n + 1− i to yield a word Sw. In our example, we obtain
Sw = 1 2 4 5 5 5 | 1 4 4 | 3 3 | 1 2 | 1.This word is a onatenation of nondereasing words (Sw)1|(Sw)2| . . . orrespondingto the suessive rows of the tableau read from bottom to top and from right to left.It is easy to verify that these nondereasing words, viewed as partitions, are thepartitions onjugate to the suessive SW-NE diagonals of the original Gelfand�Tsetlintriangle (starting from the rightmost one). E.g., in our example (Sw)2 is the word 144whih is the partition onjugate to 3222, the seond rightmost SW-NE diagonal of thetriangle. It follows that, for 1 ≤ i ≤ j < k,

Xk,k−i+1 −Xj,j−i+1 is the number of letters of (Sw)i whih(2.4) belong to [n− k + 1, n− j].



GOG, MAGOG, AND SCHÜTZENBERGER 7Looking again at our example, with i = 2, j = 4, k = 5, one hasX5,4−X4,3 = 3−2 = 1,the number of 1's in the word (Sw)2 = 144.Applying the Robinson�Shensted algorithm to the word Sw yields an insertiontableau whih is the image of our tableau under the Shützenberger involution. Theshape of the insertion tableau is the same as that of the original tableau, thereforethe top row of the Gelfand�Tsetlin triangle is unhanged (this follows also easily fromDe�nition 6). This yields (2.2).By a fundamental property of the Robinson�Shensted algorithm, the largest elementof the ith row (from bottom) in the Gelfand�Tstelin triangle is equal to the length ofthe longest nondereasing subsequene of the subword Swi of Sw made of the numbers
≤ i.A nondereasing subsequene of maximal length in Swi is of the form [1, k1] ∩
(Swi)1 | [k1, k2] ∩ (Swi)2 | . . . [kl−1, kl] ∩ (Swi)l for some sequene 1 ≤ k1 ≤ . . . ≤ kl ≤ i.Using (2.4), formula (2.3) follows from these onsiderations. �2.5.3. GOGAm triangles. Sine the Shützenberger involution onsists in reading aword bakwards and inverting the letters, we introdue the following de�nition.De�nition 7. A GOGAm triangle of size n is a Gelfand�Tsetlin triangle suh that itsimage under the Shützenberger involution is a Magog triangle of size n.Here is an example of a GOGAm triangle with n = 5:

1 2 3 3 5
2 3 3 5

3 3 5
3 5

5By Lemma 1, we an give a desription of GOGAm triangles.Proposition 1. Let X = (Xi,j) be a Gelfand�Tsetlin triangle. Then X is a GOGAmtriangle if and only if Xnn ≤ n and, for all 1 ≤ k ≤ n− 1, and all n = j0 > j1 > j2 >

. . . > jn−k ≥ 1, one has
(

n−k−1
∑

i=0

Xji+i,ji −Xji+1+i,ji+1

)

+Xjn−k+n−k,jn−k
≤ k.Proof. Immediate from Lemma 1. �2.5.4. GOGAm trapezoids. If a Magog triangle ontains a triangle of 1's forming its�rst leftmost diagonals, then this triangle remains invariant under all transformations

sk, and therefore also under the Shützenberger involution. This justi�es the followingde�nition.De�nition 8. An (n, k) GOGAm trapezoid is a GOGAm triangle of size n suh that
xi,j = 1 for i− j ≥ k. Equivalently, it is the image under the Shützenberger involutionof an (n, k) Magog trapezoid.



8 HAYAT CHEBALLAH AND PHILIPPE BIANEHere is a (5, 2) GOGAm trapezoid:
1 1 1 2 4

1 1 2 4
1 2 4

1 4
32.6. Krattenthaler's onjeture. Zeilberger [11℄ proved that there exists as many

(n, k) Gog trapezoids as (n, k) Magog trapezoids for all k ≤ n. Krattenthaler [7℄onjetures a re�ned equi-enumeration: aording to this onjeture, there are as many
(n, k,m) Gog and Magog trapezoids. Atually he also introdues two more statistison these trapezoids whih he onjetures to oinide.In the remaining setions we shall give a bijetion between (n, 2) Gog trapezoids and
(n, 2) GOGAm trapezoids, whih restrits to a bijetion between (n, 1) Gog trapezoidsand (n, 1) GOGAm trapezoids. If we ompose with the Shützenberger involution, weobtain a bijetive proof of Zeilberger's result in this ase. We also give a natural statistion Gog trapezoids whih is transformed into a natural statisti on Magog trapezoidsby this bijetion, see Setion 3.5.3. Our bijetion also maps (n, 2, m) Gog trapezoidsto (n, 2, m) Magog trapezoids, however the two statistis of Krattenthaler on Gog andMagog trapezoids are not mapped to one another.2.7. Some motivation. The bijetion presented below was found by �rst onsideringthe ases of (n, 2, 2) and (n, 3, 3) trapezoids, whih an be onsidered as integer poly-topes, and looking for pieewise linear bijetions. The expliit bijetions found in thisway turned out to involve the Shützenberger involution, whih motivated us to try thisfor larger trapezoids. During this study, two statistis on Magog triangles were used,one of them orresponding by the bijetion to the position of the 1 in the bottom row ofthe ASM (see Setion 3.5.3), while the other, onjeturally, orresponds to the positionof the 1 in the righmost olumn of an ASM. More on these topis an be found in [3℄.3. (n, 2) Gog and Magog trapezoids3.1. Inversions.De�nition 9. An inversion in a Gog triangle is a pair (i, j) suh that
xi,j = xi+1,j .For example, the following Gog triangle ontains three inversions, (2, 2), (3, 1), (4, 1),the respetive equalities being in red in this �gure:

1 2 3 4 5
1 3 4 5

1 4 5
2 4

3Remark 1. The number of inversions of a Gog triangle oinides with the number ofinversions of its assoiated ASM as de�ned by Mills, Robbins, Rumsey [10℄ minus thenumber of −1s.



GOG, MAGOG, AND SCHÜTZENBERGER 9De�nition 10. Let X = (xi,j)n>i>j>1 be a Gog triangle and let (i, j) be suh that
1 6 i 6 j 6 n.An inversion (k, l) overs (i, j) if i = k + p and j = l + p for 1 6 p 6 n− k.The entries (i, j) overed by an inversion are marked by ”+ ” in the following �gure:

◦ ◦ ◦ + ◦
◦ ◦ + ◦

◦ ◦ ◦
◦ ◦

◦The basi idea for our bijetion is that, for any inversion in the Gog triangle, we shouldsubtrat 1 from the entries overed by this inversion. This simple minded proedureworks for (n, 1) trapezoids, as we will show as a byprodut of our bijetion for (n, 2)trapezoids. It is a good exerise to hek this diretly. The proedure does not work for
(n, k) trapezoids with k > 1 but, by making some adequate adaptations, we will obtaina bijetion for trapezoids of size (n, 2).3.2. (n, 2) trapezoids. Consider an (n, 2) Gog trapezoid. This is an array of the form

1 2 3 · · · · · · n− 2 n− 1 n

1 2
. . . . .

.
n− 3 b2 a1

1
. . . . .

.
n− 4 b3 a2

. . . 2 . .
.

. .
.

. .
.

1 2 bn−3 an−4

1 bn−2 an−3

bn−1 an−2

an−1We shall give an algorithm whih builds a GOGAm triangle from the Gog triangle bysuessively adding NW-SE diagonals of inreasing lengths, and making appropriatehanges to the triangle. In the end we will obtain a triangle of the form
1 1 1 · · · · · · 1 β1 α0

1 1
. . . . .

.
1 β2 α1

1
. . . . .

.
. .
.

β3 α2

. . . 1 . .
.

. .
.

. .
.

1 1 βn−3 αn−4

1 βn−2 αn−3

βn−1 αn−2

αn−1By Proposition 1, suh a triangle is a GOGAm triangle if and only if
α0 ≤ n

α0 − αi + βi ≤ n− 1 for 1 ≤ i ≤ n− 1,

α0 − αi + βi − βj + 1 ≤ j − 1 for 1 ≤ i < j ≤ n− 1.



10 HAYAT CHEBALLAH AND PHILIPPE BIANE3.3. The algorithm. First step: the rightmost NW-SE diagonal onsists of one entry
n and is not hanged, yielding the triangle of size 1 equal to X(1) = n.Seond step: The triangle formed by the two �rst diagonals is

n− 1 n

a1where a1 = n or n− 1. In the �rst ase, the algorithm yields the triangle
X(2) =

n− 1 n

nin the seond ase we have an inversion and aordingly subtrat 1 from the upper rightentry, whih gives the triangle
X(2) =

n− 1 n− 1
n− 1Assume now that the �rst k diagonals have been treated and a triangle X(k) of size

k, of the form
n− k + 1 n− k + 1 · · · n− k + 1 v1 u0

. . .
. . . . .

.
v2 u1

. . . . .
.

. .
.

. .
.

n− k + 1 vk−2 uk−3

vk−1 uk−2

uk−1has been obtained.Furthermore assume that this triangle satis�es the inequalities
u0 ≤ n(3.1)

u0 − ui + vi ≤ n− 1 for 1 ≤ i ≤ k − 1,(3.2)
u0 − ui + vi − vj + 1 ≤ j − 1 for 1 ≤ i < j ≤ k − 1,(3.3)and that

uk−1 = ak−1.(3.4)Let us add, on the left of this triangle, the diagonal
n− k

n− k
. . .

n− k

vk
ukwith uk = ak, vk = bk. This yields a triangle Z(k) of size k + 1 (this triangle willnot, in general, be a Gelfand�Tsetlin triangle, beause the inequality vk ≤ vk−1 may bebroken). The algorithm will modify Z(k) to get a triangle X(k+1) of size k + 1. Firstwe onsider all the inversions reated by the entries of the left diagonal equal to n− k(exept maybe those oming from uk and vk), and aordingly subtrat ones from the



GOG, MAGOG, AND SCHÜTZENBERGER 11above triangle. This transforms the entries n − k + 1 in the upper left triangle into
n − k's. Then we treat the entries uk, vk, and the ones lying on the same SW-NEdiagonal, aording to the algorithm desribed below, whih will yield a triangle of theform

n− k n− k · · · · · · n− k v′1 u′
0

n− k
. . . . .

.
. .
.

v′2 u′
1

. . . . .
.

. .
.

. .
.

u′
2

. . . . .
.

. .
.

. .
.

n− k v′k−1 u′
k−2

v′k u′
k−1

u′
kWe will hek that the new triangle is a Gelfand�Tsetlin triangle and that (3.1), . . . ,(3.4) are satis�ed for this new triangle. The modi�ation will depend on the inversionpattern in the leftmost diagonal that we have added. In all ases, we will have

u′
k = uk,(3.5)the remaining entries being modi�ed as follows, aording to the four possibilities forthe inversions in the two bottom rows.

(i) The �rst ase is vk = n− k, uk = n− k, when there are two inversions. Then themodi�ation onsists in subtrating 1 from eah of the entries of the previous triangle,that is, we put u′
i = ui − 1, v′i = vi − 1, for i ≤ k − 1, and v′k = vk = n− k.

(ii) The seond is the ase vk = n − k < uk. Then we put u′
i = ui, v′i = vi − 1, for

i ≤ k − 1, and v′k = vk = n− k.
(iii) The third ase is when n − k < vk = uk. We put u′

i = ui − 1 for i ≤ k − 1.Observe that vk = bk = uk < ak−1 = uk−1, therefore ui, 0 ≤ i ≤ k, is noninreasing.Two subases our:
(iiia) if the triangle we obtain is a Gelfand�Tsetlin triangle, then we keep it asthe modi�ed triangle, i.e., we put v′i = vi for i ≤ k.
(iiib) if the triangle is not Gelfand�Tsetlin, then there must exist j ≤ k − 1with vj = uj. In this ase, we put v′i = vi − 1, for i ≤ k − 1, and we put v′k = n− k.

(iv) Finally the last ase is when n− k < vk < uk. There are two possibilities.
(iva) if vk ≤ vk−1, then Z(k) is a Gelfand�Tsetlin triangle, and we do not modi�yit, i.e., we put u′

i = ui, v
′
i = vi for all i ≤ k, thus X(k+1) = Z(k).

(ivb) The last subase is vk > vk−1. First we put u′
i = ui for all i. Let

l = max{i|vk−i ≤ vk − i}.(3.6)Sine vk−i is nondereasing and vk − i is dereasing, one has l ≥ 1 and vk−i ≤ vk − ifor all i ≤ l. We put v′k = v′k−1 = . . . = v′k−l+1 = n− k and v′k−l = vk − l, all the otherentries being unhanged: v′i = vi for i < k − l.



12 HAYAT CHEBALLAH AND PHILIPPE BIANERemark 2. Rules (i), (ii), (iiia), (iva) onsist just in subtrating 1 from entries overedby the inversions in the SE-NW diagonal whih has been added. The rules (iiib) and
(ivb) are more subtle.3.3.1. Proof of the algorithm, �rst part. Let us now hek that, in eah ase, we obtaina Gelfand�Tsetlin triangle X(k) satisfying inequalities (3.1), (3.2), (3.3) (the identity(3.4) is immediate from (3.5)).We start with rules (i), (ii), (iiia), (iiib), (iva).

(i) Sine ak−1 = uk−1 > vk and vk−1 ≥ n−k+1, X(k+1) is a Gelfand�Tsetlin triangle.For 1 ≤ i < j ≤ k−1, one has u′
0−u′

i+v′i−v′j = u0−ui+vi−vj hene (3.3) is satis�edfor these values. Sine
u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ n− 1− 1− (n− k) = k − 2,we see that (3.3) is satis�ed for all values. Sine u′
0 = u0 − 1 ≤ n− 1 and u′

i ≥ v′i, onehas (3.2) and (3.1).
(ii) Again, X(k+1) is learly a Gelfand�Tsetlin triangle. For 1 ≤ i < j ≤ k, we hek(3.3) as above, while (3.1) is lear. Finally u′

0 − u′
i + v′i = u0 − ui + vi − 1 ≤ n− 2, and

u′
0 − u′

k + v′k ≤ n− 1, sine −u′
k + v′k ≤ −1, whih gives (3.2).

(iiia) Sine ui > vi, one has u′
i ≥ v′i for i ≤ k, and the triangle X(k+1) is a Gelfand�Tsetlin triangle.One has

u′
0 = u0 − 1

u′
0 − u′

i + v′i = u0 − ui + vi i < k

u′
0 − u′

k + v′k = u0 − 1 ≤ n− 1

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj i < j < k

u′
0 − u′

i + v′i − v′k < n− 1− (n− k) = k − 1 (sine v′k > n− k),from whih inequalities (3.1), (3.2), (3.3) follow.
(iiib) The new triangle is learly Gelfand�Tsetlin. Furthermore, one has

u′
0 = u0 − 1

u′
0 − u′

i + v′i = u0 − ui + vi − 1 i < k

u′
0 − u′

k + v′k < u′
0 ≤ n

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj i < j < k

u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ k − 2,whih imply inequalities (3.1), (3.2), (3.3).
(iva) The fat that X(k+1) is Gelfand�Tsetlin is immediate. The inequalities arepreserved, indeed, all inequalities involving indies < k are immediate, and one has

u′
0 − u′

k + v′k ≤ u′
0 − 1 ≤ n− 1, sine u′

k > v′k,

u′
0 − u′

i + v′i − v′k ≤ n− 1− (n− k + 1) = k − 2, sine v′k > n− k.



GOG, MAGOG, AND SCHÜTZENBERGER 133.3.2. Proof of the algorithm, seond part. We now onsider the last rule, (ivb). This isthe most deliate part of the proof. We �rst gather some information on the algorithmwhih has been onstruted up to now.Lemma 2. Just after a step where rule (i) or (ii) is applied, rule (iiib) never applies.Proof. Suppose that rule (i) applies to Z(k), then n − k = bk = vk = ak = uk, and
n−k−1 < bk+1 = ak+1 is impossible sine this would yield bk+1 ≥ ak ontraditing theGog strit inequality for the original triangle. If rule (ii) applies to Z(k) then vi < ui in
X(k+1), for all i < k, therefore rule (iiib) annot be applied to Z(k+1). �Lemma 3. If rule (ivb) applies at step k, then neessarily at the previous step eitherrule (iiib) or (ivb) was applied.Proof. If one of the other rules had been applied at the previous step, one would have
vk−1 ≥ vk. �Lemma 4. If rule (ivb) is applied to the triangle Z(k), then to eah of the triangles
Z(k−l), Z(k−l+1), . . . , Z(k−1) either rule (iiib) or (ivb) was applied.Proof. Assume that at some step t < k in the algorithm we have applied rule (iiia) or
(iva) to Z(t). Then the entry v

(t+1)
t in the triangle X(t+1) (we emphasize the dependeneon the step by adding a supersript) satis�es bt = v

(t+1)
t . At eah next step s, we willsubtrat at most 1 from v

(s)
t , therefore, in the triangle Z(k),

v
(k)
t ≥ bt − (k − t− 1) ≥ bk − (k − t− 1) = v

(k)
k − (k − t− 1) > v

(k)
k + t− k.It follows that, in Z(k), one has l < k− t (where l is de�ned by (3.6). We onlude that,to eah of the triangles Z(k−l), Z(k−l+1), . . . , Z(k−1) either rule (i), (ii), (iiib) or (ivb)was applied. But we have seen that rule (iiib) annot follow immediately rule (i) or

(ii) and that rule (ivb) always follows either rule (iiib) or (ivb), so that in fat only rule
(iiib) or (ivb) has been applied to eah of the triangles Z(k−l), Z(k−l+1), . . . , Z(k−1). �Lemma 5. If rule (ivb) is applied to the triangle Z(k), then one has

vk−1 = . . . = vk−l = n− k + 1.Proof. Sine n − k + 1 ≤ vk−1 ≤ . . . ≤ vk−l, it su�es to prove that vk−l ≤ n − k + 1.By the preeding Lemma, either rule (iiib) or (ivb) has been applied to the triangles
Z(k−l), Z(k−l+1), . . . , Z(k−1). Let us look at the suessive values of the entry v

(s)
k−l in thetriangle X(s) (or Z(s)). One has v(k−l+1)

k−l = n− k + l, sine rule (iiib) or (ivb) has beenapplied to Z(k−l). Eah time rule (iiib) is applied v
(s)
k−l is dereased by 1. There are twoases:(a) If only rule (iiib) is applied to Z(k−l), Z(k−l+1), . . . , Z(k−1), then one has v

(k)
k−l =

n− k + 1.(b) If not, let i be the least index l ≥ i ≥ 1 suh that rule (ivb) is applied to Z(k−i),and let l′ = max{j|v
(k−i)
k−i − j ≥ v

(k−i)
k−i−j}. By rule (ivb), one has

v
(k−i+1)
k−l′−i = bk−i − l′, v

(k−i+1)
k−i−j = n− k + i, j = 0, 1, . . . , l′ − 1.



14 HAYAT CHEBALLAH AND PHILIPPE BIANESine rule (iiib) is applied to Z(k−i+1), . . . , Z(k−1), one has v(k)k−l′−i = bk−i− l′− i+1 and
v
(k)
k−p = n− k + 1, p = 1, 2, . . . , l′ + i− 1.(3.7)It follows that

v
(k)
k−l′−i = bk−i − l′ − i+ 1 ≥ bk − l′ − i+ 1 = v

(k)
k − l′ − i+ 1,hene, by (3.6),

v
(k)
k−l′−i > v

(k)
k − l′ − i.Consequently, we have l < l′ + i, and vk−l = n− k + 1 by (3.7). �Lemma 6. If rule (iiib) or (ivb) is applied to the triangle Z(k), then there exists some

i < k − l suh that u′
i = v′i.Proof. For rule (iiib) this is easy to see.In the ase of rule (ivb), there exists some step before k, when rule (iiib) has beenapplied and then only rules (iiib) or (ivb) have been applied. If rule (iiib) is applied,there must exist an i with ui = vi, and then applying either rule (iiib) or (ivb) annotdestroy this pair ui = vi. This implies that there exists some i suh that u′

i = v′i. Suha pair annot exist for i ≥ k − l by the preeding lemma, therefore i < k − l. �3.3.3. Proof of the algorithm, end. Assuming that rule (ivb) is applied to the triangle
Z(k), we an now hek that our triangle X(k+1) satis�es all the required properties.Sine v′k−l = vk− l, and vk−l−1 > vk− l−1, by the de�nition of l, one has v′k−l−1 ≥ v′k−l.This implies that X(k+1) is a Gelfand�Tsetlin triangle, as is easily veri�ed.Let us hek the inequalities (3.1), (3.2), (3.3).First, sine u′

0 = u0, (3.1) is lear. Consider u′
0 − u′

i + v′i. Sine u′
i = ui is unhangedand v′i ≤ vi for all values of i, exept v′k−l, in order to hek (3.2) it su�es to onsider

u′
0 − u′

k−l + v′k−l and u′
0 − u′

k + v′k. One has
u′
k−l = uk−l ≥ uk > vk − l = v′k−l,and therefore

u′
0 − u′

k−l + v′k−l ≤ n− 1.Sine u′
k > v′k, one has

u′
0 − u′

k + v′k ≤ n− 1.Consider u′
0 − u′

i + v′i − v′j, for i < j ≤ k.If j < k − l, then u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj , so (3.3) is preserved.If j = k − l, then u′
i = ui, v

′
i = vi, v

′
j ≥ vj, therefore the inequality is again true.If j > k − l > i, then v′j = n− k = vk−l − 1 (by Lemma 5), therefore

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vk−l + 1 ≤ k − l − 1 ≤ j − 2.If j > k − l = i then
u′
0 − u′

i + v′i − v′j = u0 − uk−l + vk − l − n+ k

= u0 − n + vk − uk−l − l + k ≤ k − l − 1 ≤ j − 2sine vk < uk−l.If k > j > i > k − l then v′i − v′j = vi − vj and u′
0 − u′

i = u0 − ui therefore
u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj ≤ j − 2.



GOG, MAGOG, AND SCHÜTZENBERGER 15Finally if k = j > i > k − l, then
u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ n− 1− 1− (n− k) = k − 2. �Applying the algorithm until we have treated all diagonals, we obtain thus an (n, 2)GOGAm trapezoid from our (n, 2) Gog trapezoid.3.3.4. Invertibility. We an infer from the leftmost SE-NW diagonal of X(k+1) whihrule was applied to Z(k). The only ambiguity is whether rule (ii), (iiib) or (ivb) hasbeen applied when n − k = v′k < u′
k. Rule (ii) has been applied if and only if one has

u′
i > v′i for all i < k. In order to distinguish between rules (iiib) and (ivb), we now statethe following lemma.Lemma 7. Assume X(k+1) is obtained from Z(k) by applying rule (iiib) or (ivb), andlet l = 1 +max{i|v′k−i = n− k}. Then(a) v′k−l + l < u′

k if rule (ivb) has been applied.(b) v′k−l + l ≥ u′
k if rule (iiib) has been applied.Proof. Part (a) is obvious from the statement of rule (ivb), sine v′k−l+l = vk < uk = u′

k.In order to prove part (b), note that in ase (iiib) is applied to Z(k), then by Lemma 2,to all the triangles Z(k−i) for 1 ≤ i ≤ l−1 either rule (iiib) or (ivb) has been applied. Ifonly rule (iiib) has been applied to Z(k−l+1), . . . , Z(k−1), then rule (iiia) or (iva) musthave been applied to Z(k−l), therefore v′k−l = bk−l − l whih implies v′k−l + l = bk−l ≥
bk = ak = u′

k.If rule (ivb) has been applied at some step t with k − l + 1 ≤ t ≤ k − 1, then let ibe the smallest number suh that (ivb) has been applied to Z(k−i). By Lemma 5 thereexists an l′ ≥ 1 suh that
v
(k−i+1)
k−i = . . . = v

(k−i+1)
k−i−l′+1 = n− k + i− 1and

v
(k−i+1)
k−i−l′ = bk−i − l′ > n− k + i− 1.Sine rule (iiib) is applied to Z(k−i+1), . . . , Z(k−1) it follows that

v′k = . . . = v′k−i−l′−1 = n− kand
v′k−i−l′ = bk−i − l′ − i+ 1 > n− k.Therefore l = l′ + i and v′k−l + l ≥ u′

k sine v′k−l + l = bk−i ≥ bk = ak = u′
k. �



16 HAYAT CHEBALLAH AND PHILIPPE BIANE3.4. The inverse map.3.4.1. The algorithm. We now prove that the map de�ned above has an inverse. Let
X be a (n, 2) GOGAm trapezoid of shape

1 1 1 · · · · · · 1 β1 α0

1 1
. . . . .

.
1 β2 α1

1
. . .

. . . . .
.

β3 α2

. . .
. . . . .

.
. .
.

. .
.

1 1 βn−3 αn−4

1 βn−2 αn−3

βn−1 αn−2

αn−1One has
α0 ≤ n,

α0 − αi + βi ≤ n− 1 for 1 ≤ i ≤ n− 1,

α0 − αi + βi − βj + 1 ≤ j − 1 for 1 ≤ i < j ≤ n− 1.We shall give an algorithm whih is the inverse of the one above.Let k be an integer dereasing from k = n − 1 to k = 0. Let Y (n) be an empty set,and X(n) = X ; at eah step we will have a pair (Y (k+1), X(k+1)) where Y (k+1) is an array(non empty only for k < n− 1)
1 2 · · · n− k − 1

1 2
. . .

. . .

. . .
. . . . .

.
n− k − 1

. . .
. . . . .

.
bk+1

. . . 2 . .
.

ak+1

1 bn−2 . .
.

bn−1 an−2

an−1whih forms the leftmost NW-SE diagonals of a Gog triangle, and X(k+1) is a Gelfand�Tsetlin triangle:
n− k n− k · · · n− k v′1 u′

0

n− k n− k . .
.

v′2 u′
1

. . . . .
.

. .
.

. .
.

n− k v′k−1 u′
k−2

v′k u′
k−1

u′
k



GOG, MAGOG, AND SCHÜTZENBERGER 17satisfying the inequalities (3.1), (3.2), (3.3). Then we make a modi�ation of the triangle
X(k+1), aording to the rules below, to get a triangle Z(k)

n− k n− k + 1 · · · n− k + 1 v1 u0

n− k
. . . . .

.
v2 u1

. . . . .
.

. .
.

. .
.

n− k vk−1 uk−2

vk uk−1

ukThen we add the leftmost NW-SE diagonal of this triangle to the right of Y (k+1) to get
Y (k) (thus bk = vk and ak = uk), and take the remaining triangle as X(k). We will provethat, at eah step, X(k) is a Gelfand�Tsetlin triangle whih satis�es the inequalities(3.1), (3.2), (3.3). Furthermore, we will prove that, at the next step of the algorithm,the entries ak−1, bk−1 satisfy

n− k + 1 ≤ bk−1, bk ≤ bk−1, bk < ak−1, bk ≤ ak ≤ ak−1 ≤ n,(3.8)whih imply that the triangle Y (0) is a Gog triangle.We will use the following notation: if v′k = n − k and there exists i < k suh that
u′
i = v′i, then

l = 1 +max{j | v′k−j = n− k}.(3.9)Let us now desribe the modi�ation map yielding triangle Z(k) from X(k+1) by theinverse algorithm, for whih we onsider several ases, inverse to the ases onsideredin the forward algorithm.
(i) n − k = v′k = u′

k, then we put ui = u′
i + 1, vi = v′i + 1 for i ≤ k − 1 and

vk = v′k, uk = u′
k.

(ii) The seond ase is n − k = v′k < u′
k, and v′i < u′

i for all i < k. Then we put
ui = u′

i, vi = v′i + 1, for i ≤ k − 1, and vk = v′k, uk = u′
k.

(iiia) n − k < v′k = u′
k, then we put ui = u′

i + 1, vi = v′i for i ≤ k − 1, and
vk = v′k, uk = u′

k.
(iiib) n − k = v′k < u′

k, there exists i < k suh that u′
i = v′i, and v′k−l + l ≥ u′

k(reall (3.9)), then we put ui = u′
i + 1, vi = v′i + 1, for i ≤ k − 1, and vk = uk = u′

k.
(iva) n− k < v′k < u′

k, then we put ui = u′
i, vi = v′i, i ≤ k.

(ivb) n− k = v′k < u′
k, there exists i < k suh that u′

i = v′i, and v′k−l + l < u′
k,then we put ui = u′

i, for i ≤ k, vi = n− k + 1 for k − l ≤ i ≤ k − 1, vk = v′k−l + l, and
vi = v′i for all other i.Let us now hek that this map is well de�ned. By Setion 3.3.4, it is an inverse ofour modi�ation map. We onsider the ases (i),. . . ,(iv) above. First, by heking theases one after the other, one sees that the sequene ai onstruted by the rules above isnoninreasing (ai ≤ ai−1), and that bi ≥ n− i. The remaining inequalities in (3.8) will



18 HAYAT CHEBALLAH AND PHILIPPE BIANEbe heked ase by ase. We also have to hek that the triangles X(k) are Gelfand�Tsetlin, and that they satisfy (3.1), (3.2), (3.3). The equality (3.4) is immediate byinspetion.We start with an observation about rules (iiib) and (ivb).Lemma 8. If rule (iiib) or (ivb) has been applied to the triangle X(k+1) then in thetriangle X(k) there exists a pair ui = vi.Proof. This is immediate for rule (iiib), sine adding 1 to both u′
i and v′i does not destroythe equality u′

i = v′i.For rule (ivb) we notie that n − k = v′k < u′
k, and v′k−l + l < u′

k ≤ u′
k−l imply that

v′k−j < u′
k−j for j = 1, . . . , l, therefore the inequality u′

i = v′i must be realized for some
i < k − l, and then ui = u′

i = v′i = vi by rule (ivb). �3.4.2. Proof of the algorithm. We now hek all rules of the inverse algorithm.
(i) It is lear that the triangle X(k) is Gelfand�Tsetlin.We have u′

0 = u′
0 − u′

k + v′k ≤ n− 1, this proves (3.1).Sine u0−1−ui+vi− (n−k) = u′
0−u′

i+v′i−v′k ≤ k−2 we have u0−ui+vi ≤ n−1.All other inequalities in (3.2), (3.3) involve di�erenes like u0 − ui or vi − vj whihare not unhanged by the replaement u′ → u, v′ → v.Moreover, the inequalities (3.8) are immediate.
(ii) Sine v′i < u′

i for all i, one has vi ≤ ui, hene X(k) is a Gelfand�Tsetlin triangle,and (3.1) is immediate sine u0 = u′
0.Sine u′

0 − u′
i + v′i − v′k ≤ k − 2, one has u0 − ui + vi ≤ n− 1, thus (3.2) holds.Finally (3.3) omes from u′

0 − u′
i = u0 − ui and v′i − v′j = vi − vj.The inequalities (3.8) at the next step are immediate.

(iiia) Again it is easy to see that X(k) is a Gelfand�Tsetlin triangle. Sine u′
0 − u′

k +
v′k ≤ n− 1 and u′

k = v′k we get u0 = u′
0 + 1 ≤ n, hene (3.1).The other inequalities (3.2), (3.3) are heked similarly.The inequalities (3.8) at the next step are immediate.

(iiib) The fat that X(k) is a Gelfand�Tsetlin triangle is immediate.Sine there exists j with u′
j = v′j , one has u′

0 = u′
0 − u′

j + v′j ≤ n − 1, thus u0 =
u′
0 + 1 ≤ n.Sine u′

0−u′
i+v′i−v′k ≤ k−2, it follows that u′

0−u′
i+v′i ≤ n−2 and u0−ui+vi ≤ n−1.The other inequalities are satis�ed sine u′

0 − u′
i + v′i − v′j = u0 − ui + vi − vj for

1 ≤ i < j ≤ k − 1.We now hek the inequalities (3.8).One has bk = ak < ak−1 = u′
k−1 + 1.It remains to see that bk ≤ bk−1.If v′k−1 > n−k, then vk−1 = v′k−1+1 ≥ u′

k = ak = bk sine we are applying rule (iiib)to X(k+1) (in this ase, l = 1). At the next step, we will have bk−1 ≥ vk−1 ≥ bk.If v′k−1 = n − k, then one has l > 1, and by Lemma 8 either rule (iiib) or rule (ivb)applies to X(k). In either ase it is easy to see that bk ≤ bk−1.
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(iva) In this ase, the fat that X(k) is a Gelfand�Tsetlin, as well as the inequalities(3.1), (3.2), (3.3), is immediate. Also the inequalities (3.8) are immediate.
(ivb) Sine n− k < u′

k ≤ u′
i for i ≤ k − 1, it follows that ui ≥ n− k + 1 for all i. Itis then lear that X(k) is a Gelfand�Tsetlin triangle.Let us hek the inequalities (3.1), (3.2), (3.3) for X(k).Sine u0 = u′

0, inequality (3.1) is obvious.One has u0 − ui + vi = u′
0 − u′

i + v′i ≤ n− 1 for i < k − l. For k > i ≥ k − l, one has
vi = n−k+1 ≤ vk−l+ l < uk ≤ ui, therefore −ui+ vi ≤ −1, and inequality (3.2) holds.Inequality u0 − ui + vi − vj + 1 = u′

0 − u′
i + v′i − v′j + 1 ≤ j − 1 holds if i < j < k − l.If i < k − l, one has

u0 − ui + vi − (n− k) + 1 = u′
0 − u′

i + v′i − v′k−l+1 + 1 ≤ k − l,hene
u0 − ui + vi − vk−l + 1 = u0 − ui + vi − (n− k + 1) + 1 ≤ k − l − 1,whih proves (3.3) for i < j = k − l.If i < k − l < j, then vi = v′i and vj ≥ v′j , therefore (3.3) holds as well.One has
u0 − uk−l + vk−l − vj + 1 ≤ u′

0 − u′
k−l + v′k−l − vj + 1 ≤ k − l − 1,proving (3.3) for i = k − l < j.If k − l < i < j, then vi = vj , and v′i = v′j. Consequently,

u0 − ui + vi − vj + 1 = u′
0 − u′

i + v′i − v′j + 1 ≤ j − 1.It remains to hek inequalities (3.8).After rule (ivb) is applied, one has vk−1 = n− k+1 and, for some i < k− 1, ui = vi.Therefore rule (iiib) or (ivb) applies to the next step. In either ase one has bk < ak−1.Reall that
bk = v′k−l + l < u′

k = akand
vk−1 = . . . = vk−l = n− k + 1.It follows that l′ = 1 +max{i|vk−1−i = n− k + 1} ≥ l.If vk−1−l′ + l′ < uk−1 then rule (ivb) applies to X(k−1) and

bk−1 = vk−1−l′ + l′ ≥ v′k−l + l = bk.If vk−1−l′ + l′ ≥ uk−1 then l = l′, uk = uk−1 and
bk−1 = vk−1−l′ + l′ = vk−1−l + l = uk−1 > bk.

�3.5. Some properties of the bijetion.3.5.1. (n, 1) trapezoids. If one starts from an (n, 1) trapezoid, then only rules (i) and
(ii) apply, and it is easy to see that one gets in the end an (n, 1) GOGAm trapezoid,and that it is obtained by subtrating from any entry of the Gog trapezoid the numberof inversions whih over it. The same remark applies to the inverse map, so that ourbijetion restrits to a bijetion between (n, 1) trapezoids.



20 HAYAT CHEBALLAH AND PHILIPPE BIANE3.5.2. (n, 2, m) trapezoids. One an hek that our bijetion restrits to a bijetionbetween (n, 2, m) Gog trapezoids and (n, 2, m) Magog trapezoids for all m ≤ n. Thisdoes not ause any di�ulty, but is somewhat umbersome to write down, so we leavethis veri�ation to the interested reader.3.5.3. A statisti. For a Gog triangle X , the entry X11 gives the position of the 1 in thebottom row of the assoiated alternating sign matrix. If X is an (n, 2) Gog triangle,it follows from our algorithm that the 11 entry of the GOGAm triangle has value X11.From Lemma 1 we onlude that, for the (n, 2) Magog triangle T , assoiated to X ,one has X11 =
∑n

i=1 Ti,n −
∑n−1

i=1 Ti,n−1. It is known that, more generally, these twostatistis on Gog and Magog triangles oinide (see, e.g., [5℄, where the orrespondingstatistis for ASM and TSSCPP are shown to oinide).Referenes[1℄ G. E. Andrews, Plane partitions (V): The t.s.s..p.p. onjeture, J. Combin. Theory Ser. A 66(1994), 28�39.[2℄ D. M. Bressoud, Proofs and Con�rmations, The Story of the Alternating Sign Matrix Conje-ture, Cambridge University Press, Cambridge, (1999).[3℄ H. Cheballah, Combinatoire des matries à signes alternants et des par-titions planes, Ph.D. thesis, Université Paris Nord, 2011; available athttp://www-lipn.univ-paris13.fr/�heballah/memoires/these.pdf.[4℄ I. Fisher,A new proof of the re�ned alternating sign matrix theorem, J. Combin. Theory Ser. A114 (2007), 253�264.[5℄ T. Fonsea and P. Zinn-Justin, On the Doubly Re�ned Enumeration of Alternating SignMatries and Totally Symmetri Self-Complementary Plane Partitions, Eletron. J. Combin. 15,(2008), Researh Paper 81, 35 pp.[6℄ A. N. Kirillov and A. D. Berenstein, Groups generated by involutions, Gelfand�Tsetlinpatterns and ombinatoris of Young tableaux, St.Petersburg Math. J. 7(1) (1996), 77�127.[7℄ C. Krattenthaler, A Gog-Magog onjeture, unpublished manusript; available athttp://www.mat.univie.a.at/�kratt/artikel/magog.html.[8℄ G. Kuperberg, Another proof of the alternating-sign matrix onjeture, Internat. Math. Notiesno. 3 (1996), 139�150.[9℄ W. H. Mills, D. P. Robbins and H. Rumsey, Self omplementary totally symmetri planepartitions, J. Combin. Theory Ser. A 42 (1986), 277�292.[10℄ W. H. Mills, D. P. Robbins and H. Rumsey, Alternating sign matries and desending planepartitions, J. Combin. Theory Ser. A 34 (1983), 340�359.[11℄ D. Zeilberger, Proof of the alternating sign matrix onjeture, Eletroni J. Combin 3 (1996),Artile R13, 84 pp.Laboratoire d'Informatique de Paris Nord, UMR 7030 CNRS, Université Paris 13,F-93430 Villetaneuse, FraneE-mail address : Hayat.Cheballah�lipn.univ-paris13.frCNRS, IGM�Université Paris-Est, 77454 Marne-la-Vallée Cedex2, FraneE-mail address : biane�univ-mlv.fr


