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VECTOR VALUED MACDONALD POLYNOMIALS
C. F. DUNKL' AND J.-G. LUQUE?

ABSTRACT. This paper defines and investigates nonsymmetric Macdonald polynomi-
als with values in an irreducible module of the Hecke algebra of type An_1. These
polynomials appear as simultaneous eigenfunctions of Cherednik operators. Several
objects and properties are analyzed, such as the canonical bilinear form which pairs
polynomials with those arising from reciprocals of the original parameters, and the
symmetrization of the Macdonald polynomials. The main tool of the study is the
Yang-Baxter graph. We show that these Macdonald polynomials can be easily com-
puted following this graph. We give also an interpretation of the symmetrization and
the bilinear forms applied to the Macdonald polynomials in terms of the Yang—Baxter
graph.

1. INTRODUCTION

For each partition A of N there is an irreducible module of the Hecke algebra of
type Axn_1 whose basis is labeled by standard tableaux of shape A. This paper defines
and analyzes nonsymmetric Macdonald polynomials with values in such modules. The
double affine Hecke algebra generated by multiplication by coordinate functions, g-type
Dunkl operators, the Hecke algebra and a ¢-shift acts on these polynomials. They
appear as simultaneous eigenfunctions of the associated Cherednik operators. There
is a canonical bilinear form which pairs these polynomials with those arising from the
reciprocals of the original parameters. The Macdonald polynomials and their reciprocal-
parameter versions constitute a biorthogonal set of the form. The values of the form
are found explicitly.

There are symmetric Macdonald polynomials in this structure. They are labeled
by column-strict tableaux of shape A (non-decreasing entries in each row, strictly in-
creasing in each column). Formulae for these polynomials in terms of nonsymmetric
Macdonald polynomials are derived and the values of the bilinear form are obtained
in this case. There are analogous results for antisymmetric Macdonald polynomials,
which are labeled by row-strict tableaux. There is a hook-length type formula for the
bilinear form evaluated at the minimal symmetric polynomial associated with .
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In the study of one-variable orthogonal polynomials the very simple graph 0 — 1 —
2 — --- symbolizes the Gram—Schmidt process used to produce the polynomials. In
the present multi-variable setting, the Yang—Baxter graph displays how each Macdonald
polynomial is produced. Each arrow corresponds to either an adjacent transposition or
an affine step (uy,...,uyn) — (ug,...,un,u; + 1). This idea is developed in Section 4.

In Section 2 we give the basic definitions of the Hecke algebra, its modules, and the
machinery necessary to describe the leading terms of Macdonald polynomials. Section 3
begins with the simplest two-dimensional module associated to the partition (2,1) of
N = 3. We describe how the basic operations arise in this situation and thus motivate
our general definitions. The rest of the section gives the definitions and proves the
fundamental relations, notably the braid relations, for the vector-valued situation. A
key part is played by the triangularity property of the Cherednik operators with respect
to a natural partial order on monomials.

Section 4 contains the description of the simultaneous eigenfunctions, the spectral
vectors, the transformation rules for the action of the generators of the Hecke algebra
on the polynomials, and the Yang—Baxter graph.

Section 5 concerns the connected components of the Yang—Baxter graph modified by
the removal of the affine edges. Here we find the conditions under which the component
contains a unique symmetric or antisymmetric polynomial.

The bilinear form is defined and evaluated in Section 6. The method of evaluation
relies on relatively simple calculations of the effects of a single arrow in the Yang-Baxter
graph. The minimal symmetric polynomials are studied in this section. The hook-length
formula for the bilinear form gives some information about aspherical modules of the
double affine Hecke algebra, a topic to be pursued in future work.

The paper concludes with a symbol index and a list of basic relations for quick
reference.

2. DOUBLE AFFINE HECKE ALGEBRA

2.1. Definitions and basic properties. Consider the elements T; and w verifying
the following four relations:
(1) (Ti + t1)(T; + t2) = 0,
(2) TiTiT; = Ty TiTi 41,
(3) TT, = TyT: for i — j| > 1,
(4) Tiw = wT;_;.
These operators act on the right on C(t1, 2, q)[z1, ..., xN] by
(1) ,Tz = fi(tl + tg) — tQSZ‘,
(2) w:="181" - SN_1,
where T; = 0;x;11, 0; is the divided difference defined by
1
Ti— Tiy1

0 =(1—s)

s; denotes the transposition (4,7 + 1) and

f(xl, e ,IN)TZ‘ = f(l’l, ey Li 15,45, Lijg 1y - - - ,I’N).
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Note that the parameter t; could be omitted, since dividing each T; by t; we obtain

lT?htM = T.l’%’q,

tl (2 (2

For simplicity, we will use the parameters t; = 1 and t, = —s. Then the quadratic
relation is (T; +1)(7; —s) = 0 and T; := 7;(1 — s) + ss;. Note that these operators have
interesting commutation properties with respect to the multiplications by z;:

(21) I'ZT; — T;l'i+1 — (1 — 8)$i+1 =0

(22) xz’—i—szi - T;.I'Z + (1 - S)in_;,_l = 0.

The double affine Hecke algebra is defined as

Hn(q,s) :=C(s,Q)[T1, ..., Ty_1,w a3, 22,

The double affine Hecke algebra admits a maximal commutative subalgebra generated
by the Cherednik elements:

& = Si—NTZ,—_ll .. TfleN—1 T

The (nonsymmetric) Macdonald polynomials are the simultaneous eigenfunctions of the
Cherednik operators. This implies that one can compute them using the Yang-Baxter
graphs: the spectral vector of 1 is

o,

The nonaffine edges act by s; on the spectral vector and by T; — 77 - on the polyno-
SO

mials. The affine edges act by w on the spectral vector and by &, := Tt -T&ilxN

on the polynomial. Note that there exists a shifted version. All of that is contained in

the papers [10, 1].

1<i<N

From [1], we define a (g, s)-version of the Dunkl operator:

(1) Dy :==(1— sN’lfN)x]_Vl,
(2) D; :=1T;DinT;.

These operators generalize the Dunkl operator for the double affine Hecke algebra. For
instance, one has

DipiTi = —sT.'D;, —T;D;1 + (1 — s)D; + DT, = 0,
1
(2.3) —Din T = (1= =)Dy +T7'D; = 0,
s
[D;, T;] = 0 when [i — j| > 1.

The (g, s)-Dunkl operators have also interesting commutation properties with respect
to the operator w, namely

(2.5) ¢Dyw = wDy
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Note also that the operators D; commute with each other:
(2.6) [D;,D;] =0,1<ij<N.
2.2. Modules for the Hecke algebra.

Definition 2.1. A tableau of shape ) is a filling with integers which is weakly in-
creasing in each row and in each column. In the sequel row-strict means (strictly)
increasing in each row and column-strict means (strictly) increasing in each column.

A reverse standard tableau (RST) is obtained by filling the shape A with inte-
gers 1,..., N subject to the condition that entries along rows and columns are strictly
decreasing. We denote by Tab,, the set of the RST with shape .

Let T be an RST. We define the vector of contents of 7 as the vector CTt with
the property that CTrg[i] is the content of i in T. (The coordinates of the cell are
(ROWr[i], COLg[i]), row and column; CTy[i] = COLg[i] — ROWr[i].)

Ezample 2.2.

CT =[2,-2,1,0,—1,0].

S Ot N

4
3 1

As in [3, 4] (see also [9]), let us introduce the pairwise commuting Murphy elements
LN = O,

1
L; Z:E—F—ELH_lﬂ, 1 <7< N.
S

Let V) be the vector space spanned by (independent) {T : T € Tab (A)}. The action
of Hy (g, s) on V), satisfies

TLi=s———T,1<i<N.

—s
These equations determine {T} up to scalar multiplication. There is a modification of
the Murphy elements which is actually more useful for our applications.

Definition 2.3. For 1 < i < N let ¢; == s" NT;T; - Ty_1Tn_1--- T}, or, equiva-
lently, o = 1 and ¢; = %TiqﬁiﬂTi for 1 <i< N.

Proposition 2.4. We have ¢; = 1 + %Li for 1 <i < N, and if T € Tab(\) then
Tp; = sCTTHIT.

Proof. Use downward induction. The statement is true for ¢ = N. Suppose the state-
ment is true for ¢;,, then

1 —1
¢i=—Ti<1+S
S S

Li—l—l) T;

w | =

1 -1
= (Tf + S—TiLmTi) -
S S
s—1

—1
((5 -)Ti+s+ STTiLi-HTi)

=1+

L;.
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s—1s (1 — SCTT[i])
1-s

Thus Te; = (1 + ) T = sCTrlIT, O

There is an important commutation relation.

Lemma 2.5. Suppose 1 <i,j < N—1andi+# 3,5+ 1. Then Tj’lqﬁiTj = ¢;.

Proof. If j < i — 1 the result follows from T} 7; = T;T} for |i — j| > 2. If j > i then

(note that T, 'T; 1 T; = T, T;T; )

3N_i171¢z‘7} = Tj_sz‘ o IN A TNy - T

=T --7}_27}_17}_17} T Ty T
=T - 737279717}77_117}“ T T 0Ty T4
=T Tj2T5 1 T5Tj41 - '7}+1731117}—17}7}—1 TG

= SN_iQSi.

We describe the action of T; on T. There are two special cases:
if ROWr[i]) = ROWr[i + 1] then TT; = sT,
if COLr[i] = COLg[i 4+ 1] then TT; = —T.
Otherwise, if we denote by T() the tableau T where the entries i and j have been
interchanged, the tableaux T+ is an RST. If ROWr[i] < ROWr[i + 1] (implying
1—s
1 _ SCOLT[i-"-l]—COLT[i} T
Note that this is a formula for T®*+D. If ROWr[i] > ROWr[i+ 1] (implying COLg[i] <

COLg[i + 1]) then set m := CTg[i + 1] — CTp[i] (which is > 0 by the hypothesis). It
follows that

(2.7) TT, = TG+ _

s—1 T s(1—sm) (1 —sm)

— T(i,i-‘rl)
1—sm (1-— sm)2

(2.8) TT,

Formally this gives also the special cases m = 1 when COLz[i] = COLzy[i + 1] and
m = —1 when ROWr[i] = ROWr[i + 1].

2.3. Hecke elements associated to a multi-index. Denote S := T} ---Tx_; and
0 :=s;---sy_1 . Observe that if 7 > 1

(2.9) T;S = ST;_; and s;,60 = 0s;_;.
For each multi-index u = [uq, ..., uy] we define

1 if w=10,...,0],
(2.10) Ty = Tun -t ]S i uy >0,

Thuy oo i 1,000,001 1wy > 0.

Ezample 2.6. Let u =[0,1,0,2] then T, = ST3T,ST35:
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Since we use only braid relations and commutations, if u[j] > u[j + 1] one has
(2.11) Ty =Ty, Tj.

Hence, the vector T, can be obtained by any product of the type A;--- A, where
A, e {StuU{T;:i=1,...,N — 1} are such that

(1) We obtain u from [0,...,0] by applying a; - - - a; where a; = s; if A; = T; and
(2) If a; = s; then v :==w - ay - - - a;_; verifies v'[j] < u'[j + 1].

Example 2.7. One has

Towoy = STE1LST5S

STTT Ty T3T5T 1575
= STV T5T3T 1515
ST TV T TT TV T5T5T5
ST TV T TT TV T T3T
= ST87.S

Graphically this is

7

0N

[0,0,1,0]

[07 07 0’ 0}

Remark 2.8. The construction of T}, can be illustrated in terms of braids. The generators
T; and S are interpreted as
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Ul——— Uy

Uit U /u3
, o

U; : — o
UN—UN U/\// U1 —+ 1

For instance for u = [0, 1,0, 2] one obtains the braid:

00

S T3 T2 S T3 S

We introduce the creation operator
¢ = (STy_1-Ty)
This operator has the property that, if v = [v[1],...,v[N]] is a partition, then
To&i = Tiop)41,... 0[] +1,0[i+1),....0[N]]

is the partition obtained from v by adding 1 to the 7 first entries. As a consequence,
the element associated to a partition is a product of creation operators

(V12 UN—-1—UN goUN
o] =& R N
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Setting ngZ = sV, = -Tn_1TxN_1---T;, one obtains the following factorization.

Proposition 2.10. For each i, we have
C=di b
In order to provide a proof, we need the following auxiliary result.
Lemma 2.11. Let v —k > 1. Then we have
(Tick - Ti) (STn-1---Ti) = (STn-1- - Tiy1) (Ticg—1--- Ti) .
Proof. By eq. (2.9), one has
To(STy 1+ T) = STy (T—1 - T))
= (STn-1-+Ti1) (TiaTy) .
Hence, using eq. (2.9) iteratively, one obtains
(Trg ) (STy—y -+ T) = (Trg- - Tiy) (ST -+ Thn) (T T3)

=S (Ticp—1-Ti2) (T Tiga) (i T;)

= (STn-1-Tis1) (Ti—g-1--- T3),
as expected. OJ
Proof of Proposition 2.10. Applying Lemma 2.11 iteratively, one has

G109 i = (STn_r--Tp) (Tioy -~ To) (STw1---To) d3- - &

= (STx—1 - T)* (Ty—5Ti1) - (VT2) b3 - -~

= (STy1--T)* (T-2Ti—1) - (TyT3) STr—1 -+ - Taps - -~
= (STy1--T)* (Tr—3Ti—oTi1) - - (TVT5T3) Ga -+ - i

= (STx1 - T (Ty-aTi 3Ty o Tin) - - (T TT) b5 - -

= (STy-1 - Ty

As a consequence, if T is an RST and v is a partition, one has
(2.12) TT, = s*T,
where * denotes an integer which depends only on v and T.

2.4. Rank function. There is a unique element of H (g, s) associated to each o € Sy.
The length of 0 € Gy is

(o) =4#{(i,j) :1<i<j<Nyji-o>j-0}.

There is a shortest expression o = s;, ---s;,,, and a unique element i, € Hn(q,s)
defined by

(2.13) T, =T, T,
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For any s;, {(s;0) = {(0) £ 1; if £(s;0) = £ (o) + 1 then fw = T, T,, and if £ (s;0) =
((0) =1 then Ty, = T, 'T,. Similarly, if £(0s;) = £ () + 1 then T,, = T,T}, and if
l(0s;) =L (o) —1 then f,si = YN}TZ-_I. The following fact will be used in the analysis of
the raising operator for polynomials.

Proposition 2.12. Let 0 € Gy. Then Tg_lfgfe—la = V-9 p, .

Proof. Use induction on ¢ (o). The statement is true for /(o) = 0, 0 = 1, because
ToTp-r = Ty Tn_1Tn_1---T1 = s¥"1¢. Suppose the statement is true for all o’
with ¢(0’) < n and ¢(0) = n+ 1. For some k one has ¢(os;) = (o) — 1. Set
o' :=0s, and 7 := 1-¢’. Then we have i, = T(,/Tk. If £ (0 1o'sy) = £ (0 '0’) — 1 then
fgflg = ﬁgquTk_l and

T TyTy e = T T Ty Ty 10T
— SN_ZTIC_IQSiTIC_l,

by the inductive hypothesis. If £ (6 w's;) = €(§~ ") + 1 then Ty-1, = Ty-1,/T}; and
fglfgﬁqa = sN*iTk_lqﬁiTk by a similar argument.

Let iy = k-0’1 and i, = (k+ 1) - 0'~1. By hypothesis, we have i; < iy. Let j; =
k-(07'") " =ip-0and jo = (k+1)-(07*¢") ' =iy-0. Then (0~ 0"s;,) = £ (0 0") +1
if and only if j; < jo. (Note that j-0 =j—1if j > 1and 1-0 = N.) Since iy > i3 > 1,
it follows that j, = iy — 1. If iy = 1 then j; = N > jy, and so £ (0~ 1o's) = £ (0710’) -1,
k=1-0' =i. Thisimplies 1-0 = i+1and T, TyTp-1, = sN T ¢, T = sV 711,
Ifi; > 1then j; =i1—1 < joand £ (0 'o'sy) = £ (010’)+1. In this case 1-0’ # k, k+1,
and so sV T ¢ Ty, = sV '¢;, by Lemma 2.5; also 10 = 10’ = i; and this completes
the induction. O

Consider the rank function of a multi-index v = [v[1],...,v[N]] as an element of Gy,
rolil i=#{7: 1< <ol 2oy +#{j: 1 <j < Nowlj] > v}

FEzample 2.13. (1) Ifv=[4,2,2,3,2,1,4,4] then r, = [1,5,6,4,7,8,2,3].
(2) If v is a (decreasing) partition then r, = id.

The length of 7, is
l(ry) := #inv(v),
with inv(v) := {(i,7) : 1 <i < j < N,v[i] <wv[j]} being the number of inversions in v
(note that for i < j we have r, [i] > r,[j] if and only if v [i]] < v[j]). There is a shortest
expression r, = s;, - - - S; o) and an element R, € Hy (¢, s) defined by

R, =T} N P

irfay) T v

We have the following auxiliary result.
Lemma 2.14. (1) Ifv[i] > v[i + 1] then R,,, = R, *.
(2) If v[i] <v[i+ 1] then R,s, = R,T;.
(3) Ifv[i] = v[i + 1] then R, T; = T, 3 R,.
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Proof. (1) If v[i] > v[i+1] then 7, = s;r,and #inv (vs;) = #inv (v) + 1, so
R,s, = R, T, .
(2) Similarly if v [i] < v[i + 1] then R,s, = R,T;.
(3) If v[i] = v[i + 1] and k = r,[d] then s;7, = rys and € (s;r,) = £(r,) + 1 (one
extra inverted pair (k+ 1,k)); thus Ty, = T;1,, and T, , = T, T}. Hence,
RvT‘i - TkRv
0

We compare the elements 7, and R, in terms of T, R, L. We need to consider three
cases:

----------

(2) In the case ﬂvl,vz,...,vi,1,vi,(),...] = 71[1)1,1)2,...,15-,1,O,vi,O,...]E (Ui > 17 1< N)7 we see
that #inv (v - s;) = #inv (v) + 1, hence r,.5, = s;7, (see Lemma 2.14 (1)) and
T,,. =TT, Ry = RUTi_l. So we have

(2.14) Tys R, . =T,R,".
(3) If Ty = T,S (with vV := (vg,v3,...,vN,v; + 1)), then we have
Fow = SN_1SN_2 - $1Ty = 07Ty,
where 0 = 5159+ sy_1. By Proposition 2.12 (let k = r, [1]), we obtain
i;lfefeflrv = sV,
s MG RS = Ryw,
and thus
(2.15) TywR,g =" *,8S 'R ¢, = s" TR, ¢y.
As a consequence, we are able to derive the following result.
Proposition 2.15. T, R is in the commutative algebra generated by
{$i: 1 <i< N}

for each v, and it acts by scalar multiplication (by powers of s) on each T (recall that
T, = sCTGDT, 1 <i < N). Furthermore we have

N
T, = T[ (+6)" R..
=1

Proof. By eq. (2.14), we see that, if the formula is true for v with v; = 0 for j > i and
v; > 1, then it is also true for v - s; (note that (v-s;)" = v*). Using induction, suppose
the formula is true for all v with |v| < n, for some n > 0 (the case n = 0 is trivially
satisfied). Let |v| = n + 1. Using the case 2 step as often as necessary, assume that
vy > 1. Thus v = wyp with |u| = n, and r, = 6~ 'r,; in particular, let k = r,, [N] = r, [1].
Then vt = (uf,...,uf +1,...,u}) (u has exactly k — 1 entries > u;, and thus v has
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exactly k entries > vy = u; + 1, including vy; hence v;” = vy = uy +1 =u +1). By
eq. (2.15) and the inductive hypothesis, we obtain

N
TUR;1 — (8N7k¢k) TuR;1 N k(b H N— Z¢Z ’
=1

and this proves the claim. O

In particular, if v is a partition then T, = [, (sV=ig)”

3. VECTOR VALUED POLYNOMIALS

3.1. First Examples. To motivate our definitions we consider the simplest two-dimen-
sional situation: N = 3, isotype A = (2,1). A basis for the representation of {7}, 75}
is

f1 = ST1 — (1'2 + {E3) s

+1
fo=x9 — —x3.
s
Then fiT5 = sfi, foT5 = —f> and

1 s(1+4 s+ s?
f1+ ( 2 )
s+1 (1+s)

2
T, = )
foTh f1+1+8f2

flle_ f27

We aim to set up a Macdonald-type structure in {p; (z) f1 + p2 (z) fo}. Firstly define
operators T, acting on pairs [p1 po] so that

1,02 T, - [f1, fo] = (pufy +p2fo) Tiy, 0= 1,2,

where [a1, as] - [b1, ba] := a1by + asby. Indeed, we have
: 1+s+s? s s(1+4 s+ s%)
2| Ty = |11y — ———p151 + pas1, p2Th — $1+ ————"p151]
[p1, 2] T} P1ia 115 P1S1 T P2S1,P241 1_|_Sp21 (1+s)2 P151

(D1, o] TQI = [p1 1%, p2T5 — (s + 1) pasa] .

Secondly, we need a definition of w (to be generalized in the sequel). The relation

wTy = Tow must be satisfied. The braid relation gives a solution Ty (T1T5) = (T171%) 1.
Using w’ = T1T5, let

The inverses are obtained from the quadratic relation: T, ! = % (Ti/ +1-— s).

s s(1+ s+ s%)
1+s (1+ )

fzw/ =sf1—

flw’:_ f2,
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Then w17 = Thw', acting on span { fi1, fo}. Now define

2 2
[p1,po] w = | — [ P+ spaw, —%plw 1 i Paw
Set
& = S_QwTéTll,
& = sV T,
&5 =T, T, w.

These operators commute. Here are the degree 1 simultaneous eigenfunctions:

[— (1+ s)x3, sx3),

(EEIREIE T E

S s U |

_ql(l_ 2 (525 — w5}, 1 + <1ji§1(1 8)2 ){x2+x3}},

ot e ok (<11++>+ <q)—(1_> Hral]

To generalize this setup to an arbitrary irreducible module V) (basis corresponding
to Tab,), we need to define w; a necessary condition is that there be an intertwining
operator S on V so that ST, = T;,1S for 1 < ¢ < N. The correct definition is
S = T1T2 s TNfl. Indeed,

STi=Ty- - T ATl TiTiyo - T
=T T AT Tl Ty - T
= i+1S~
Definition 3.1. The space of vector valued polynomials for the isotype A (a partition
of N) will be denoted by M := Clzy,...,zn] ® V).

The elements of M are linear combinations of 2T, where z¥ := mll}m e a:%m. We
denote by ‘normal symbols’ (s;, T3, w, &, etc.) the operators acting only on tableaux.
The operators acting only on letters will be denoted with superscript * (s¥, T, w®,

7 etc.). The operators acting on both letters and tableaux will be denoted by bold
symbols (s;, T;, w, &,, etc.).

3.2. Action of the double Hecke algebra on vectors. Denote 67 :=T17" —s-s7 =

Ofxiv1(1 — s) and T; := 67 + s¥T;. We have the following fact.
Lemma 3.2. The operator T; satisfies the quadratic relation:
(3.1) (T; + 1)(T; — s) = 0.
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Proof. From

O wi10f = 0707 wia + 0 si (2i107) = =0y,
we deduce
(3.2) 67 — (1 — 8)20Fwiy = —(1 — 5)07.

Moreover, from
Ofxip1s] + 870 w1 = 07 (v — wipa) = 1 — 87,
one obtains
(3.3) 07 sT + 5708 = (1 —s)(1 — s7).
Now, expanding (T; 4+ 1)(T; — s), from egs. (3.2) and (3.3) we observe that
(Ti + 1)(Ts — 5) = (67" + (1= 8)07) + (6757 + 5767 + (L = s)(s7 — 1))T

= 07
O
We find also commutation relations.
Lemma 3.3. If |i — j| > 1, we have
(3.4) T, T, =T,T,.
Proof. First we expand
(3.5) T, T = 0,07 + 07s; Ty + s707T; + sis; T T
But since [i — j| > 1, one has straightforwardly s7s = s7sf, T;T; = T;T;, 67s] = s567

and 6707 = 6707 Using these relations in eq. (3.5), we find the result.
To prove the braid relations, we need the following preliminary results.

Lemma 3.4. (1) s7siysiTiTinTi = si87sip T TiTisa
(2) 07071107 = 0711070741,

(3

xT xT — o ST T T ST T T ST xT

)

T T T __ x T NT X T LT x T LT
) USii107 = 8710707 + 07107 siy + (s — 1)5z‘+15i Sit1
T T xr __ X r ST

) O Si+19i = Sit15i %415
) z

J— T LT
i+15i Sit1 = 5 5i+1(51 )
T ST xr __ xr T T
S7074 18] = 811107871

Proof. The first identity is trivial, but the others need to be proved. The simplest way
to check these formulae is the direct verification of the action on a monomial z¢x?,  z¢.,.
For instance, the second equality follows from

a b c

2
X5\ ok,
i+2itl a b c
det [ i, xjy, 27,

V(v”’?z‘, Ti+1, $i+2>

a_ b c T ST xr 3
LT %7007 07407 = (1-5)

a b c
Tiva Tiva Lip2
__a_b c X €T Sx
= LT 0719051107 0741,
where V' (21, 22, 73) 1= [[j;j4(xi — 2;) denotes the Vandermonde determinant. The

other identities can be verified in a similar fashion (for simplicity we omit the superscript
T on 0 and s):
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(3)
a. b c 5 ) 5
LT 105490754104

[55?+2 ($i+2($?$§+1 - x‘i:xi')—i-l) —( i’xfill - EH i')+1

Tiy2Ti+1
1 — 2 i+
( ) V(xz‘, xi+1,$i+1)
_ZU?+2 (xi+2(55?33§+1 - xfx?ﬂ) - (:Bfﬂ:fill - $f+1$?+1>)}
b

= 272 125 o (Si410i0i41 + 054105841 + (5 — 1)8i410i8i41).

(4)

Lit1
{185 00180101 = (1 — S)QV(x, fL’:—l Tir1)
(2 7 9 7
X [mf (xz(xfﬂxfi% - xfﬂxffw) - (xfillej:; - fjrrll ﬁg))
—af (wi(afaily — affialy) — (effellhy — affielly))]

= 1’?35?+1$f+2<5i5i+15i + 0i0iy18i + (5 — 1)5:0i4184).

b

c c,.b
b Lilipr — LiLiq

7y 105 o (Si418:0i41) = (1 — 8)xip12f o

Ti — Ti1

__a b c
= 30105 45(0iSi15:).

b b a

x4 xl o — 7 af

apb x¢ — (1 — cVit1Vit2 i+1%i42
TiT] 1% 40(8i8i410i) = (1 — 8) iy}

Tit1 — Ti42
_ _a.b c
= 20100 (0i418i8i41)-

xer¢ o — xér?
a, b c _ b i i+2 1Y i4+2
T3 T T (Si0i418i) = (1 — 8)Tiqotiy

Ty — Ti42

a,.b c
= @721 07 o (Si410i8i41)-

Next we show that the operators {T;} satisfy the braid relations.
Proposition 3.5. For each i < N — 1, one has
(3.6) T,T; 1T, =T, 1T, T;p1.
Proof. Expanding the braid T;T;,1T;, we obtain
TiTipaTi = 07071107 + 0757107 Tin
+ (8707007 + 07074157) Ti+ 57574187 Tina T + 57574107 TiTia

T ST T2 T T x
+ 570018, I + 8758 TiTia T

))
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Using the fact that T2 = (s — 1)T; + s, we obtain
TiTia T = 07071107 + 0 571107 Tipa
+ (S7OF (OF + 6767, 18T+ (s — 1)s767187) T + s¥swipasiTim T
+ 575710, TiT5 1 + 85707157 + s7sp18; LT T
Now applying Lemma 3.4, we arrive at the desired result. [

Next we examine the relation between the generators T; and the multiplication by
an indeterminate x;. There are three identities satisfied by these operations.

Proposition 3.6. (1) ;T; — Tiziyr — (1 — s)xi41 = 0;
(2) i1 Ti = Tiwi + (1 = 8)ai40 = 0;
(3) z;T; = T;x; when |i — j| > 1.
Proof. (1) One has
;07 = (1 — s)x;0f w1
=(1-8)0f a7, + (1 — 8)Tip
=0rwi1 + (1 — s)xi41.
Hence, we obtain
Ty =07 + 87T win + (1 — 8)xi41
=Tz + (1 — 8)xig,

as expected.
(2) The second equality is proved in the same way, by observing that

.CCiJrl(sf = (1 — S>$i+1afl'i+1
= (]_ - S)@?I’Z‘J’_ll’i - (1 - 5)$i+1
=0lw; — (1 — 8)xip.

(3) The third equality is straightforward.

Now, we examine the affine action and set
=T170%S,
where 0% = s7---s%_y and S =T ---Ty_1;. When ¢« < N — 1, one has
W, = (770°S)(67 + siT5).
But since ¢ < N — 1, one has
70707 xi11 = T 0F 1 Tiq20",
and ¢ + 1 > 1 implies 7{70%, ;712 = OF 7427 . Hence,
T 007 = 0f T 0.

One easily obtains 7{0%sy = si, ;770 and ST; = T;;1S. From this, we deduce the
following commutation relatlon
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Lemma 3.7. For each i, we have wT; = T; ;1 w.
From Lemmas 3.2, 3.3, 3.7, Propositions 3.5 and 3.6, we obtain the following result.

Theorem 3.8. The algebra C(s,q)[xi, . .. o, Ty, ..., Ty_1, wFl] is isomorphic to
Hn(s,q). More precisely, the morphism sends T; to T;, w to w, and z; to x;.

3.3. Cherednik and Dunkl operators.

Definition 3.9. In this context, the (vector valued) Cherednik operators are defined
by

i—Nrm—1 —1
& =s""T, - - T/ wly_--- Ty,
where

LTt (1— ) = S((1 = 8) (@i + 1) + $°T3).

-1
Ii = _
S S

It follows immediately that

(3.7) [€:,&,] =0,
since, by Theorem 3.8, the operators &, are the image of the Cherednik operators &;.

Furthermore, the tableaux are simultaneous eigenfunctions of the Cherednik elements,
and the associated spectral vectors can be expressed in terms of contents.

Proposition 3.10. For each tableau T, one has

T¢, = sCTHT.
Proof. Since,
(1) TT; = TT;,
(2) TT; ' =TT *,
(3) Tw =TS,
one has T§, = T¢;. Hence, the result follows from Proposition 2.4. 0

In the aim to define the Dunkl-Cherednik operators, we set Fy =1 — &y

Proposition 3.11. The operator Fy s divisible by xy, that is, for each P €
C[l‘l,. .. ,JIN] ® Vi, PFy = 2nyQ with ) € C[(L’l,. .. ,JZN] ® V.

Proof. We prove the result by induction on N. Suppose first that N = 2. Then our
operator is

1
Fo=1-— g((l — 8)(0fwa + 1) + s7T7) (71s7T1)

1
=1- g((l — 8)(OFwy + 1) sy + sTTEsTTY).
From T? = (s — 1)1} + s and s;715; = T2, one obtains
1
Fo=1- B (1= s)(0fxg + 1 — s1)77s{T1 + s75) .

Note that
Nrg+1—s7=0{x;
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implies
s—1
F, = . qoyTsiTixs +1— 15,

But, for any polynomial P, one has

0 itb=20
P(xy)a5(1 —75) = ’
(x1)$2< 7'2) {P(xl)xg(l . qb) ifh>0.

This proves the result for N = 2.
Now suppose that N > 2. Then we have
Fy=1-Ty - Ty (7fs7 - s% T Tn_1).
Similarly to the case N = 2, one obtains

1 - - L, T T x

+37’§8§ te S;]EV—ITQ s TNfl) .

So it suffices to prove that the operator 1—=Ty" | -+ Ty 's% -+ - 8% Ty -+ Ty_; is divisible
by xxn. Observing that

1— Ty T sy 8% To- - Tiv_1) = 0 'Fn_10,
the result follows by induction. O

Definition 3.12. The vector valued Dunkl operators are defined by Dy := F Nx]’vl and
Di = %TzDz—ﬁ—sz

As for the Cherednik operators, Theorem 3.8 implies that the classical relations hold.
For instance, one has

[Di’ Dj] =0,
and the relations with respect to the generators T; are
(38) Di+1T7; = —STi_lDi, _TiDi+1 + (1 - S)DZ + Dsz = 0,
1
(3.9) ~-D; TP —(1->)Dj + T;'D; =0
s

Note that identities (1) and (2) of Proposition 3.6 are equivalent to 2;T; = sx; 4T}
or sx;p1 = T;2;T; (these are dual to the D; relations D; = (1/s)T;D;1T; ).

3.4. Triangularity of the Cherednik operators. Let v be a vector. In the sequel
we will denote by v* (respectively v®) the unique decreasing (respectively increasing)
partition whose entries are obtained by permuting those of v.

Let 7¢ = 0f 241 = 7507, 7f = O0f w41 + 1, and, more generally, 775 = 05a; + 1.

Observe that, if i < j, then one has

(3.10) 2l =Y (x)a”
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where (%) denotes a coefficient and < is the dominance order on vectors defined by

vt <ot if ot £

v < if ot =o'T.

v <o’ if and only if {
Here, < denotes the (classical) dominance order on partitions given by
v < v if and only if, for each i, v[1] 4+ -+ +v[i] < V[1] + -+ V'[1].

Indeed, it suffices to understand the computation of x¢xim;. We have three cases to
consider:

(1) if @ < b, then

: a b x
In this case, one has z{zin] = Zv,+<[b7a](>|<)x )

(2) if @ = b, then

(3) if a > b, then

and the leading term in this expression is zl®%.
Similarly,

(3.11) 2T = (02"

With these notations, write
T, = ()7 + (x)s7T3
and
T; ' = (o) + (+)s{Th.
Here, (%) denotes a certain coefficient (we need not know it to follow the computation).
Observe that, for each j, we have

Tyhs--esiy = ()] + ()siTilsi -+ 57y = ()] + () Tals3 -+ 574
since wysy = my. But mys5 - s7_; =s5---s7_ 7, and hence
Tyisioosiy =55 si[(0)7; + () T1]ya

Iterating the process, one finds

(3.12) Tl Tristeosiy = [y + ()] - (07 + () Th].
One has also

i sy Tver = 87 sy [(0)T oy + () s Tv-al;
but s%_,0%_; = —0%_;, and hence

3? sy Ty = 5; T 3?\7—2[(*)7:16\/—1 + (*)TN—I]'
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Since s7 -+ S{_oTn_1 = Tj NSj "+ * Siy_g, ONE Obtains

sj sy T = [(0)7 § + () Tn-a]s] -+ - Sk
Iterating this process, one finds

(3.13) s7 - sy Ty Ty = [0 5 + () Tval - ()75 00 + ()T

Now, with these notations, the Cherednik operator reads

€= [()mf 1 + ()i L] - [()7] + (0)siTi] 787 - sy S
()N 1+ (s Tvaa] - [(9)7F + (#)s5T]

Now apply eq. (3.12) and (3.13) to obtain

§ = (D)5 n + ()T - - [()7] x + () T1](77°5)
() 1+ ()T ] [T 0 + (BT

where z;77 = z; if i # j and z;77 = qx;.
From (3.10) and (3.11), we obtain

(3.14) Tz¢, =T [x”Hv + Z x”/Hyr] :

v <

with H, € Hyn(q,s) (we apply an algebraic combination of 7% and 7 to x¥, and the
operator 75 does not change the exponents). Finally, we arrive at the following theorem.

Theorem 3.13. We have
2"Té; = 2"(T- H,) + Y _a" (T Hy),

v/ <
where H, € Hn(q,s).
Proof. Eq. 3.14 gives
r'TE; = Tx"€;
=2"(TH,) + > _«"(T- Hy).

v <qv

4. EIGENFUNCTIONS OF CHEREDNIK OPERATORS

4.1. Yang—Baxter graph. As in [6], we construct a Yang—Baxter-type graph with
vertices labeled by 4-tuples (T, (,v,0), where T is an RST, ( is a vector of length N
(¢ will be called the spectral vector), v € NV and o € &y. First, consider an RST
of shape A and write a vertex labeled by the 4-tuple (T,CTS, 0V, [1,..., N]), where
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CT5[i] = sCTrll. Now, we consider the action of the elementary transposition of &y on
the 4-tuple given by

(T, (s;,v84,08;) if v[i + 1] # vl[i],
(TCleli+ll) s v, 0) if v[i] = v[i + 1]

and T+ ¢ Tab,,
(T, ¢, v,0) otherwise,

(T, ¢, v,0)s; :=

where T7) denotes the filling obtained by permuting the values i and j in T. Consider
also the affine action given by

(T, (,v,0)¥ := (T, [C[2],...,C[N], ¢C[1]], [v[2], ... ,v[N],v[1] + 1], [o2, ..., 0N, 01]).
In the sequel we will use the notation vW? = [vy, ..., vy, qui].

Ezample 4.1.

(1) (2,051, ¢% g5, ¢s711,10,0,2,1,1], [45123)) 59

= (21, [5,¢%, 1,qs%,¢s71,[0,2,0, 1, 1], [41523]) .
2) (31505, 1,¢% g5, ¢s71,[0,0,2,1,1], [45123]) s4

= (2135.[5,1,¢% qs7 1, ¢s%,[0,0,2,1,1], [45123]) .
3) (315,15, 1,¢% ¢?s%,4571],(0,0,2,1, 1], [45123]) 5,

= (215, 5, 1.¢% gs%,¢s71,[0,0,2,1,1], [45123]) .
4) (35,151, ¢% g5, ¢s71,[0,0,2,1,1], [45123]) ¥

= (2, [1,6% as%, a5, ¢s],[0,2,1,1,1], [51234]) .

Definition 4.2. If )\ is a partition, denote by T, the tableau obtained by filling the
shape A from bottom to top and left to right by the integers {1,..., N} in decreasing
order.

The graph G{° is the infinite directed graph constructed from the 4-tuple

(Tx, CT%,, [0, [1,2,..., N]),

called the root, adding vertices and edges according to the following rules:

(1) We add an arrow labeled by s; from the vertex (T,(,v,0) to (T',{’,v,0") if
(T,(,v,0)s; = (T',{",v',0") and v[i] < v[i + 1] or v[i] = v[i + 1], and 7 is
obtained from 7’ by interchanging the position of two integers k < ¢ such that
k is in the south-east of ¢ (i.e., CTr(k) > CTr(¢) 4 2).

(2) We add an arrow labeled by ¥ from the vertex (T,(,v,0) to (T',{’,v,0’) if
(T, ¢, v,0)¥ = (T, ', v, o).

(3) We add an arrow s; from the vertex (7, (,v,0) to 0 if (T,¢,v,0)s; = (T, (,v,0).

An arrow of the form

will be called a step. The other arrows will be called jumps, and in particular an

arrow
(T, ¢,v,0) Sq
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will be called a fall; the other jumps will be called correct jumps.

As usual, a path is a finite sequence of consecutive arrows in GG, starting from the
root, and it is denoted by the vector of the labels of its arrows. Two paths Py =
(ay,...,ax) and Py = (by, ..., by) are said to be equivalent (denoted by Py = Po) if
they lead to the same vertex.

We note that, when v[i] = v[i + 1], part (1) of Definition 4.2 is equivalent to the
following statement: T’ is obtained from T by interchanging o,[i| and o,[i4+1] = o,[i]+1,
where o,[1] is to the south-east of o,[i] + 1, that is, CTy[o,[i]] — CTr[o,[i] + 1] > 2.

Ezrample 4.3. The arrow below is a correct jump,

31 - 21 —
2ia:[s:1,¢%,as%,as7 1) 2is[s:1,¢%,as7 1 as?]
[0,0,2,1,1],[45123] [0,0,2,1,1],[45123]

whilst

31 —
1] Sy oizols,a%,1,qs7 1 ,qs?)
[0,2,0,1,1],[41523]

31 —
Siz0le1,0%,q5% g5
[0,0,2,1,1],[45123]

is a step. The arrows

31 — 21 —
2hools1,a%gs% 0571 Sa 215[s:1,0% g5 s
[0,0,2,1,1],[45123] [0,0,2,1,1],[45123]

and

1 —
242,[3,1,q27qs2,qs )
[0,0,2,1,1],[45123]

31 2 —1 2
So sa008:07,1,q87 7 ,qs7]

[0,2,0,1,1],[41523]

are not allowed.

The graph G¢* is very similar to the Yang-Baxter graph G, described in [6]: only the
spectral vectors change. Indeed, these are the same graphs, but with different labels:
the spectral vector of G$* is obtained from G by sending ac + b to ¢s’. Hence, many
properties still apply. An example is given in the next proposition.

Proposition 4.4. All the paths joining two given vertices in G have the same length.

For a given 4-tuple (T, (,v,0), the values of ¢ and ¢ are determined by those of T
and v, as provided by the following proposition.

Proposition 4.5. If (T, (,v,0) is a vertex in Gy, then o =, and ([i] = ¢*l1sCTrloll],
We will set (1 := (.
Example 4.6. Consider the RST

\‘
I
00 ~1 w

4 1

6 5 2

and the vector v = [6,2,4,2,2,3,1,4]. One has r, = [1,5,2,6,7,4,8,3] and CTy =
[1,3,-2,0,2,1,—1,0]. Consequently,

Cor = [¢°s, %%, "5, *s", ?s71 P, q, ¢*s 7).
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Hence, the 4-tuple

(

labels a vertex of G%3}.

0 3 w

1 ,[q6,q232,q433,q231,q251,q3,q,q4s2],[6,2,4,2,2,3,1,4],[1,5,2,6,7,4,8,3]>

4
6 2

As a consequence, we obtain the following result.

Corollary 4.7. Let (T,v) be a pair consisting of T € Tab()) (where X is a partition
of N) and a multi-index v € NV. Then there exists a unique vertex in G3* labeled by a
4-tuple of the form (T, (,v,0).

We will write Ur ¢, := (T, v) .

Conversely, all the information can be retrieved from the spectral vector ¢ — the
exponents of ¢ give v, the rank function of v gives o, and the exponent of s in the
spectral vector gives the content vector which does uniquely determine the RST T.

For simplicity, when needed, we will label the vertices by pairs (T,v) or by the
associated spectral vector (, .

Ezxample 4.8. In Figure 1, the first several vertices are labeled by pairs (T,v) of the
graph G%7’, while, in Figure 2, the vertices are labeled by spectral vectors.

Definition 4.9. We define the subgraph G7° as the graph obtained from G by erasing
all the vertices labeled by RST’s other than T and the associated arrows. Such a graph
is connected.

The graph G}° is the union of the graphs G%* connected by jumps. Furthermore, if
GL* and G717 are connected by a succession of jumps, then there is no step from G%°
to GL°. Since the graphs G%° are connected graphs, we infer the following result.

Proposition 4.10. Each vertez (T,v) is obtained from (T,0N) by a sequence of steps.
Ezample 4.11. In Figures 1 and 2, the graph G2} is constituted by the two graphs G%*
32

and G%* connected by jumps (in blue).
31

4.2. Macdonald polynomials from scratch. Following [1], we define the operator
® =T - Tyl 2w,
which satisfies
P =€,1P, 1<j<N,
Ly =€, 9.

The operator @ is injective (its kernel is {0}).
Let A be a partition and G{° be the associated graph. We construct the set of

polynomials (P‘ﬂ)ap path in G, using the following recurrence rules:

(1) By = (Ty).
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3+ [200] 2., [200]
5> Y
1. 020] 2., [020]
v S,
;27 [002] ;27 [110] 317 [110] 317 [002]
&V )
5+ [101] 2. [101]
= &7 %> =
30 [011] 2. [o11]
= S
39 [100] 2 [100]
5 = =t o>
1. [010] 2., [010]
o &
3+ [001] 2, [001]
~ 2
b 000 T
FIGURE 1. The first vertices labeled by pairs (T,v) of the graph G247

where we omit to write the vertex () and the associated arrows.

(2) Ifm = [al,..

<y Ak—1, S’i]a then

1—s

_ ¢li4]
1=

Psp = P[al 7777 akfl] (r:[‘Z —|—
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[¢?s™1, s,1] [¢?s,s71 1]
s, q*s71 1] [s71 ¢%s,1]
[s,1,¢%s7] lgs™", gs, 1] lgs,q57 ", 1] [s71,1,¢°s]

[s,qs™ ", 1] [s7", qs,1]

[s,1,¢7] 11, ¢s]

\®\J‘

FIGURE 2. The first vertices labeled by spectral vector of the graph G3;.

where the vector ( is defined by

(']I‘,\,CTTA,ON, [1,2,...,NDay---ar_1 = (T,(,v,0).
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(3) If P = [ay,...,ak1, Y], then

......

One has the following theorem.

Theorem 4.12. Let P = [ag,...,ax] be a path in G$° from the root to (T,(,v,0)
with no fall. The polynomial Py is a simultaneous eigenfunction of the operators §;.
Furthermore, the eigenvalues of €; associated to Py are equal to ([i].

Consequently, Py does not depend on the path, but only on the end point (T, (,v,0),
and it will be denoted by P,r or alternatively by P;. The family (P, 1), 1 forms a basis
of M of simultaneous eigenfunctions of the Cherednik operators.

Proof. We prove the result by induction on the length k. If £ = 0 then the result follows
from Proposition 3.10.
Suppose now that £ > 0 and let

(T, ¢ ' ry) = (Tr, CTE, 0N, 1, N])ay - - - ag1.

By induction, P, 4, ,] is a simultaneous eigenfunction of the operators &; such that
the associated vector of eigenvalues is given by

P[a1 ..... ak,1]€i = C,[i]P[al ..... akfl]'

The argument depends on the value of the last operator ay.
(1) If ax = ¥ is an affine arrow, then T = T', { = [("[2], ..., '[V], qC'[1]], v = V',

Ty =Ty(2,...,N,1] and Py = Jia, ... .ap 11 P-
If i # N, then
P‘I}EZ = P[[ll ..... ak,ﬂégi
== P[al ..... ak,1}€i+1¢
= (li] Py.
If : = N, then

Pp&n = Pa,,..ar_ ) PEN
= P[a1 ..... ak,l]QEl(I)
= (('[1]q) Py
= ([N]Py.

(2) Suppose now that a; = s; is a non-affine arrow. Then we have ¢ = (’s;, v = v's;,
and

1—s
Py = Py, a1 (Tz_f_?’[l[*‘]ﬂ)
¢'le
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If j #14, 1+ 1, then

1—s
P‘ﬁé] — P[al ----- ak—l} (Tl + m) Sj

¢'Ti]
1—s
= P[al ,,,,, ak—ﬂsj (Ti + m)
¢'fil
= ('[j] Py
= ([j]Pyp.

If j =1, then

1—s5
Py = Pay,.ap ) | Ti + 1_ (’[i?—}l]) &
¢

1
= Paycar) [ Einn Ti + (1 — s) (—1 + w) 5¢>
o

. 1 ,
= Py | (i T+ (1= 5) (—Hw) ﬁ”)
¢l

. 1—s
= (i 4+ 1Py (Tz‘ + m)

e
= ([i] Py.
If j =i+ 1, then

1—s
Pp&i1 = Payap ) | Ti + m) §ir1
¢'[i]

1—s
~1
= Pay,ap) | 86T + €i+1w>
o

1 —
= Py c/[z'JTi+</m<1—s>+<’w+uﬁ>

g0
. 1—s
= (i1 Pa,ap ) (Ti T C’[i_?-]l]>
¢l

= ([i + 1] Py.
O

Ezample 4.13. Figure 3 illustrates how to obtain the first values of the polynomial P,
for isotype (2,1).

Besides ® =T, - 'Tjgilx ~, there is another raising operator, namely ®' := wax .
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P[qzs‘l,&l] P[qQS,s‘l,l]
7 AN
T2 + 1_25:_2 T1 + ﬁ%ﬁ
Pl 2s-1,1] Prs-1,g25,1]
7 N
T + 1_2% T + 11_;(133
Pspqzs) Pgs— sy || Hlasas ) P12
/v 1 1-s5—2 \
= il—
T2 + lqus T2+ l—q%
Plgs—1,1,4s] Plgs,1,4s-1]
N 7 1

[2] Dt Ee T 2]

P[l,qs,qS‘ll

Pl gs-1,4s]

re— 1—s L —
T2 + 1—s5—2

2] @]

P[qsfl,s,l] P[qs,sfl,l}
N 7
Ty + 1_1q_ss_2 [q;.] E Tl_i_ll_;q;
Plsgs1.1) Pls1,451)
N\ Il
T2 + 1=ooor T2 + 1705
Pls,1,95-1) Pls1,1,05
-
P[s—l,s,l]
Ty + 11:332

F1GURE 3. The first Macdonald polynomials for isotype (21).

Proposition 4.14. We have
@/ — SN_1£1¢,

and, if v € NI, T € Taby, then
vaTQI —_ SN_1+CTT[TU[1]]qv[1]PrU’T¢-
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Proof. From &, = s'™NwTy_;--- Ty, it follows that

&1 IT_ Tjgil = sl_Nw7
£,0 =510
Moreover, we have P,1&, = q*lMsN-1+CT=np 4 O

Note that it is easier to compute P®’ for a polynomial P.

4.3. Leading terms. We will write 2°7 := 2*TR,. By abuse of language, 2" will be
referred to as a monomial. Note that the space M, is spanned by the set of polynomials

My = {z"" : v € NV T € Tab,},

which can be naturally endowed with the order < defined by

U,,’]IV

T g if and only if v <.

Theorem 4.15. The leading term (up to constant multiple) of P, is z*T.

Proof. Theorem 3.13 shows that the leading term of P,r is 2*TH, for some H, €
Hn (g, s) (because the eigenvalues determine ¢°l).

Use induction on #inv(v) = #{(4,j) : 1 <i < j < N,v[i] <v[j]}. The claim is true
for partitions v, that is, in the case where #inv(v) = 0. Suppose the claim is true for
all u with #inv(u) < k and #inv(v) = k+ 1. There is some ¢ for which v [i] < v [i + 1].

By Theorem 4.12, we know that p := P,r (T- + M) is a &-eigenvector with

Clil=¢li+1]
eigenvalues [([1],. .., C[i+1], i, .. .], where ([j] = ¢, 1[j]. The list of eigenvalues implies
that the leading term of p is a” SZ’JI" for some T" € Vj. In fact, p€; = ¢*llsCTlreailp

for all 7, and so the inductive hypothesis (#inv(vs;) = #inv(v) — 1) implies that p is a
scalar multiple of P, 1 and has leading term x"*TT,, . The only appearance of z"*
in p comes from 2*TH,T; (by dominance, 2"* does not appear in P, ).

However, if v [i] < v[i + 1] and T € V), then

(4.1) 2'TT; = 2°6; T + ¥ (TT;)
= —(1—98)a"T + 2" (TT;) + »_ a"Py
P:/S%}/,\

Hence, by (4.1), we have
#'TH,T; = —(1 - s)a"TH, + 2" (TH,T;) + Y _ a"Py.

v Qv
P, eVy

and

Thus TH,T; = TR

Tvs,

TH, =TR,,, 7' =TR,,,
by Lemma 2.14. This completes the proof of the theorem. 0
The last theorem has the following consequence.

Corollary 4.16. Let P = [a1,. .., ax] such that ay, is a fall. Then we have Py = 0.
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Proof. Without loss of generality, we can suppose that [ai,...,ar_1] is a path without
fall. By Theorem 4.12, there exists a pair (v, T) such that P,r = Py, a, ,- On the
other hand, by Theorem 4.15, one has

v'ﬂ': UT+ Zm P,

v'<v
P,eVy

Since ay, is a fall, one has

!
quISL’vP—l— E QZU PUI,
v/ <
P, eVy

with P € V). Since Py is a simultaneous eigenfunction of the Cherednik operators, it is
proportional to P, t. Noting that the associated eigenvectors are uniquely determined,
one obtains Py = 0. OJ

4.4. Action of T;. We have more formulae than those exhibited in the proof of The-
orem 4.12. Examples are given by the following theorem.

Proposition 4.17. Suppose that v € N, T € Taby, v[i] = v[i + 1] for some i, and
k= ry[i], m := CTrlk + 1] — CTg[k]. Then we have:

( ) Zf CT’H‘[II{? + 1] CTT[]{?] — 1 then Pv,’]I‘Ti = SPU,'H‘,'
( ) Zf CT’H‘U{Z + 1] CT’I[‘[]{?] + 1 then Pv ']I‘T = —Pv T

(3) if CTalk+ 1] < CTr[k] —2 then P,xT; = P, poersn) — 1o Pory

(4) Zf CT']T[]C + 1] > CT'H‘[k’] + 2 then PU,TTi = (1 sm+1)(1 il 1).vam(k,k--;—l) - ll__sfn v,T-

(1-sm)”

1
2
3

We introduce a partial order which will be used to compare eigenvalues, that is, the
spectral vectors.

Definition 4.18. For integers ny, mq, ng, mo define

q"ts™ = q"s™  if and only if ny > ng or ny = no,my < Mo — 2;

g s™ o g™ if and only if ny = ng,|my — ma| = 1.

We will also write ¢"'s™ > ¢"2s™2 if ny > ns.

This formulation is used to unify the various recursion relations. Note that, if ( = ¢,
is a spectral vector, then we have necessarily ([i] # ([i + 1] for each i. Indeed, either
v[i] <> v[i + 1] or v[i] = v[i + 1], and the contents are different (since an RST can not
have adjacent entries on a diagonal).

Here is a unified transformation formula. Theorem 4.12 is implicitly used.

Proposition 4.19. Suppose that v € N)Y, T € Taby, and 1 <i < N. Then
(1 —s) C[i] (i)~ c['+11>{3§[sﬁj<f['§[1€>+ el
(4.2) P <T7L + m) = CE—C+)° PCSi‘ if Cli] = ([i + 1],
0 4f C[i] = C[i + 1].

(43) PC(P - PC\I/‘Z.
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This proposition shows that we can easily use the spectral vector ( instead of the
pair (v, T) for labeling the Macdonald polynomials (assuming that ( = (, r for a given
vector v and a given tableau T).

Indeed, we showed that, if ¢ is a spectral vector and ([i] > ([i+1] or ([i] < {[i+1], then
(s; is also a spectral vector. Such an action is called a permissible transposition. If ([i] »
C[i + 1] then ( - s; is not a spectral vector. We use some of the ideas developed by [14],
see Theorem 5.8, p. 22 there. Let p be a decreasing partition. Suppose that p [i] = u[J],
i < j,and CTg[i]) = CTy[j] = a. Then {a — 1,a+ 1} C {CTg[i + 1],...,CTr[j — 1]}.
That is, there exists k with ¢ < k < j such that CTq[k] = a+ 1, and plk] = ul[i]
(because of the partition property). Thus the spectral vector ¢ contains a substring
(g5, gl st gilils®) (preserving the order from (; it is impossible to move g/l
past ¢"1s*t! with a permissible transposition), and adjacent entries of a spectral vector
can not be equal.

One description of permissible permutations is as the set of permutations of { in
which each pair ([i], ¢[j]) with ([i] » ([j] maintains its order, that is, if ¢ < j and
C[i] = ¢[j] and (C[i - o])Y, is a spectral vector then i - o < j-o. The structure of
permissible permutations is analyzed in Section 5.1.

For example, take A = (3,2),u = (1,1,1,1,0),

2 1
5 4 37

¢=(q95" q5%.qs.1),
C[1] ¢ ¢[2] = C[3] = ¢[4] = ¢[5].

However, also ([1] = ([4], so the order of the pairs (C[1],¢[2]), (¢[3],<[4]), (¢[1], C[4])
must be preserved in the permissible permutations (of which there are 25). Observe
that ¢ is a maximal element, in the sense that only > and ~ occur in the comparisons
of adjacent elements. Clearly there must be a minimal element (if ([7] > ([i + 1], then
apply s; to ¢). In the example this is

T =

= (1,95 ¢.qs,qs7")
CO,l,l,l,l N

4 2

Ti= 1545 1-

To finish this discussion, we show that the maximal and minimal elements are unique.
By the definition of >, we need only consider the possible arrangements of ([i], ([i +
1],...,¢[j] where pli —1] > pli] = -+ = plj] > pulj+1] (or i =1, or j = N and
W[N] >0). Let

inv (u, T) = {2, 5) - pli] = w sl i <, Gurli] < Gurlil}-
We showed that there is a unique RST Ty, where (., [z])fil is a permissible per-
mutation of ¢ and #inv (i, Tg) = 0. By a similar argument there is a unique RST
T; which maximizes inv (i, T). The minimum spectral vector is (CHR’TI[Z']){V where

=1’
plili] =p[N+1—i, 1<i<N.
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According to the previous remark, we will use the following notations.
Definition 4.20. If ¢ = ¢, 1, we write

invg(C) == {(i,j) : 1 <i < j <N, (lif a3,
for « € {<,>,<,>}. If ( = (1, then we write (* = (,+ . Note that (*[1] > (T[2] >
-+ > (T[N]. We set
inv(¢) := inv.(¢) = inv(v).

The action of the symmetric group Gy on the spectral vector is defined by

(1], -+ Cli = 1], ¢li 4 1], €Ll ¢le 4 2], CINT] if i) < ¢+ 1],

(4.4) Cs;= or ¢[i] = ¢[i +1],

4 otherwise.
Say (" < ( if and only if there exists a sequence of elementary transpositions (s;,, ..., S;,)
such that

C():C? Cl :C05i17"'7 CkZCSil"‘Sik :CI
and, for each j < k, (;[i41] < (lij+1 + 1].

5. STABLE SUBSPACES

5.1. Connected components. We denote by H{* the graph obtained from G%° by
removing the affine edges, all the falls, and the vertex ().

Recall that vt is the unique decreasing partition obtained by permuting the entries
of v.

Definition 5.1. Let v € N¥ and T € Taby (where A a partition). We define the filling
T(T,v) as the one obtained from T by replacing ¢ by v™[i] for each i..

As in [6], the following fact holds true.

Proposition 5.2. Two 4-tuples (T,(,v,0) and (T",(’,v',0’) are in the same connected
component of HY® if and only if T(T,v) =T(T,v").

This shows that the connected components of H{”* are indexed by the T'(T, i), where
[ 1s a partition.

Definition 5.3. We denote by H%® the connected component associated with 7' in
HY}®. The component H%:® will be said to be 1-compatible if 7" is a column-strict
tableau. The component H}’* will be said to be (—1)-compatible if T is a row-strict
tableau.

Note that each connected component has a unique minimal element (i.e., an element
without antecedent) called its root and denoted by

root (T) = (Troot(T)a Croot(T)a VUroot(T) Troot(T));
and a unique maximal element called its sink and denoted by

Siﬂk(T) = (Tsink(T)a Csink(T), Usink(T') Tsink(T))-
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With the notations of the previous section, we have vgn ) = v' and Tk = To

for any pair (v, T) € T'. In the same way, Vroot(1) = vgnk(T) and Tyoot(7) = T1.

Ezample 5.4. Let = [2,1,1,0,0] and A = [3,2]. There are four connected components
with vertices labeled by permutations of y in HY®. The possible values of T'(T, ) are

12 02 01 L1
001’ 011" 012’ ™% 0o2’

The 1-compatible components are Hfy’ and HY;’, while there is only one (—1)-compa-
001 002
tible component H&’. The component HEy is neither 1-compatible nor (—1)-compa-

. 012 011
tible.

The component HY® contains vertices of G%° and G% connected by jumps. In
001 54 543

2
Figure 4 we have drawn the components H{;® and HE®.
002 012

- 42 - 42
[s7t.a.1,6%s%,q5] 53, la,s7 1 1,qs,4%5%] 53,
[01021] [10012]

[s71,1,¢%s%, q, gs]

<P
2 &V % %>

01

[571,1,q,q252,qs] 012

[s71,q,1,qs,q%s?)

)
v s

[s71,1,q,qs,q%s? ‘

[s,1,42,qs, qS‘llﬂ[s, qs?, 1,42, qS‘l}H[QSQ, s,1,qs7 1, qQ}H[s, 1,q%,qs71, qu]H[s, qs71, 1,42, qu]HMS‘H s,1,q5%, %]

&8 &Y % % & % & >
[s,1,qs%,¢%,qs71] ‘ ’ [s,qs2,1,q57 1, ¢°] ‘ [s,1,g57 %, q%, qs?] ‘ ’ [s,qs71,1,¢5%, ¢°] ‘
12
I Iy
v ) 001 ¥ %

[s,1,q5%,qs7 1, ¢?] ‘ [s,1,gs71,qs2,¢?) ‘

FIGURE 4. Two connected components of H3y’

Ezample 5.5. Consider the tableau T'= J§. The graph HZ® is given by:



VECTOR VALUED MACDONALD POLYNOMIALS

Lsa bl s 0|82 15,057, 11H=91H[qss

The sink is indicated by a red disk and the root by a green disk.

By abuse of language, we write ( € T to mean that ( appears in a vertex of the
connected component H:".

Definition 5.6. In the same way, we define stdyT" of T to be the reverse standard
tableau of shape A obtained by the following process:

(1) Denote by |T|; the number of occurrences of 7 in T

(2) Read the tableau T' from the left to the right and the bottom to the top and
replace occurrences of ¢ in the order of their appearance by the numbers N —
Tlo—-—=1T}i-t, N—|Tlo—-—|T|ie1 =1, ... N=|T|g— -+ = |T;.

Let T be a filling of shape A. Then std;T of T is defined to be the reverse standard
tableau of shape A\ obtained by the following process:

(1) Denote by |T|; the number of occurrences of 7 in T.
(2) Read the tableau T' from the bottom to the top and the left to the right and
replace occurrences of ¢ in the order of their appearance by the numbers N —

Tlo—-—1T}i-e, N=1|T|o—-—|T|iz=1 =1, ... N = |T|g—---— |T;.
01 )
Ezxample 5.7. To construct stdg ( 00 2 ) we first write:
0 0/0 1|2
0 00 .
1].
2

and we renumber entries in increasing order from the bottom to the top and the right
to the left:
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: 01 4 2
Weobtamstdo(o 0 2)25 3 1
. : 01 o
Pictorially, we construct std, < 00 2 ) writing:
0 0 2|01
0 0 0 .
) 1
2

and renumbering entries in increasing order from the bottom to the top and the right

to the left:
0 0 2{0 1
5 4 .13

2

Thisgivesstdl(g (1) 2): 2 i E

Alternatively, one has

stdo(T)[4, 7] := #{(k,1) : T[k,1] > T[i, 5]} + #{(k,1) : k >4, T[k,1] = T[i, 5]}
+#{(4,0) 1 > 5, T, 1] =TT, j]}

and

stdy (T)[d, j] := #{(k, 1) : T[k, 1] > T[i, j1} + #{(k, 1) : 1 > 5, Tk, 1] = T3, j]}
+#{(k,j) « k > i, T[k, j] = T, j]}-
We can characterize the root and the sink of a connected component.

Lemma 5.8. One has:

(].) Troot(T) = StdoT and Tsink(T) = Stle,

(2) Uroot(T) - UR and Usink(T) - U+~

Proof. First observe that T'(stdg(T"),v) = T(stdy(T"),v) = T by construction. So we
have (v2 stdo(T)), (vT,stdy(T)) € HE®.

Since, v¥ is an increasing partition, each arrow

(T, w) 54 (stdo(T),vR)

is a jump (i.e., u = v?). Let [i, j] be a cell of stdy(T) and k = stdy(T)[i, j]. Let [/, j'] be
the cell such that k£ + 1 = stdo(7)[¢’, j/]. From the definition of stdy(7"), we have either
T[i,j] # T, j' orj =3 ori <i and j > j' (that is, CTsa,r)[k] < CTstaer)[k+1]—1).
Hence, such a row does not exist and (stdg(7'),v™) has no antecedent in H%:®. This is
equivalent to stdo(7") = Troot(7)-

In an equivalent way, we find that there is no arrow in H%* of the form
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(std1(T),vT) Si (T, w)

Consequently, we have std; (1) = Tgnk(r). u

Ezxample 5.9. We write Example 5.5 in terms of tableaux:

21 8 21 S 21
(0001] 3 (0030] 2 (0190]

S 31 S 31 S 31
42 42 42
3 [0010] 2 [0100] L [1000]

We observe that std (8(1]) = f’é = Troot(

S1

01 21
o) and std, (00) =43 = Tsink(g}))'

Remark 5.10. As a consequence, we obtain that, if m; denotes the number of occurrences
of 7 among the entries of T', then

Troot(T):[...,mo+'--+m,;+1,...,mo—|—---+mi+1+1,...,

mo+1,...,mo+m,1,... mgl,
and rguer) = [1,..., N].
The notion of (+1)-compatibility is easily detectable from the root and the sink.

Lemma 5.11. If H}:® is 1-compatible then, for each i, i and i+ 1 are not in the same
column of Trooy(ry. If HE® is (—1)-compatible then, for each i, i and i+ 1 are not in
the same row of Tyni(T)-

Proof. From Lemma 5.8, we have Tyoot(ry) = stdo(T') and Ty = stdi (7). But if &
and k + 1 are in the same column of stdy(T"), where we suppose that stdo(T)[, j] = k,
then stdo(7")[¢, 7+ 1] = k+ 1, and the only possibility is that T'[z, j] = T[¢, j + 1], which
contradicts the fact that 7" is a column-strict tableau. Similarly, if £ and k£ + 1 are in
the same row of std,(7"), then T[4, j] = T'[i + 1, j] for some (¢, 7), which contradicts the
fact that 7' is a row-strict tableau. U

Now we have all the material for an interpretation of the (41)-compatibility in terms
of spectral vectors.

Proposition 5.12. If HL:® is 1-compatible then, for each i, Croot(T) [i] Croot(T) [i 4+ 1]
implies Groot(1) 1] = $Groot(r)[i4+1]. If HE is (—1)-compatible then, for each i, Canwer)[i] 7
Ganr) i + 1] implies Caur)li] = 57 Gainkery [0 + 1],

Proof. This is just the translation of Lemma 5.11 in terms of spectral vectors. O
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5.2. Invariant subspaces. The Yang-Baxter graph and the previous section imply
that we can characterize the irreducible subspaces U of polynomials invariant under
Hy(s) and {€,;: 1 <i < N}, that is, UT;,UE, C U.

Definition 5.13. Let 7" be a tableau with increasing row and column entries. We
denote by My the space generated by the polynomials P with ¢ € T'.

Ezample 5.14. For instance, M  ; is spanned by
0 0

{P[s,sfl,l,q]y P[s,sfl,q,1]7 P[s,q,s*%l}; P[q,s,sfl,l}P[sfl,s,l,q]7 P[sfl,s,q,l}u P[s*%q,s,lb P[q,s*%s,l]}-
The spaces My are the irreducible invariant subspaces.

Proposition 5.15. We have MyT;, Mr&, C Myp. Furthermore, if U is a proper
subspace of My, then UT; ¢ U or U, ¢ U.

Proof. Let U be a subspace of MyT; such that UT,;,Ug, C U. The operators &, being
simultaneously diagonalizable, U is spanned by a set of polynomials {7, , ..., P, } with
k € N and (; € T. But from the Yang—Baxter construction, if there exists ¢ € T such
that P, € U, then, for each ( € T', P € U. So U is not a proper subspace. [

In the rest of the section, we investigate the dimension of the spaces My. The
dimension of such a space equals the number of permutations of the vector of the
entries of T multiplied by the number of tableaux T appearing in H7. The first number
is easy to obtain, but for the second we need some additional considerations.

Suppose that u, A are partitions with p C A (u[i] < A[f] for all @), |u| = k, |\ = n,
then the set {(7,7) : 1 <@ < L(N),u[i] <j < A[i]} is the skew diagram A\p. The basic
step in determining the dimension of a connected component is to find the number
(denoted dim (A\i)) of RST’s of shape A\, that is, the number of ways the numbers
(n—k),(n—k—1),...,1 can be entered in A\x so that the entries decrease in each
row and in each column. Equivalently, we ask for the number of standard Young
tableaux of shape A\u (see [12] or [15] for the definition). There is a classical formula
for this number (see [15, Cor. 7.16.3]). If det (a;;) denotes the determinant of the matrix
(ai;)? where p > ¢ () (the formula is independent of p), the formula says that

ij=1°
1
dim (A\p) = (n — k)! det : —
= =B | R =T = 0
Here, z% =0 for p=—1,-2,... (as in the zeros of m)

Now consider a tableau T'. Let M denote the maximum entry (also of any v in this
component) and let

o = {(i,7) € T : T (i,5) <m}, 0<m <M.

Then each p,, is the Ferrers diagram of a partition, pi,, C fmy1 (possibly py, = pim1 for
some m and dim (py,11\pm) = 1 trivially), and o™ [j] = m if j is an entry in g, \ fm—1-
The number of RST’s in the connected component of T is

dim (40 [0]) H dim (fm \pm—1) ,
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and the number of permutations of v* is N/ <|,u0|! TTY, (] — |um_1|)!>; the dimen-

sion of the component is

jv““t{um'-—z+y ]II(E [ ij;b]—i+jﬂ}'

This product can be restricted to the values of m for which g, 1 # p.,, that is, the set
of entries of v,

Example 5.16. (1) Consider again the tableau T' = 8 (1) . Then py = [2,1] and
w1 = [2,2]. Hence,
-

|-t

Consequently, the number of tableaux T in T" equals 2. The tableaux are i é

and i ; So the dimension of M is 3,1, X 2=8.

dim (p0\ [0]) = 3!det [

[ L S YC

O = ==

dim (p1\po) = 1! det [

2) Consider the bigger example given by the tableau T" = L2 see Figure 4).
001

Here pg = [2], u1 = [3,1], and py = [3,2]. We compute

|

dim (o) [0]) = 2! det

I
—_

dim (p1\po) = 2! det

1 T 1T
= O = ONe
— o }—‘5§|" — O =
| I |
I
\.l\D

dim (po\p1) = 1!det 0

There are two tableaux; the graph decomposes into two parts when we remove

the jump edges. The dimension of M is 2,2,1, x 2 = 60.

(3) Consider T' = 8 1 9 (see Figure 4). One has po = [1,1], 1 = [2,2], and
p2 = [3,2]. Hence, we have only one tableau in the connected component.
Graphically, there is no jump (blue arrow) in the connected component HZ:*.
The dimension of My is 30.

5.3. Symmetrizer/Antisymmetrizer. We define the operator
=2 T
ceGN

where 'f‘a =T, --- T, if there is a shortest expression o = s;, - - - s;,. The operator Sy
is an s-deformation of the classical symmetrizer in the following sense.
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Proposition 5.17. For each v, one has

SNTZ' = SSN.
Proof. Tt suffices to split the sum as
(5.1) SyTi= Y T, T;+ > T,T.
ceGN ceGN
L(os;)>L(0) L(os;)<t(o)

We use the quadratic relation to write the second sum as

Z ’TUTi = (S - 1) Z TgsiTi + s Z Tosi~

o€EGN cEGN ceGn
L(osi)<l(o) L(osi)<t(o) L(osi)<l(o)
But B B
Z TasiTi = Z TO‘
cESN o€6 N
L(os;)<t(o) L(os;)>L(0)
Hence,
Z TUTi =(s—1) Z 'TU + s Z ’Tasi.
cECN ceGN ceCN
L(osi)<l(o) Uosi)>Ll(o) Uosi)<l(o)

Substituting this in (5.1), we obtain the result.
As a consequence, we obtain the following result.
Corollary 5.18. The operator Sy satisfies
S% = on(s)Sw,
N 1_g

where ¢ (s) == Hj:2 —— is the Poincaré polynomial of Gy .

Proof. From Proposition 5.17, one obtains

Sk =Sy > T.= Y s"ISy=0¢n(s)Sx.

UEGN O'EGn
Alternatively, we define

ceG N
L(o)=k,0=s; +8i)

This operator satisfies

and
1
(5.3) S"% = on <g) Sy

The action of the symmetrizer on leading terms has some nice properties.
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Lemma 5.19. Let v and T be such that COLg|r,[i]] = COLx[r,[i]4+1] and v[i] = v[i+1]
for some i. Then
.Z’v’TSN =0.

Proof. We have
2T, = 207 T+ 2"s,TR,T;.

But v[i] = v[i + 1] implies 267 = 0 and, since COLz[r,[i]] = COLz[r,[i] + 1], we have
TT,,; = —T. Hence

(5.4) 2T = 2" TT,, Ry = —a"".

Now we split the sum %Sy into two sums,

ZL‘U’TSN _ JZU’T Z TJ + ZEU’T Z TU

U(sio)<l(o) L(sjo)>L(0)
S WL Sl
L(sio)<t(o) L(sio)>L(0)

From eq. (5.4), one obtains

fL‘U’TSN _ _xv,']l‘ Z Tsia + ZEU’T Z TU

L(sjo)<l(o) L(sio)>l(0)
= —zvT Z ’i‘a + v Z ’T‘U
L(s;jo)>L(0) L(sio)>L(0)

=0.

In the same way, we define
AN = Z (_S)Z(J)Taa
ceGN

where T, = T;, ... T, ! given there is a shortest expression o = s;, - - - si,- The operator
Ay satisfies the following relation.

Proposition 5.20. For each i, we have

Proof. The proof is very close to the proof of Proposition 5.17 and is left to the reader.
O

The operator Ay satisfies the following analog of Corollary 5.18.

Corollary 5.21. We have
A?V = ¢N(S)AN.
Lemma 5.22. Let v and T be such that ROWr[r,[i]] = ROWq[r,[i] + 1] and v[i] =

v[i + 1] for some i. Then
SL’U’TAN =0.
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Lemma 5.23. Let v = [v[l] < --- < v[N]] and T be such that, for each i, v[i] = v[i+1]
implies COLy[r,[i]] = COLy[r,[i] + 1]. Then the coefficient of 2¥F in x>TAy equals
IL; 8™ ¢m,(s), where m; denotes the number of parts i in v.

5.4. Symmetric/Antisymmetric polynomials. For ( = (, 1 and (s; = (1, we set
. _Cl+1] ] 1—gSlit1]
o ¢l e 40
52 = PCS«L + 1_4[2?‘_]1] PC and az. = PCSi — 1_4[2?[‘_]1] Pc.

Lemma 5.24. If ([i + 1] > ([i], then we have

s¢T; = ss; and a;T; = —af.
Proof. We prove only the result for 52 since the proof is very similar for aé. Recall that
Proposition 4.19 yields

PCTi = PCSz‘ — (1 — S)C[Z]—Cfl[]z—l—upc

and

S 8 ) ('S AT < P

(Cli + 1] = ¢[i])

Hence,

ﬁéTz =

((C[Hl]—sC[i])(sc[iH]—C[i]) (1 - )clil(s - ) )P<
)

(Cl+11 = Bl (€l = ¢li+ 1) - LF

5 Clit] |
i Cli+1]
* <1 o cm) e

5 — ¢li+1]
— -
_SPCSi—FS (1_ {[i+1]>

_ )
= SSC.

Let | = Z(eT b P € My be a symmetric polynomial, i.e., fT; = sf for each i.
. , b sCli]—Cli+1]
Lemma 5.25. ]fC[Z + 1] - C[/l], then ﬁ = W
Proof. Since §T; = sf, we have
(be Pt + bes, Ps;) Ti = 5 (b Pe + bes, P, ) -
Then b Py + bes, Prs, is proportional to 52. This finishes the proof of the lemma. 0

Since each vertex of 7" is connected to sink(7") by a series of edges

S (s4
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the polynomial f is unique up to a global multiplicative coefficient, and b, # 0 for all ¢
if § £ 0.

It T[Zaj] = T[Zaj + 1] for some (27]) then Croot(T)[k] = qnsm 7(’ Croot(T)[k + 1] =
q*s™*! for some k. Indeed, Ti,jl = Ti,j + 1] implies Vroot(r)[k] = Vroor(r)[k + 1],
hence 7y, . [k] +1 = k + 1]. It follows that m = CTrg (] and m+1 =

root(T) [ root(T") [

CTr,o ) [€ + 1] for some £.
01
Ezxample 5.26. If T' = 0 0 We have
3 1
root(T) = <4 5 s 1]4@&@ﬂ4&&¢u).
We have T'[1,1] = T[1,2] = 0. The corresponding cells in the tableau T, (r) are
Troor(ry[1, 1] = 4 and Toooury[1,2] = 3. So £ =3, k =2, and m = —1 = CTy,_ ., [3] =
CTTroot(T) [4] - 1
- Croot k’-‘rl .
From fT} = sf, one deduces b, , = 5(5—1) " Croot(r)[F] — #T[ﬂk]]%ootm' Finally,

Croot(T) [k] _ 1 : — —
Croot(T) [k"]_Croot(T)[k'i_l} o 1__5 lmphes bé}ggt(T) o 0 and f B 0

In the other cases, the coefficients b; are not zero, and they can be computed via

the recurrence given in Lemma 5.25. More precisely, setting b, ., = 1, and be,, =
%bc if ¢[i + 1] = C[é], we define the polynomial
My = b,
ceT

which is the unique generator of the subspace of symmetric polynomials of M.
So, one arrives at the following result.

Theorem 5.27. The subspace of Mt of symmetric polynomials is

(1) a 1-dimension space generated by My if T is a strict-column tableau;
(2) a 0-dimension space in the other cases.

Ezample 5.28. Consider the graph H?;® (see Figure 5). The polynomial
00

l—q (1-9q) (1-9q)
M = Pgigos —— P 1as A P s 1as— A P e
o [s,1,4,g571] + p [s,0,1,gs71] T (82 _ q) [g,,1,qs—1] T (82 — q) [s,q,g5~1,1]
(1-g)(s—9q) (1-9)(s—q)
P 5,48~ P sT4.,8
+ (s —q)? g,s,95—1] T (s2— ¢q)(s* — q) [g,9571,8,1]
is symmetric.
In the same way, define bgmot(T) =1, and bf,, = %ba if ¢[7 + 1] > ([i], and

the polynomial
MG = > BeP.
CeT
We then have the following result.



42 C. F. DUNKL AND J.-G. LUQUE

lq,s,g571,1]

[q,s,l,qs_l] [s,q,qs_l,l]

[s.9,1,q57"]

FIGURE 5. The graph HY
00

Theorem 5.29. The subspace of M of antisymmetric polynomials is

(1) a 1-dimension space generated by M5 if T is a strict-row tableau;
(2) a 0-dimension space in the other cases.

5.5. The group of permutations leaving 7T invariant. Let T" be a filling of shape
A with increasing rows and strictly increasing columns.

To each i we associate the pair COORD7[i] = (COLgq, (1) [i], ROWa, (1) [i]). An ele-
mentary transposition s; acts on 7' by permuting the cells COORDr[i] and COORDz[i+
1].

For a tableau T, we denote by &1 the maximal subgroup of Gy leaving invariant the
sets of entries of each line.
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ot W

Ezxample 5.30. For instance, consider the tableau T = i B We have &1 =
G145 X Gp23)-
We denote also by &7 the maximal subgroup of Gy, (1) leaving T invariant.

11 3 2
00 1 Then we have std (7)) = 541 and

Sr =623 X Gus X 61y C Ggrayr) = G145 X Ga3)-

Ezxample 5.31. Let T' =

Let &,(T") be the subgroup of Gy leaving the partition vgnk(r) invariant.

11
00 17
S, (T) = G123 X Sap)

Observe that &p = Ggq,(r) N &,(T). This implies that for each 0 € &7 one has
(vsmk Stdl (T))O' = (Usink(T)> Stdl (T))

Remark 5.33. In terms of spectral vectors, we have Coink(r)0 = Coink(T) (here we use the
action defined in eq. (4.4)). The property of T to have only strictly increasing columns
can also be interpreted in terms of spectral vectors. Indeed, for each i, we have

(55) Csink( [ ] -~ Csmk [Z + 1] or Csink(T) [7’] = anerl 76 Csink(T) [2 + 1] = qnsm.

11
0 01

Ezample 5.32. Again, with T' = we have vgnery = [1,1,1,0,0] and

Ezxample 5.34. Consider the tableau T' = . We compute (nk(ry from the vector

Vsink(r) = [1,1,1,0,0] and the tableau std, (1) = g Z 1 Here, rsnkr) = [1,2,3,4,5],
hence (inkry = [$°¢,¢,57'¢,5,1]. Observe that Cinkry[1] > Gink()[2]s Coink(r)[2] 7
Csink(1)[3], Wlth % = 5, Gink()[3] > Geink(r)[4] and Cenk(ry[4] % Coinker)[5], with
Gsink()[4] s
Gink(m)[B] 77

Let o be the minimal permutation such that o707 = Geink(r)- It can be used to
characterize the group Gr.

Lemma 5.35. The group &r is the subgroup of Sy consisting of the permutations o
such that {(oro) = L(or) + (o).

Furthermore, we will use the following result.
Lemma 5.36. For each permutation o such that G (1) = Goot(T)0 0nE has:
PCroot(T T PCroot(T)U + Z (*)PCI
¢’ <Croot(T)O—
Proof. We prove the result by induction on the length of o. If ¢ = id, then the result is
obvious. Now suppose that o = ¢’s;, with £(0) = £(0")+1, and 50 Croot(1)0 < Croot(1)TS;-
Then T, = T,T;. Furthermore, using the induction hypothesis, we obtain
(56) PCroot( )T PCroot(T)o-lT + Z PCIT

¢’ <Croot(T)a'
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But P o' T = Peoooiryos; + (*)Pcroocma- Furthermore, since ¢’ < Croot()0’, We have
('sj < Groot(m)o- But
PC/T] = (*)PC'S]' —+ (*)PC’
Hence, by substituting this in (5.6), we arrive at the claimed result. [
We are now in the position to deduce the following auxiliary result.

Lemma 5.37. Denote by 57 the coefficient of Pe .y 1 P,y T,. Then we have:

(1) If op'o & &7, then 33 = 0.
(2) If UEIU € &r, then 57 = glo)—L(or)

Proof. Part (1) is a direct consequence of Lemma 5.36. To show Part (2), we first use
Lemma 5.36 and write P . Tor = Pe i + Z<<<Sink(T)(*)P¢. Now set 7 := 0,0 €
&7 and observe that, for each element 7 € &7, (7" = (unk(r) implies ¢ = Ceink(r)-

Hence, the coefficient of (gnk(r) in ZC < k(T>(*>P§TT is 0. It follows that 89 equals
the coefficient of (yuk(7) in Pgsinkm TT. But &7 is generated by transpositions s; such
that Conker)[i] = ¢5™ " % Ganker)li + 1] = ¢™s™ (see eq. (5.5)). This implies P,
$Pery - Hence, Pey o 7 = SK(T)PCSM(T)- Since, from Lemma 5.35, £(7) = (o) — {(o7),
we obtain the desired result. O

inte(T) S

Proposition 5.38. The cocfficient of P, . i P, ySN €quals the Poincaré poly-
nomial ¢r(s) of Srp.

Proof. We write
PCroot(T) SN = PCroot(T) Z TJTTU _|— PCroot(T) Z TU'
c€GT L(opo)<l(or)+L(o)
By Lemma 5.37, the coefficient of P, . in
PCroot(T) Z TU = PCroot(T) Z TU
Uoro)<l(or)+L(o) orlogSy
is 0. Furthermore, Lemma 5.37 implies

PCroot(T) Z ’TUTTU = PCsink(T) Z Ta + Z (*)PCTO"

o€G o€GT C=Csink(T)

But, since ¢ # Cenk(7), the coefficient of Pcsmk(T) in Pffa is 0. Hence, the coefficient of

PCsink(T) in PCroot<T)S ~ equals the coefficient of PCsink(T) in Pcsink(T) ZUEGT To. The result
now follows from Lemma 5.37. O

The polynomial M7 is proportional to any F:Sy for ¢ € T'. In fact, we can compute
the proportion factor.

Theorem 5.39. We have

szink(T)
My = QbT(S) PCroot(T)SN
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Proof. 1t suffices to compare the coefficient of P, ., in M7z (given by Theorem 5.27)
and in P:Sy (given by Proposition 5.38). O

Ezxample 5.40. Consider the tableau T = . Here, Goot(r) = [5,1,¢s*, ¢s7!] and

1
0 0 1
Csink(T) = [q3717 q527 S, ]-] The images of groot(T) by

S, = {[1,2,3,4], [1,2,4,3], [1,3,2,4], [1,3,4,2], [1,4,2,3], [1.4,3,2],
2,1,3,4], [2,1,4,3], [2,3,1,4], [2,3,4,1], [2,4,1,3], [2,4,3,1],
3,1,2,4], [3,1,4,2], [3,2,1,4], [3,2,4,1], [3,4,2,3], [3,4,2,1]
[4,1,2,3], [4,1,3,2], [4,2,1,3], [4,2,3,1], [4,3,1,2], [4,3,2,1]}

are
[s,l,qs,qS‘l}, [s,1,qs7",qs%], [s,qs7',1,¢5%], [s,qs7', qs? 1],
[s,q5%, 1,q57'], [s,q5% g5, 1], [s,1,¢5%,q57"], [s,1,q57", qs%],
(s, qs™ ,1,qs2], [s,qs71,qs%, 1], [s,qs%,1,qs7Y], [s,qs% qs71, 1],
[qs 871,(18 1, lgs* s,qs74 1], [g 2,8,1,(15 1, lgs* s,qs71 1],
gs® a5 Ls, 1], [gs? st s, 1], [gs7! 3,1,q32], lgs™, 5,452, 1],
[qs 78’ ]'7 qs ]7 [qsilﬂ 87 q827 1]7 [qs qS S 1]7 I:q8717 q827 87 1]’

respectively. Only two permutations give (inkry: [4,3,1,2] and [4,3,2,1]. Indeed, one
computes o by choosing a maximal path in the Yang—Baxter graph: or = $953515251 =
[4,3,1,2]. The group & is the order-two group &p = Gy343. We see that acting by
T3 on Plge-1452.6,1) 8ives sPgs-1 452 517- Hence,

ﬂqs*%qs{s,l](l + T3) - (1 + S)P[qsfl,qSQ,s,l] - (ZST(S)F)[qs*l,qu,s,l}-

Note that ¢p(s) is the product of the ¢,(s) for each row A = [a™,...,a;"] of T,
where ¢ (s) = [, dm, ().

In the same way, we prove a similar formula for antisymmetric polynomials.

Theorem 5.41. We have

Csink(T)
m%’ = *(S) PCroot(T) AN’

where T denotes the conjugate of T (that is, the tableau obtained by exchanging rows
and columns).

Proof. Similarly to Lemma 5.37, we denote by B; the coefficient of P, In P, (T)TG.
We then have the following:

(1) If 0%10 ¢ &=, then B = 0.

(2) If 02'0 € &, then By = (—1)4)=4o7),
Using these properties, we prove as in Proposition 5.38 that the coefficient of P
in P ..An equals the Poincaré polynomial o7(s). The result follows. 0
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1
Ezample 5.42. Consider the tableau T'= 0 . Here, Goot(ry = [s71,1,¢s,¢s 2] and
0 1
Coink(r) = [g572,qs, s, 1]. The images of Coot(r) by G4 are:
[s7 1,5q,q57%], [s',1,q57%,sq), [s7 8¢, 1,977, [s7%,5q,q57% 1],
[s7hqs7%,1,8q], [s7' a5 % sq, 1], [s7h 18,9577, [s7', 1,957, sq],
[s7'sq, 1,957, [s7,sq,q57%, 1], [s7'qs7% 1, sq], [s7',q57%, 8¢, 1],
[sq,571,1,q57%], [sq,s7 ' qs7% 1], [sq,57',1,q57%], [sq,s7 ', qs 2% 1],
[sq,q572, 571 1], [sq,qs7%, 571, 1], [gs7%, 571, 1,8q], [gs72,s7 ", 5q,1],
lgs72, 5711, 8q), [gs72,s7 sq, 1], [gs7%,sq, 57, 1], [gs™2,sq, 71, 1].
Only two permutations give Cenkr): [4,3,1,2] and [4,3,2,1]. These permutations gen-
= 1
erate &7 with T' = 00 1°

5.6. Minimal symmetric/antisymmetric polynomials. We have seen that for a
given isotype A the symmetric polynomials are indexed by column-strict tableaux 7" of
shape A. There exists only one tableau filling of A\ such that the sum of its entries is
minimal. This tableau is obtained by filling the first row with 0’s, the second with 1’s,
etc. Let

m—1 ... m—1

Ty = : :
g 1 .1
0 - - ... 0
if A= [A,..., Ap], with Ay > -+ > A, and the number of i’s among the entries of T)
equals ;.

Example 5.43. Let A =[5,3,2,2,1], then

T\ =

O = N W
O = DN W

1
000
Corollary 5.44. The space of the minimal symmetric polynomials for isotype A is

spanned by Mr,, and similarly the space of minimal antisymmetric polynomials s
spanned by Mz, where A denotes the conjugate partition of A.

A
Ezample 5.45. Consider the isotype A = [5,3,2,2,1]. Then A = [5,4,2,1,1] and

4

Ty =

O = N W
S =N
O =

O =

(@)
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Hence, the space of minimal antisymmetric polynomials for isotype A is spanned by

m’ta

2
2 3 4

o O O oo
= e

6. BILINEAR FORM

6.1. Bilinear form on the space V). To define a pairing for V), introduce the dual
Hecke algebra Hy (¢, s71); we use * to indicate objects associated with Hy (¢g71's71),
e.g., Tf, (co+c15)" = co + <. Recall that, when acting on V), T; = T;. There is a
bilinear form on Vi x Vi, (u*,v) — (u*,v) € Q(s,q), such that («*T;,vT;) = (u*,v)
for 1 < i < N, and such that Ty, Ty € Taby, Ty # Ty implies (Tj, Ty) = 0; the latter
property follows from the eigenvalues of L;, since (u*¢},ve;) = (u*,v). We establish a
formula for (T*, T) after the following recurrence relation.

Lemma 6.1. If T € Taby and m := CTg[i] — CT[i + 1]) > 2 then T@H+D € Taby and

TGy ity (I—smh(1—-sm T T
(oo, geseny = A= D) g

Proof. The equation TT; = T®HD — 1=s_T implies

l—s—m

<T*, T> _ <T(i,i+1)*’ T(i,i+1)> + (il__si_) ()1(1_;_577)1) <T*, T> :

thus

<T(z,z+1) 7T(z,z+1)> — (1 _ M) <T*7T> .

(1= sm)?

Definition 6.2. For T € Tab, let

v(T) = H

1<i<j<N
CTr[1]-CTr[j]<-2
Proposition 6.3. The bilinear form defined by (T5,Ty) = 0 for Ty # Ty and (T*,T) =
v(T) (for T, Ty, Ty) and extended by linearity satisfies (P*T;, QT;) = (P*,Q) for all
P*,Q,1i.
Proof. Tt suffices to show that (T*T TT;) = (T*,T) for all T. If TT; = sT then
T*T = s 'T* and (T*T}, TT;) = s 's (T*, T). The case TT; = —T is treated similarly.
Otherwise, consider the pair (T, T} with CT¢[i] - CTr[i+1] > 2. There is only one
factor in v (']I‘(i’i+1)) different from v (T), the one corresponding to j = i+ 1. The proof
then follows from Lemma 6.1 and CTqi11)[i] = CTr[i+1], CTquirn[i4+1] = CTy[i]. O

Any other bilinear form satisfying (P*T;, QT;) = (P*,Q) is a constant multiple of
the above form.

(1 — sOTslI-OT=l=1) (1 — gCTall-CTalil 1)

(1 — sCTrli)-CTxli])?




48 C. F. DUNKL AND J.-G. LUQUE

6.2. Bilinear form on the space M,. Consider the bilinear form (, ) defined by

(6.1) (T3, Ta) = o1, 1,v(T1)
and
(6.2) (Pzi, Q) = (P,QD;).

This form has the following property.
Proposition 6.4. We have
(P(T})*,Q) = (P,QT").

Proof. We proceed by induction on the degree of the polynomials. The start of the
induction is given by the inner product on the tableaux. Using the induction hypothesis,
we have from eq. (3.8) and Proposition 3.6

(6.3) (P, T}, Q) = (Px;, QT 1),
(6.4) (Pria(T7)7, Q) = (Paip1, QT),
and
(6.5)

<ij(T;k)i1,Q> = <Pa;j,QTf1> = (P, QT?”DJ) = (P, QDJ»TEF1> when |7 — j| > 1.
Indeed, one has
(Pzi1(T;) ™, Q)
using the induction hypothesis. Hence,
<P$i+1(Tr)71,Q> = <P7 QDlJrlTl) = <P7 QT;1D1> = <P‘Tza QT;1>

which gives (6.3). The proofs of (6.4) and (6.5) are similar.
Now, by Proposition 3.6, one has

1 _ 1 . 1
(PT; " wis, Q) = Z(PT; ™, QDiy) = —(P, QDin T),

S S

(Pri1T7,Q) = (PTix; — (1 - §>P$i+1,Q> =(P,QD,T; ' — (1 - %)Di+1)>

by induction hypothesis. Hence, by (3.8), one obtains

(6.6) (P T}, Q) = (P,QT; 'Diy1) = (Pripr, QT ).

Similarly, one has

(6.7) (P2, T: 7', Q) = (Pxy;, QT,).

Egs. (6.3), (6.4),(6.5), (6.6) and (6.7) give the result. O

Now one has also the following equalities involving the operator w:

1 -1 :
=W Dia Tit1W = W11, 1 7é ]-7

Di_f_lW_
and

1

Dyw ! =gw Dy, 3w = qwzy.

This entails the following identity.
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Proposition 6.5. We have
(Pw™=, Q) = (P.Qw™).
From Proposition 6.5 and 6.5 one deduces the following theorem.

Theorem 6.6. We have

(1) (PE;.Q) = (P,Q& ™),
(2) (PZ, Per) = (%)d¢.¢r,

where (%) denotes a certain coefficient which remains to be computed.

6.3. Computation of (P}, F;). First we establish some recurrences.

Proposition 6.7. Let ( = (, 1 for some T € Taby and v € NV. Suppose that ([i+1) »

C[i] for some i. Then
_ gSlit]] _ Clit]
(1) (- %)
2

_ ¢l
3(1 40 )

Proof. From eq. (4.2), we infer P,T; = —%PC + P;,. Thus

(Fos Fosi) = (F¢ Fe)-

(Fe,Fe) = (BT BT

I—s 1-s \ i .
) (1—4[1'*”) <1 <[i+11> (PE o)+ (Pési Peau) -

¢[d] ¢[d]
Hence
(1—s)(1—s71
P P y=11 * P,
< ¢sirt ¢ z> (1 B C[i—i-l]) <1_ ¢[i) > < ¢ <>
¢ld] Cli+1]
(1 _ SC[H—l]) <S _ C[z—i—l])
_ ¢[e] . ZCH <P*,PC>
5 (1 T >
O
Definition 6.8. We define
1-— s‘IM
_ ¢[4]
ga(() - H 1 B M

and
5(() = 51(()5—1(0-
Proposition 6.9. Let ¢ = (, 1 for some v € NN and T € Taby. One has

(PLPe) =€) (P P
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Proof. we argue by induction on #inv ({). The statement is trivially true for #inv ({) =
0, that is, if { = ¢*. Suppose the statement is true for all ¢’ = (,» p with #inv (¢') <n
and #inv (¢) = n + 1. Thus ¢ [z] < ([i + 1] for some i < N. By Proposition 6.7, we
have

(-
P P = g PP
< ) <> <1—3déf;]ﬂ> (1—3—1%) < Csio <,>
thus
(P¢Pe) _&(¢-si)
(P Pes) (O
This completes the induction since #inv ((s;) = #inv (¢) — 1. O

Alternatively, the computation of <P*, P4> can be related to the root or the sink of
the connected component of (.

Proposition 6.10. Let ( = (, 1 for some v and T. Let H%:® be the connected component
of . We define the values

SO= 1]

(4,5) €inv<(C)

(1—sgh(1— s

and

(i,4)€invs(¢)
Then one has

(1) (P2 P = SO (P2 P )
2) (P2 Py = RO (P2 P )

Proof. The proof works as in Proposition 6.9, using induction on #inv,(¢) (< € {<, >
}), since there is a unique maximal (respectively minimal) element in the connected
component: the sink (respectively the root). These elements are connected to ¢ by a
sequence of steps or jumps. ]

There holds as well the following identity.

Proposition 6.11. Let ¢ = (,1 for some v € NV and T € Taby. Then one has
(Plwa, Pewe) = (1= qS[1)(F;, Fy).
Proof. From Proposition 4.19 one has
(Plye, Powa) = (PL®", Pe®) = (P (T TyL) aw, PTT - TRl o).

But Proposition 6.4 implies

(PE(T! - TRLy) an, PTT - TR o)

= (P, P T Ty janDyTy_y - Ty),
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and, by Dy = (1 — &€y)xy', we obtain
(Plya, Pewa) = (P}, Pe) — (P}, Pewa€ ey Ty -+ Th)
= (P{, Po) = (CUN|(P?, Pewa® ™).
Using again Proposition 4.19, we find
(Plya; Pewa) = (1= (CUOIN(F, )
Since ((W?)[N] = q¢[1], we arrive at the desired result. O

Definition 6.12. We let x(i,j) = 1if j <i and x(i,7) =0 if j > 4.

Let p(a,b) = % and

AQ =TT TI »rClild" <.
J=1¢li]¢ljlg"
E>x(i,5)
Let O(¢"s™) = (q; ¢s™)n, where (a;q), = (1 —a)(1 —qa)--- (1 —¢"'a), and O(¢) =
T2, (i)

Example 6.13. Let ¢ := [¢°s™', ¢s%, ¢s,q] be the spectral vector associated with v =

2,1,1,1] and T = le 3 9 Then we have

0(¢) = O(q*s™)B(gs*)D(gs)8(g) = (1 — g5~ ) (1 — g%~ )(1L — ¢5*)(1 — gs)(1 — q).
With the aim of computing A(C), we list the triples (4, , k) such that C[i] = ([j]¢".
Here we find 6 triples:

(1,2,0), (1,2,1), (1,3,0), (1,3,1), (1,4,0), (4,2,0).

Note that (1,4, 1) does not occur in the list since s~ £ ¢*. Furthermore, there is no
factor corresponding to (4,2,0) in A(C) because x(4,2) = 1. Hence, A(() is a product
of 5 factors:

AQ) = plas®, s p(a®s* ¢*s ") plas. ¢*s™ ") p(d®s, *s )pla, ¢°s™1)
(q—s) (s +1)(=1+¢)
(=53 +q) (s +1+5)(qg—3)

With these notations, one has the following auxiliary result.

Lemma 6.14. (1) If ¢ = Cov 1 then A(C) = v(T) and O(C) = 1.
2) fo(cC - Cor with C[0+1] = C[E] then A(Cse) = p(C[E], C[E+1)A(C) and O(Csy) =
(3) If ¢ = Cor then A(CU?) = A(C) and O(CTY) = (1 — gC[1)D(C).
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Proof. (1) First note that, if ( = (o~ r, then there is no occurrence of ¢ in ¢, so we
have 0J(¢) = 1. Moreover, we have

v = ] »CH.CH)
CTr ﬁf_’éﬁ&d

=11 I »li <.

J=1¢l~¢ls)

(2) Obviously we have (((sy) = O(¢). Furthermore,

I  o(Cselt + 1)g%, Csele])
Csell]=Csell+1]qk
A(Cse) _ kXt
A(C) II  ecier cle+1))

Cle+1)=¢[e)g"
k>x(0+1,0)

[T »cae cie+1))
et -cie
IT  eclaecle+1))

Cle+1]=¢ [ g"
k>1

= p(¢[], ¢[e+1)).

This proves the result.
(3) One has O(¢W?) = (1 — (CV9)[N])O(C) = (1 — ¢¢[1)B(¢). Furthermore,

[T AoV cuni)
A(CW) B N-1 (C\Ifq)[l]l;C(‘)Pq[N]qk
(O, I Pl ¢li+1))
Cli+1]=¢[1]g*
k>1

[T (e, (u)N) |

(CW9)[N]=Ci]g"
k>1

I Pl + 1% ¢lil)
i
>0

X

But ((U?)[N] = ¢¢[1] and (¢P?)[i] = ¢[i + 1]. Hence, ((P?)[i] > ((P?)[N]¢* for
k > 0 implies ([i + 1] > ¢[1]¢*"!. In the same way ((W?)[N] = ([i]q" for k > 1



VECTOR VALUED MACDONALD POLYNOMIALS

implies ¢[1] = ([i + 1]¢"~!. Hence, the quotient simplifies to
A(CT1)

="/ _q

A(¢) ’

as expected.

We deduce the following result.
Theorem 6.15. Let ( = (7). Then the value of the pairing (P, F) is

(P, Py = DO A(Q)
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Proof. Comparing the statement of Lemma 6.14 to Propositions 6.7, 6.11, and 6.3, we
see that (P}, P;) and O(C)A(C) satisfy the same recurrence rules and have the same

values when ¢ = (o~ .

6.4. Computation of (M5, Mr). First observe that

We use Theorem 5.39 to write

(0, M) = Pearsr) jgpe p g
T» T) — ¢T(S) < T> Croot(T) N>

Hence, by eq. (6.8), we have

m* mt > _ bgsink(T) <m* S/* P >
< T» T/ — ¢T(S) T N> Croot(T) :

Since My is symmetric, eq. (5.3) gives

. ON(S) s
<9ﬁT7 932T> = szink(T) ng—(S><mT7 PCroot(T)>'

Hence,

* ¢N<S) * *
<mT’ mT> - ¢T—<8) CSink<T) Croot(T) <P<root(T) ’ PCrOOt(T>>'

Using the normalization described in Section 5.4, we have b, ., = 1.

Theorem 6.16. We have
PN (s)

<m,}7 mT> = qﬁT—(S) Csink(T) <P500t(T) ’ PCroot(T) >

In the same way, for antisymmetric polynomials we obtain the following result.

Theorem 6.17. We have

a * a ¢N(S) a *
<9~nT ) gJtT) = ng(S) szink(T) <PCrooc(T)7 P<r00t<T) >

O
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Proof. The proof works as in the symmetric case, but it uses the operator A’y with the
property that

This operator is the antisymmetrizer

= Y (o0,

ceGN
satisfying
1
2
AT = ¢N(;)AIN'
Hence, by a similar reasoning we arrive at the claimed result. [

6.5. Hook-length type formula for minimal polynomials. The topic of this sec-
tion is simpler formulae for (9}, , My, ) for a decreasing partition A in the situation
where the entries of T" are constant in each row. The formulae are then specialized to
the minimal symmetric/antisymmetric polynomials. In this case they are expressions
in terms of hook-lengths.

First consider a partition p where y = [,ui[m], . ,uﬁlm] with g > -+ > . Let
Alm] o1
T Alm =1+ A[m] ... ... Am]+1
M+ -+ Am] ... ... AR]+ -+ Alm] + 1

be the RST obtained by filling the shape A with 1,..., N(= A[l] 4+ --- + A[N]) row by
row and
2 R 31

T — . .

Hm—1 -+ o Mm—1
O 11

be the column strict tableau obtained by filling the shape A with the entries of yu row
by row. Then p = vy and T = Tgnir). Hence,

(69) Csink(T) — [qﬂl S)\[m}—m7 o ’qulsl—m, qlt281—m+)\[m—l]7 o ,QMQSQ_m, e
g s g
Ezample 6.18. Let A = [3,3,2] and p = [3,3,2,2,2, 1,1, 1]. We construct
2 1
T= 54 3
and
3 3
T= 2 2 2.



VECTOR VALUED MACDONALD POLYNOMIALS
We have
* * —1 *
<P<root(T PCroot(T)> (CTOOt(T ) <PC5mk(T) ’ PCSink(T)>

= S(Croot(T ) (Csmk ) (Csink(T));
where
(610) Croot(T) = [qumsflJr/\[l]? cee >qum7 cee 7qu2317m+)\[m71}7 ce 7q#252 m>

grml=mo gt

By telescoping, we find

(1 — qra—rigi=i)(1 — quj—mSj—i+/\[m—j+1]—>\[m—i+1})'

(6.11)  S(Georr) = ]

1<i<j<m
First we compute A((ank(r)), and following eq. (6.9) we write

A(Gsink(ry) = (T*, T)O,
with
pi—pg —LAIm— i) Alm—j+1] (1 — gits—mitk gimitba=1y(] _ guj=puith gi—i+b—a+l)

o=1]I H H H (1— quj—ui+k5j'_fi+b7a)2

1<i<j<m k=0
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Indeed, (F, oy’ s Py ) SPits into two factors: the first factor (T, T) does not depend
on ¢, all the factors of the second factor OU((sink(ry) involve g. By telescoping, we have

(6.12)
Alm—j+1] (1 — qrammith gimitbma=1)(] _ guj—pithgi—itb—at1)
bljll (1 — qﬂj_ﬂi+ksj—i+b—(z)2
_ gbi—pitk gj—i—a _ itk gj—i+Am—j+1]—a+1
_(—gq s (1 —¢q 5 )
o (1 _ quj—m+k5j—z’—a+1)(1 — quj—ui+k5j—i+/\[m—j+1}—a)’
(6.13)
Alm—i+1] 1— quj*uﬁksjfifa B 1— qﬂrmsjfifk[mfwll
111 1 — quj—ui+k5j—i—a+1 o 1— quj—msj—i !
and
Alm—it1] s~ itk gi—itAlm—j+1]—a+1 | — gtk giitAlm—j+1]
(6'14) l_AE 1— qu*Nz‘Jrksj—i—&-)\[m—j-i-ﬂ—a - 1— qﬂj*M+k5j—i+)\[m—j+1]—A[m—i—l—l]'

So, equations (6.12), (6.13), and (6.14) give

—Hj— 1_quj Mz+k?5j i—A[m— z+1])(1 _qu] },Ll-f—kisj i+ A[m— j+1])

H H — gt pitk gi— z)(l_q,uj pitk gj—itAlm—j+1]—Alm— Z+1])

1<i<j<m k=0
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Note that, by eq. (6.11), we have

O K Hi— (1 — gt paith gi—imAm—it1]y (] _ gui—pith gi—itAm—j+1])

= < H< H (1 _ qﬂj*ﬂi“rksj—i)(l _ quj7ui+ksj—i+)\[m—j+1]—)\[m—i+1])
1<j<m =

S(<root(T) )

_ H (q527]+)\[mii+1]7Q)uz Atj—l(qsl i- )\[m j+1] Q);LZ uj—l
(qsiijJr)\[miiJrl] [m ]Jrl]aQ) i_#_j—l(qsl Ja‘])#i—ﬂj—l

1<i<j<m
Furthermore,
m A[m—i+1]
Csmk = H H S] mt q) i
1=1 7j=1
Hence,
m )\[m—i-i—l}
<615) <P2;oot(T)’ PCroot(T)) = <T*7 T> H (q5j7m+lil7 q)/—Lz
=1 j=1
y H (q i— j—l—)\[m—i—l-l}; q)uz uj—l(qsi_j_)\[m_j+1]; Q)Mi—uj—l
L<isiem (qsz JHAMm—i4+1]—A\[m—j+1] q)ﬂi—ﬂj—l(qsliﬁq)ui—uj—l
We find also

Alm—i+1] 1 — quj—uisj—i—i—l—a

Cﬁmk(T) H H q/—"j —Hi S)\[m*j+1]*i+j+1*a '

1<i<j<m  a=1

Now we specialize ;4 = m — . The tableau T" then becomes

For convenience, consider the normalization

My =bt My

Csink(T)

Furthermore, we set V := iﬁ—g%. So, we have

Vi = (b ) Fonir, 1 o)y
A =\ Ysink(T) (T, T) .
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From equality (6.15), we obtain

(6.16) V)= H (¢’ q)ia
=1 =1
y (s 7T Nm=1 g) sy (qst I m=at )iy
1<i<j<m (gsi=at A=t =Am=3+1 [g); i 1 (g5, q)j—i1
§ A[mﬁﬂ} 1 — @i gimitamAlm—j+1]-1
1 — gi—igiita-l

a=1

Note that this formula remains valid when A[m] = 0:

Let X' = [A1],A]2],...,A[m — 1], A[m] — 1] be the partition obtained from A by
subtracting 1 from its last part. We denote by 7" and T’ the associated tableaux.

Ezample 6.19. For instance, if A = [6, 3, 2] then

2 2 2 1
T=111 and T= 5 4 3 .
00 0O0O0OOQO0 11 10 9 8 7 6
In this case X' = [6,3, 1] and
2 1
T=111 and T= 4 3 2
00 0O0O0OO©O 10 9 8 7 6 5
One has
VA Am]—
6.17 == = (¢s*™™ )
(6.17) v, (gs S Qm—1
. m (qsl—jJr)\[m]; q)j_Q(qS)\[m}—/\[mfjJrl]—j; C])j—Q
e (qsk[m]—j; q)j_2(qsl—j+)\[m]—>\[m—j+1]; Q>j—2
y (1— qj—lsx\[m]—/\[m—jJrl]—j)
(1 — qj*ls)\[m}*j)
A[m]—m

1 [(@s 79 q) o (g AT g
s L(gsMmi=i; q) o (qst A=t g) 5y

Observing that
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we see that eq. (6.17) gives

(6.18) Va _ ﬁ

m—l( Alm]—=Afi]+i—m—1

(qSA[m]—A[m—j+1]—j. q)
(qsl FHAm]—Alm—j+1]. Q)]72

@i
( gAIm]=Ald]+i— m’q>

i=1 m—i—1

As usual, we define the arm, leg, and hook lengths of a node (z,y) € A by

—2[ey] = Ayl — 2, Iaf,y] = Nl — y and B, 9] = 03w 5] + Dsf, 9] + 1,
where X is the conjugate of \.

Remark 6.20. Note that we use French notation for Ferrers diagrams. For instance, the
Ferrers diagram A = [4,2,1] is

3
2
1

y/x

—~ OO0
o O] O

O d
3 4
The coordinates of the node x in the diagram

g
o O
X

U 0 O

are [2,1]. We have
—0,21]=A2-2=2 21 =1]-1=1and E,[2,1] = 4.

Graphically, the values of =0 ,[2,1] (respectively of J A2, 1], or of E A2, 1]) are ob-

tained by counting the numbers of (respectively of J , or of symbols { , J , X 1)
in the following diagram:

O

o J

0 x

Let
—1

>4

[z
[ﬂc y]

H

y=1 x=1 Alz.y]
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The changes from Hy to H, come from the node {(A[m],y) : 1 < i < m — 1}; each
hook-length and each leg-length increases by 1, thus

m—1 A[m]—=A[i]+i—m— 17(])m ;
(619) H)\/ H qs/\[m] Afi]+i—m. Q)m—z—l.
Hence,

Vi H,

6.20 — ="
( ) VA, H}\,
Using eq. (6.20) we obtain
(6.21) Hy =V,.

It remains to compute (T*, T). We start from

) (1- SCTT[i]—CTT[j]—l)(l _ SCTT[i]—CTT[jHl)
(T*,T) = 11 (1 — sCTeli=CTx[])2 ’

1<i<j<N
CTrli|-CTr[j]<-2

and we analyze this product in terms of nodes:

(6.22) (T, T)= [] 11

(#,Y9)EX 1<t<N[z]—y,1<2<A[y]
(z—y—t)—(2—1)<-2

(1 o S(x—y—t)—(z—t)-i—l)(]_ . s(x—y—t)—(z—t)+1)
(1 —sevD-GD)2

Indeed, consider the set Z, of the pairs [(x,y), (z,t)] of nodes verifying Tz, y] < Tz, ]
and (r —y) < z —t — 2. This set splits into N disjoint (possibly empty) sets:

Eww) ={ll@y+1). (z,9)] 1 1 <t < Aa] -y,
1<z< Ay, (x—y—1t)— (2 —1t) < —2}.

Ezample 6.21. Consider the partition A = [3,2]. In this case,

2 1 . -1 0
T = 5 4 3 with contents 0 1 2°
Consequently,
7y =A{[(2,2), (3,1}, [(1,2), (3, D], [(1,2), (2, 1]}
1,1) — {{(172)7 (271)]7 [(172>7 ) }7
2,1) — {[(2’2)7(371)]}
and
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Hence,

<T*a T> = H

[(2,9),(2,t)|€Tx

(1-— Sw—y—z+t—1)(1 _ Sa:—y—z+t+1>

(1 — gr—y—=+t)2

821—t1+t2—2’2—1)(1 821—t1+t2—22+1)

1— _
- H H ( (1 — sm1titte—z2)2 ’

(@) €N [(21,t1),(22,t2)] €€,y

and we arrive at (6.22).
Let us compute the products
(1 _ 321*t1+t2*22*1)(1 _ 821*t1+t2*Z2+1)
H (1 _ 321—t1+t2—32)2 )

By =

[(21,t1),(22,t2)]€E (2,

Observe that, if [(z,y + 1), (2,y)] € Egy), then ¢ and 2z have bounds 1 < z < Aly| and
1<t<Az]—vy, z+t—2x—2>0. Hence,

Az]—y

1_8x—t—z+1 1_S:c—t—z—1
S I

t=1 z=max{l,z+2—t}

By telescoping, we find

-y (1- Smax{l,erth}fortfl)(l o S,\[y],xﬂﬂ)

(6.23) By = 11 (1 — smax{Lot2—t)—a+t) (] — gAll-a+1)
We also find

Az]-y (1 B S/\[y]_x+t+1) 1 — gAyl—z+A[z]—y+1 1— SEA[x,y}
(6.24) 11 I ooy = oW -

1 — Sa—n )\[ajvy}

But, if A[z] —y < x, then max{l,z +2 —t} =2 +2 — ¢, for 1 <t < \[z] —y, and

Alz 7y _ max{l m+2—t}—m+t—1) 1—3s Alz]—y
(625) U 1 — gmax{ly+2—t}— :c+t) - (1 _ 82) ’
If \[x] —y > =, then we use telescoping to show that

Az]—y —t— — T
1— max{l,z+2—t}—z+t—1 1 — 1 —
(6.26) H U=s max{Ly+2—t}—z+t : - ( 82) X . b1”
L = et ) T \1-#82) 1 oo

Egs. (6.25) and (6.26) give
(6.27)

Nz]—y 1 _ gmax{La+2—t}—att— 1) ( 1—s )min{m,J A[m,y]} 1—3

_ cmax{l,y+2—t}—z+t 2 .
1 5 ) 1 5 max{l,J A[m,y]—x—l—l}
1—5
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Hence, by (6.24) and (6.27), we obtain

(6.28)
1 min{ﬂf,J A[ﬂw}} (1—2s) (1 — SE*[CE@’]>
— S
Eloy) = (m)
max{l,J )\[x,y]—m_t,_l}
S

1— 1 — gD \[z.y]

Finally, egs. (6.21), (6.22), and (6.28) lead to the following result.
Theorem 6.22. We have

a3 = 1 | (1= )m{JH}

1— s2
(z,y)EN

(1 — 3)<_S>E,\[:c,y] (S_Ek[xvy];q)
)\[xvy]+1

max{l,J A[m,y}—m—o—l}
1—s5 1 — s> [zl

For a rational expression f(s) let ¢f (s) = f(s7!). Here are some immediate conse-
quences:

w (T) =v(T),
Ty (1) = —CTT(), 1<i<N,
If Ty, Ty € Taby then

(¢5" 5 q),, (q5" 5 q)

(45"5),,
formula for <P;’T, Pv"]r>, we obtain

()

Now suppose that A is a partition of N, and T, T are the tableaux corresponding to the
minimal antisymmetric polynomial.

If p,(m,n) = ™ then tp, (m,n) = p, (m,—n). Using this in the
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Ezample 6.23. If A = (3,2), then

0 1
=012

[SARTEN
W N

As for symmetric polynomials, we set
NCL a -1 a

Our formulae show that

<ﬁ“T*, 971T> <§JVI*T, ﬁ7>

l/ - o~ B y——

v (T) v (T)
= On (5) H *Ex[i,j}.
= qs i q
Hfg) Oxiiy (8) (a)ex ( >J>\[i7ﬂ

€ - i
_ E(A)N( ) IT (o5 Cavia,,
[Ti2y &5 (5) Gren
This leads to the following theorem.
Theorem 6.24. We have

anax ana ¢ 871 Alég
<zmT ,zmT> = v (T) AmN( )1 gsoial g
[Ti5 o (s71) (i,7)EX

>0 )\[.jvi]

>0 )\[ivj]
Ezample 6.25. For A = (3,2), we have
ot ¢5(s7) 4 3 2
zm“*,zma> = 5% 57, 5%
(g, 0t o (o (05150)a (057 0), (05 0),
=g %5 <8>2 (1 — qs4) (1 — q234) (1 — qs3) (1 — qs2) .
2 (s)
Note that v(T) does not always equal 1. For instance, we have
6
7 1+ s
s a2 ETESE
95 31

7. CONCLUSION

Throughout this paper, we have constructed and analyzed a Macdonald-type struc-
ture for vector valued polynomials, that is, polynomials whose coefficients belong to
an irreducible module of the Hecke algebra. The “classical” Macdonald polynomials
are recovered for the trivial representation and then correspond to the shapes A = (n),
n € N. Thanks to the Yang-Baxter graph we have found algorithms and some explicit
formulae for computing the Macdonald polynomials, their (anti)symmetrizations, their
scalar products, etc., and we have given graphical interpretations of these properties.
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We remark that almost everything works as for vector valued Jack polynomials [6],
and that the Jack polynomials are recovered as a limit case of Macdonald polynomials,
as expected (setting ¢ = s* and sending s to 1).

It remains to consider some constructions that could illuminate this theory. For
instance, the shifted Macdonald polynomials could be defined by slightly changing the
raising operators. For the trivial representation, shifted Macdonald polynomials are
easier to manipulate than the homogeneous ones since they can be defined by vanishing
properties [10, 11]. We have seen in [6], that this is no longer the case for shifted vector
valued Jack polynomials for a generic irreducible module. But this research is not yet
complete, and we speculate that the vanishing properties arise when considering some
polynomial representations of the Hecke algebra.

Comparing the results in [5] and [8], we find similarities between the concepts of sin-
gular non-symmetric Macdonald polynomials and highest weight symmetric Macdonald
polynomials. We hope that this similarity extends to vector valued polynomials. In
this context, minimal symmetric polynomials should play a special role and, perhaps,
provide applications to the study of the fractional quantum Hall effect. The fractional
quantum Hall effect is a state of matter with elusive physical properties whose theoreti-
cal study was pioneered by Laughlin based on wave functions describing the many-body
state of the interacting electrons. Some of these wave functions (called Read-Rezayi
states; see [13]) are multivariate symmetric polynomials with special vanishing prop-
erties, and it was shown, combining minimality of the polynomials for the vanishing
properties and results of [7], that they are Jack polynomials for a specialization of the
parameter « (see e.g. [2]). It would be interesting to know if we can identify other
relevant wave functions from vector valued Jack or Macdonald polynomials.
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APPENDIX A. SOME USEFUL FORMULAE FOR THE AFFINE DOUBLE HECKE
ALGEBRA

A.1. Hecke algebra of type Ay_;. The generators of Hy (s) are 11,75, ..., Ty_1
with s" # 1 for 1 < n < N. The generators satisfy the relations:

(T, —8) (T, 4+1) =0, T} =(s—1)T;+s,

=l sy,
TiTin T = %’HTiTiH, 1 <i<N,
TT; = T;T,  li—jl> 1.
Let S =T1Ty---Ty_1. Then T;S = ST, for 1 <i < N —1 and T35V = SNT; for
1 <j < N. Indeed,
LS=T T2, 1T T - T
=TT, 2T, AT 1 Tigq - Ty
= 8T},
and
T8N = §i-iq gN—i+1
=S (s =) Ti+5) (T Ty-18) Y77
= (s—1) SN 45571 (STy -+ Tiy_y) SN,
SNT; = STy NI
=S Ty - Tn_o((s—1)Ty_y +s) SV
= (s —1)SN 4+ 55T - Ty_o SV 71,
A consequence of the above derivation is
TS = S*Tx_1.
The Murphy elements are ¢; = s NT;T; 1 --- Ty 1Tny_1---T;. Let gb; = sV, and
S; = T/Tyy1- Ty for 1 < i < N. Then ¢y, 1+ by, = S} 7" Indeed, for

i = N — 1, both sides equal T% ,. Note that SiT; = T;415; forzz' < j < N. Now
suppose the statement is true for some 7 > 1. We compute
SﬁJfl_i = SﬁIiﬂ—lsi = TN—1S£\_[I¢S¢ = TN—1SiJ\_ZIi_1Ti—1Si2

=Tn1Tn-2SN 17197 = T 1 Tv—2S) 72T, S}

= =Ty 1Ty T SY
multiply both sides on the left by S;_1 = T;_1 - - - T'v_1, and use the inductive hypothesis,
to obtain

SN =Ty Ty Ty - T ST

= ¢S =000 Oy

Thus7 SN = SN(Nil)/nglng e ¢N—1-
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Adjoin an invertible operator w with relations
wl; =T yw, 1<i<N-—1,
W Ty 1 = lez,
wNTi:TZ-wN, 1<i< N.
A.2. Action on polynomials. Let P = K|[zy,...,2y], where K is an extension field
of Q(s,q). On P there is a representation of Hy (s),
2@ ~p(s)

p(r)Ti= (1~ +sp(xs;), 1<i<N,
Ti — Ti41
where xs; = (x1,...,Tiy1, T, .. .) (8; is the transposition (7,7 + 1)),
p(x)w=p(qry,T1,T2 ..., TN_1).

Denote the multiplication operator p (x) — x;p (x) by x;, 1 <i < N. Then we have
v 1 =Tz, j#i,0—1,
v Ty = sT, 'wipr, ;= T, 'y T) Y,
Tinw = wx;, 1<1<N,
T1W = qQUTN.
A.3. ¢-Dunkl operators. There are pairwise commuting operators Dy, ..., Dy (dual
to the multiplication operators) with relations
DT, =TyDi, j#iyi—1,
ST Dy = DinT,, D= TD, T,
Dijyw=wD;, 1<1i<N,
qgDyw = wDy.

They act on polynomials by
p(x) Dy = (p(z) = s"'p (2) TL TRty - T w) 2y
D, = %TiDmTi =w'Diw, 1<i<N.
The Cherednik operators satisfy
Ev ="V (1 - Dyay),

1
& =TT, 1 <i<N.
S



