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VECTOR VALUED MACDONALD POLYNOMIALS

C. F. DUNKL† AND J.-G. LUQUE‡

Abstract. This paper defines and investigates nonsymmetric Macdonald polynomi-
als with values in an irreducible module of the Hecke algebra of type AN−1. These
polynomials appear as simultaneous eigenfunctions of Cherednik operators. Several
objects and properties are analyzed, such as the canonical bilinear form which pairs
polynomials with those arising from reciprocals of the original parameters, and the
symmetrization of the Macdonald polynomials. The main tool of the study is the
Yang–Baxter graph. We show that these Macdonald polynomials can be easily com-
puted following this graph. We give also an interpretation of the symmetrization and
the bilinear forms applied to the Macdonald polynomials in terms of the Yang–Baxter
graph.

1. Introduction

For each partition λ of N there is an irreducible module of the Hecke algebra of
type AN−1 whose basis is labeled by standard tableaux of shape λ. This paper defines
and analyzes nonsymmetric Macdonald polynomials with values in such modules. The
double affine Hecke algebra generated by multiplication by coordinate functions, q-type
Dunkl operators, the Hecke algebra and a q-shift acts on these polynomials. They
appear as simultaneous eigenfunctions of the associated Cherednik operators. There
is a canonical bilinear form which pairs these polynomials with those arising from the
reciprocals of the original parameters. The Macdonald polynomials and their reciprocal-
parameter versions constitute a biorthogonal set of the form. The values of the form
are found explicitly.

There are symmetric Macdonald polynomials in this structure. They are labeled
by column-strict tableaux of shape λ (non-decreasing entries in each row, strictly in-
creasing in each column). Formulae for these polynomials in terms of nonsymmetric
Macdonald polynomials are derived and the values of the bilinear form are obtained
in this case. There are analogous results for antisymmetric Macdonald polynomials,
which are labeled by row-strict tableaux. There is a hook-length type formula for the
bilinear form evaluated at the minimal symmetric polynomial associated with λ.
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In the study of one-variable orthogonal polynomials the very simple graph 0→ 1→
2 → · · · symbolizes the Gram–Schmidt process used to produce the polynomials. In
the present multi-variable setting, the Yang–Baxter graph displays how each Macdonald
polynomial is produced. Each arrow corresponds to either an adjacent transposition or
an affine step (u1, . . . , uN)→ (u2, . . . , uN , u1 + 1). This idea is developed in Section 4.

In Section 2 we give the basic definitions of the Hecke algebra, its modules, and the
machinery necessary to describe the leading terms of Macdonald polynomials. Section 3
begins with the simplest two-dimensional module associated to the partition (2, 1) of
N = 3. We describe how the basic operations arise in this situation and thus motivate
our general definitions. The rest of the section gives the definitions and proves the
fundamental relations, notably the braid relations, for the vector-valued situation. A
key part is played by the triangularity property of the Cherednik operators with respect
to a natural partial order on monomials.

Section 4 contains the description of the simultaneous eigenfunctions, the spectral
vectors, the transformation rules for the action of the generators of the Hecke algebra
on the polynomials, and the Yang–Baxter graph.

Section 5 concerns the connected components of the Yang–Baxter graph modified by
the removal of the affine edges. Here we find the conditions under which the component
contains a unique symmetric or antisymmetric polynomial.

The bilinear form is defined and evaluated in Section 6. The method of evaluation
relies on relatively simple calculations of the effects of a single arrow in the Yang–Baxter
graph. The minimal symmetric polynomials are studied in this section. The hook-length
formula for the bilinear form gives some information about aspherical modules of the
double affine Hecke algebra, a topic to be pursued in future work.

The paper concludes with a symbol index and a list of basic relations for quick
reference.

2. Double affine Hecke algebra

2.1. Definitions and basic properties. Consider the elements Ti and w verifying
the following four relations:

(1) (Ti + t1)(Ti + t2) = 0,
(2) TiTi+1Ti = Ti+1TiTi+1,
(3) TiTj = TjTi for |i− j| > 1,
(4) Tiw = wTi−1.

These operators act on the right on C(t1, t2, q)[x1, . . . , xN ] by

(1) Ti := πi(t1 + t2)− t2si,
(2) w := τ1s1 · · · sN−1,

where πi = ∂ixi+1, ∂i is the divided difference defined by

∂i = (1− si)
1

xi − xi+1

,

si denotes the transposition (i, i+ 1) and

f(x1, . . . , xN)τi = f(x1, . . . , xi−1, qxi, xi+1, . . . , xN).
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Note that the parameter t1 could be omitted, since dividing each Ti by t1 we obtain

1

t1
T t1,t2,qi = T

1,
t2
t1
,q

i .

For simplicity, we will use the parameters t1 = 1 and t2 = −s. Then the quadratic
relation is (Ti + 1)(Ti− s) = 0 and Ti := πi(1− s) + ssi. Note that these operators have
interesting commutation properties with respect to the multiplications by xi:

xiTi − Tixi+1 − (1− s)xi+1 = 0(2.1)

xi+1Ti − Tixi + (1− s)xi+1 = 0.(2.2)

The double affine Hecke algebra is defined as

HN(q, s) := C(s, q)[T1, . . . , TN−1, w
±1, x±1

1 , . . . , x±1
N ].

The double affine Hecke algebra admits a maximal commutative subalgebra generated
by the Cherednik elements:

ξi := si−NT−1
i−1 · · ·T−1

1 wTN−1 · · ·Ti.
The (nonsymmetric) Macdonald polynomials are the simultaneous eigenfunctions of the
Cherednik operators. This implies that one can compute them using the Yang–Baxter
graphs: the spectral vector of 1 is

ζ =

[(
1

s

)i−1
]

1≤i≤N

.

The nonaffine edges act by si on the spectral vector and by Ti− 1−s
ζ[i+1]
ζ[i]
−1

on the polyno-

mials. The affine edges act by w on the spectral vector and by Φq := T−1
1 · · ·T−1

N−1xN
on the polynomial. Note that there exists a shifted version. All of that is contained in
the papers [10, 1].

From [1], we define a (q, s)-version of the Dunkl operator:

(1) DN := (1− sN−1ξN)x−1
N ,

(2) Di := 1
s
TiDi+1Ti.

These operators generalize the Dunkl operator for the double affine Hecke algebra. For
instance, one has

Di+1Ti = −sT−1
i Di, −TiDi+1 + (1− s)Di +DiTi = 0,

−Di+1T
−1
i − (1− 1

s
)Di+1 + T−1

i Di = 0,(2.3)

[Di, Tj] = 0 when |i− j| > 1.

The (q, s)-Dunkl operators have also interesting commutation properties with respect
to the operator w, namely

Di+1w = wDi, 1 ≤ i ≤ N − 1,(2.4)

qD1w = wDN(2.5)
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Note also that the operators Di commute with each other:

[Di, Dj] = 0, 1 ≤ i, j ≤ N.(2.6)

2.2. Modules for the Hecke algebra.

Definition 2.1. A tableau of shape λ is a filling with integers which is weakly in-
creasing in each row and in each column. In the sequel row-strict means (strictly)
increasing in each row and column-strict means (strictly) increasing in each column.

A reverse standard tableau (RST) is obtained by filling the shape λ with inte-
gers 1, . . . , N subject to the condition that entries along rows and columns are strictly
decreasing. We denote by Tabλ, the set of the RST with shape λ.

Let T be an RST. We define the vector of contents of τ as the vector CTT with
the property that CTT[i] is the content of i in T. (The coordinates of the cell are
(ROWT[i],COLT[i]), row and column; CTT[i] = COLT[i]− ROWT[i].)

Example 2.2.
CT 2

5 4

6 3 1

= [2,−2, 1, 0,−1, 0].

As in [3, 4] (see also [9]), let us introduce the pairwise commuting Murphy elements

LN := 0,

Li := Ti +
1

s
TiLi+1Ti, 1 ≤ i < N.

Let Vλ be the vector space spanned by (independent) {T : T ∈ Tab (λ)}. The action
of HN (q, s) on Vλ satisfies

TLi = s
1− sCTT[i]

1− s
T, 1 ≤ i ≤ N.

These equations determine {T} up to scalar multiplication. There is a modification of
the Murphy elements which is actually more useful for our applications.

Definition 2.3. For 1 ≤ i ≤ N let φi := si−NTiTi+1 · · ·TN−1TN−1 · · ·Ti, or, equiva-
lently, φN = 1 and φi = 1

s
Tiφi+1Ti for 1 ≤ i < N .

Proposition 2.4. We have φi = 1 + s−1
s
Li for 1 ≤ i ≤ N , and if T ∈ Tab (λ) then

Tφi = sCTT[i]T.

Proof. Use downward induction. The statement is true for i = N . Suppose the state-
ment is true for φi+1, then

φi =
1

s
Ti

(
1 +

s− 1

s
Li+1

)
Ti

=
1

s

(
T 2
i +

s− 1

s
TiLi+1Ti

)
=

1

s

(
(s− 1)Ti + s+

s− 1

s
TiLi+1Ti

)
= 1 +

s− 1

s
Li.
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Thus Tφi =

(
1 +

s− 1

s

s
(
1− sCTT[i]

)
1− s

)
T = sCTT[i]T. �

There is an important commutation relation.

Lemma 2.5. Suppose 1 ≤ i, j ≤ N − 1 and i 6= j, j + 1. Then T−1
j φiTj = φi.

Proof. If j < i − 1 the result follows from TkTj = TjTk for |i− j| ≥ 2. If j > i then
(note that T−1

j Tj−1Tj = Tj−1TjT
−1
j−1)

sN−iT−1
j φiTj = T−1

j Ti · · ·TN−1TN−1 · · ·TiTj
= Ti · · ·Tj−2T

−1
j Tj−1Tj · · ·TjTj−1Tj · · ·Ti

= Ti · · ·Tj−2Tj−1TjT
−1
j−1Tj+1 · · ·Tj+1TjTj−1Tj · · ·Ti

= Ti · · ·Tj−2Tj−1TjTj+1 · · ·Tj+1T
−1
j−1Tj−1TjTj−1 · · ·Ti

= sN−iφi.

�

We describe the action of Ti on T. There are two special cases:

if ROWT[i]) = ROWT[i+ 1] then TTi = sT,
if COLT[i] = COLT[i+ 1] then TTi = −T.

Otherwise, if we denote by T(i,j) the tableau T where the entries i and j have been
interchanged, the tableaux T(i,i+1) is an RST. If ROWT[i] < ROWT[i + 1] (implying
COLT[i] > COLT[i+ 1]) then

(2.7) TTi = T(i,i+1) − 1− s
1− sCOLT[i+1]−COLT[i]

T.

Note that this is a formula for T(i,i+1). If ROWT[i] > ROWT[i+1] (implying COLT[i] <
COLT[i + 1]) then set m := CTT[i + 1] − CTT[i] (which is > 0 by the hypothesis). It
follows that

(2.8) TTi =
s− 1

1− sm
T+

s (1− sm+1) (1− sm−1)

(1− sm)2 T(i,i+1).

Formally this gives also the special cases m = 1 when COLT[i] = COLT[i + 1] and
m = −1 when ROWT[i] = ROWT[i+ 1].

2.3. Hecke elements associated to a multi-index. Denote S := T1 · · ·TN−1 and
θ := s1 · · · sN−1 . Observe that if i > 1

(2.9) TiS = STi−1 and siθ = θsi−1.

For each multi-index u = [u1, . . . , uN ] we define

(2.10) Tu =


1 if u = [0, . . . , 0],

T[uN−1,u1,...,uN−1]S if uN > 0,

T[u1,...,ui−1,0,ui,0,...,0]Ti if ui > 0.

Example 2.6. Let u = [0, 1, 0, 2] then Tu = ST3T2ST3S:
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[0, 0, 0, 0]

[0, 0, 0, 1]

S

[0, 0, 1, 0] T3[0, 1, 0, 0] T2

[1, 0, 0, 1]

S

[1, 0, 1, 0] T3

[0, 1, 0, 2]

S

Since we use only braid relations and commutations, if u[j] > u[j + 1] one has

(2.11) Tu = TusjTj.

Hence, the vector Tu can be obtained by any product of the type A1 · · ·Ak where
Ai ∈ {S} ∪ {Ti : i = 1, . . . , N − 1} are such that

(1) We obtain u from [0, . . . , 0] by applying a1 · · · ak where ai = sj if Ai = Tj and
ai = θ if Ai = S.

(2) If ai = sj then u′ := u · a1 · · · ai−1 verifies u′[j] < u′[j + 1].

Example 2.7. One has

T[0102] = ST3T2ST3S
= ST3T2T1T2T3T3T1T2T3

= ST3T1T2T1T3T3T1T2T3

= ST3T1T2T3T1T1T3T2T3

= ST3T1T2T3T1T1T2T3T2

= ST3ST1ST2

Graphically this is

[0, 0, 0, 0]

[0, 0, 0, 1]

S

[0, 0, 1, 0] T3

[0, 1, 0, 1]

S

[0, 1, 0, 0] T2

[1, 0, 0, 1]

S

T1[1, 0, 1, 0] T3

[0, 1, 0, 2]

S

[1, 0, 0, 2]

S

T2

Remark 2.8. The construction of Tu can be illustrated in terms of braids. The generators
Ti and S are interpreted as
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Ti = S =

uN

...

ui+1

ui

...

u1

uN

...

ui

ui+1

...

u1

uN

uN−1

...

u2

u1

u1 + 1

uN

...

u3

u2

For instance for u = [0, 1, 0, 2] one obtains the braid:

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

1

0

1

0

1

2 u[4]

0 u[3]

1 u[2]

0 u[1]

S T3T2 S T3 S

We introduce the creation operator

Ci := (STN−1 · · ·Ti)i

This operator has the property that, if v = [v[1], . . . , v[N ]] is a partition, then

TvCi = T[v[1]+1,...,v[i]+1,v[i+1],...,v[N ]]

is the partition obtained from v by adding 1 to the i first entries. As a consequence,
the element associated to a partition is a product of creation operators

T[v1,...,vN ] = Cv1−v21 · · ·CvN−1−vN
N−1 CvNN .

Example 2.9. Consider the computation of T[2,1,0] in the following figure.

[0, 0, 0]

[0, 0, 1]

S

[0, 1, 0] T2[1, 0, 0] T1

C
1

[0, 0, 2]

S

[0, 2, 0] T2

[2, 0, 1]

S

[2, 1, 0] T2

C
2
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Setting φ̃i := sN−iφi = Ti · · ·TN−1TN−1 · · ·Ti, one obtains the following factorization.

Proposition 2.10. For each i, we have

Ci = φ̃1 · · · φ̃i.

In order to provide a proof, we need the following auxiliary result.

Lemma 2.11. Let i− k > 1. Then we have

(Ti−k · · ·Ti) (STN−1 · · ·Ti) = (STN−1 · · ·Ti+1) (Ti−k−1 · · ·Ti) .

Proof. By eq. (2.9), one has

Ti (STN−1 · · ·Ti) = STi−1 (TN−1 · · ·Ti)
= (STN−1 · · ·Ti+1) (Ti−1Ti) .

Hence, using eq. (2.9) iteratively, one obtains

(Ti−k · · ·Ti) (STN−1 · · ·Ti) = (Ti−k · · ·Ti−1) (STN−1 · · ·Ti+1) (Ti−1Ti)

= S (Ti−k−1 · · ·Ti−2) (TN−1 · · ·Ti+1) (Ti−1Ti)

= (STN−1 · · ·Ti+1) (Ti−k−1 · · ·Ti),
as expected. �

Proof of Proposition 2.10. Applying Lemma 2.11 iteratively, one has

φ̃1φ̃2 · · · φ̃i = (STN−1 · · ·Ti) (Ti−1 · · ·T2) (STN−1 · · ·T2) φ̃3 · · · φ̃i
= (STN−1 · · ·Ti)2 (Ti−2Ti−1) · · · (T1T2) φ̃3 · · · φ̃i
= (STN−1 · · ·Ti)2 (Ti−2Ti−1) · · · (T2T3)STN−1 · · ·T3φ̃4 · · · φ̃i
= (STN−1 · · ·Ti)3 (Ti−3Ti−2Ti−1) · · · (T1T2T3) φ̃4 · · · φ̃i
= (STN−1 · · ·Ti)4 (Ti−4Ti−3Ti−2Ti−1) · · · (T1T2T3T4) φ̃5 · · · φ̃i
= · · ·
= (STN−1 · · ·TN−i)i.

�

As a consequence, if T is an RST and v is a partition, one has

(2.12) TTv = s∗T,
where ∗ denotes an integer which depends only on v and T.

2.4. Rank function. There is a unique element ofHN (q, s) associated to each σ ∈ SN .
The length of σ ∈ SN is

` (σ) := # {(i, j) : 1 ≤ i < j ≤ N, i · σ > j · σ} .

There is a shortest expression σ = si1 · · · si`(σ) and a unique element T̃σ ∈ HN (q, s)
defined by

(2.13) T̃σ = Ti1 · · ·Ti`(σ) .



VECTOR VALUED MACDONALD POLYNOMIALS 9

For any si, ` (siσ) = ` (σ) ± 1; if ` (siσ) = ` (σ) + 1 then T̃siσ = TiT̃σ, and if ` (siσ) =

` (σ) − 1 then T̃siσ = T−1
i T̃σ. Similarly, if ` (σsi) = ` (σ) + 1 then T̃σsi = T̃σTi, and if

` (σsi) = ` (σ)− 1 then T̃σsi = T̃σT
−1
i . The following fact will be used in the analysis of

the raising operator for polynomials.

Proposition 2.12. Let σ ∈ SN . Then T̃−1
σ T̃θT̃θ−1σ = sN−(1·σ)φ1·σ.

Proof. Use induction on ` (σ). The statement is true for ` (σ) = 0, σ = 1, because

T̃θT̃θ−1 = T1 · · ·TN−1TN−1 · · ·T1 = sN−1φ1. Suppose the statement is true for all σ′

with ` (σ′) ≤ n and ` (σ) = n + 1. For some k one has ` (σsk) = ` (σ) − 1. Set

σ′ := σsk and i := 1 · σ′. Then we have T̃σ = T̃σ′Tk. If ` (θ−1σ′sk) = ` (θ−1σ′)− 1 then

T̃θ−1σ = T̃θ−1σ′T
−1
k and

T̃−1
σ T̃θT̃θ−1σ = T−1

k T̃−1
σ′ T̃θT̃θ−1σ′T

−1
k

= sN−iT−1
k φiT

−1
k ,

by the inductive hypothesis. If ` (θ−1w′sk) = ` (θ−1σ′) + 1 then T̃θ−1σ = T̃θ−1σ′Tk and

T̃−1
σ T̃θT̃θ−1σ = sN−iT−1

k φiTk by a similar argument.
Let i1 = k · σ′−1 and i2 = (k + 1) · σ′−1. By hypothesis, we have i1 < i2. Let j1 =

k · (θ−1σ′)
−1

= i1 ·θ and j2 = (k + 1) · (θ−1σ′)
−1

= i2 ·θ. Then ` (θ−1σ′sk) = ` (θ−1σ′)+1
if and only if j1 < j2. (Note that j · θ = j− 1 if j > 1 and 1 · θ = N .) Since i2 > i1 ≥ 1,
it follows that j2 = i2−1. If i1 = 1 then j1 = N > j2, and so ` (θ−1σ′sk) = ` (θ−1σ′)−1,

k = 1 ·σ′ = i. This implies 1 ·σ = i+ 1 and T̃−1
σ T̃θT̃θ−1σ = sN−iT−1

i φiT
−1
i = sN−i−1φi+1.

If i1 > 1 then j1 = i1−1 < j2 and ` (θ−1σ′sk) = ` (θ−1σ′)+1. In this case 1·σ′ 6= k, k+1,
and so sN−iT−1

k φiTk = sN−iφi, by Lemma 2.5; also 1 · σ = 1 · σ′ = i; and this completes
the induction. �

Consider the rank function of a multi-index v = [v[1], . . . , v[N ]] as an element of SN ,

rv [i] := # {j : 1 ≤ j ≤ i, v [j] ≥ v [i]}+ # {j : i < j ≤ N, v [j] > v [i]} .

Example 2.13. (1) If v = [4, 2, 2, 3, 2, 1, 4, 4] then rv = [1, 5, 6, 4, 7, 8, 2, 3].
(2) If v is a (decreasing) partition then rv = id.

The length of rv is
` (rv) := #inv(v),

with inv(v) := {(i, j) : 1 ≤ i < j ≤ N, v [i] < v [j]} being the number of inversions in v
(note that for i < j we have rv [i] > rv[j] if and only if v [i] < v[j]). There is a shortest
expression rv = si1 · · · si`(rv) and an element Rv ∈ HN (q, s) defined by

Rv := T−1
i`(r{α})

· · ·T−1
i1

= T̃−1
rv .

We have the following auxiliary result.

Lemma 2.14. (1) If v[i] > v[i+ 1] then Rvsi = RvT
−1
i .

(2) If v[i] < v[i+ 1] then Rvsi = RvTi.
(3) If v[i] = v[i+ 1] then RvTi = Trv [i]Rv.
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Proof. (1) If v [i] > v [i+ 1] then rvsi = sirvand #inv (vsi) = #inv (v) + 1, so
Rvsi = RvT

−1
i .

(2) Similarly if v [i] < v [i+ 1] then Rvsi = RvTi.
(3) If v [i] = v [i+ 1] and k = rv[i] then sirv = rvsk and ` (sirv) = ` (rv) + 1 (one

extra inverted pair (k + 1, k)); thus T̃sirv = TiT̃rv and T̃rvsk = T̃rvTk. Hence,
RvTi = TkRv.

�

We compare the elements Tv and Rv in terms of TvR
−1
v . We need to consider three

cases:

(1) If T[0,...,0] = I then rv = I = T[0,...,0].
(2) In the case T[v1,v2,...,vi−1,vi,0,...] = T[v1,v2,...,vi−1,0,vi,0,...]Ti (vi ≥ 1, i < N), we see

that #inv (v · si) = #inv (v) + 1, hence rv·si = sirv (see Lemma 2.14 (1)) and

T̃rv·si = TiT̃rv , Rv·si = RvT
−1
i . So we have

(2.14) Tv·siR
−1
v·si = TvR

−1
v .

(3) If TvΨ = TvS (with vΨ := (v2, v3, . . . , vN , v1 + 1)), then we have

rvΨ = sN−1sN−2 · · · s1rv = θ−1rv,

where θ = s1s2 · · · sN−1. By Proposition 2.12 (let k = rv [1]), we obtain

T̃−1
rv T̃θT̃θ−1rv = sN−kφk,

s−N+kφ−1
k RvS = RvΨ,

and thus

(2.15) TvΨR
−1
vΨ = sN−kTvSS

−1R−1
v φk = sN−kTvR

−1
v φk.

As a consequence, we are able to derive the following result.

Proposition 2.15. TvR
−1
v is in the commutative algebra generated by

{φi : 1 ≤ i ≤ N}

for each v, and it acts by scalar multiplication (by powers of s) on each T (recall that
Tφi = sCT (i,T)T, 1 ≤ i ≤ N). Furthermore we have

Tv =
N∏
i=1

(
sN−iφi

)v+i Rv.

Proof. By eq. (2.14), we see that, if the formula is true for v with vj = 0 for j > i and

vi ≥ 1, then it is also true for v · si (note that (v · si)+ = v+). Using induction, suppose
the formula is true for all v with |v| ≤ n, for some n ≥ 0 (the case n = 0 is trivially
satisfied). Let |v| = n + 1. Using the case 2 step as often as necessary, assume that
vN ≥ 1. Thus v = uψ with |u| = n, and rv = θ−1ru; in particular, let k = rv [N ] = ru [1].
Then v+ =

(
u+

1 , . . . , u
+
k + 1, . . . , u+

N

)
(u has exactly k − 1 entries > u1, and thus v has
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exactly k entries ≥ vN = u1 + 1, including vN ; hence v+
k = vN = u1 + 1 = u+

k + 1). By
eq. (2.15) and the inductive hypothesis, we obtain

TvR
−1
v =

(
sN−kφk

)
TuR

−1
u =

(
sN−kφk

) N∏
i=1

(
sN−iφi

)u+i ,
and this proves the claim. �

In particular, if v is a partition then Tv =
∏N

i=1

(
sN−iφi

)vi .
3. Vector valued polynomials

3.1. First Examples. To motivate our definitions we consider the simplest two-dimen-
sional situation: N = 3, isotype λ = (2, 1). A basis for the representation of {T1, T2}
is

f1 = sx1 −
1

s+ 1
(x2 + x3) ,

f2 = x2 −
1

s
x3.

Then f1T2 = sf1, f2T2 = −f2 and

f1T1 = − 1

s+ 1
f1 +

s (1 + s+ s2)

(1 + s)2 f2,

f2T1 = f1 +
s2

1 + s
f2.

We aim to set up a Macdonald-type structure in {p1 (x) f1 + p2 (x) f2}. Firstly define
operators T

′
i acting on pairs [p1, p2] so that

[p1, p2]T
′

i · [f1, f2] = (p1f1 + p2f2)Ti, i = 1, 2,

where [a1, a2] · [b1, b2] := a1b1 + a2b2. Indeed, we have

[p1, p2]T
′

1 =

[
p1T1 −

1 + s+ s2

1 + s
p1s1 + p2s1, p2T1 −

s

1 + s
p2s1 +

s (1 + s+ s2)

(1 + s)2 p1s1

]
,

[p1, p2]T
′

2 = [p1T2, p2T2 − (s+ 1) p2s2] .

The inverses are obtained from the quadratic relation: T
′−1
i = 1

s

(
T
′
i + 1− s

)
.

Secondly, we need a definition of w (to be generalized in the sequel). The relation
wT1 = T2w must be satisfied. The braid relation gives a solution T2 (T1T2) = (T1T2)T1.
Using w′ = T1T2, let

f1w
′ = − s

1 + s
f1 −

s (1 + s+ s2)

(1 + s)2 f2,

f2w
′ = sf1 −

s2

1 + s
f2.
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Then w′T1 = T2w
′, acting on span {f1, f2}. Now define

[p1, p2]w =

[
− s

1 + s
p1w + sp2w,−

s (1 + s+ s2)

(1 + s)2 p1w −
s2

1 + s
p2w

]
.

Set

ξ1 = s−2wT
′

2T
′

1,

ξ2 = s−1T
′−1
1 wT

′

2,

ξ3 = T
′−1
2 T

′−1
1 w.

These operators commute. Here are the degree 1 simultaneous eigenfunctions:

[− (1 + s)x3, sx3] ,[
x3,

1 + s+ s2

1 + s
x3

]
,[

(s+ 1)x2 +
q (1− s2)

1− qs
x3, x2 −

sq (1− s)
1− qs

x3

]
,[

x2 −
q (1− s)
s (q − s)

x3,−
1 + s+ s2

s (1 + s)

{
x2 +

q (1− s)
q − s

x3

}]
.[

q (1− s)
1− q2s

{sx2 − x3} , x1 +
sq (1− s)

(1 + s) (1− q2s)
{x2 + x3}

]
,[

x1 +
qs (1− s)

(1 + s) (q − s2)
{x2 + x3} ,−

q (1 + s+ s2) (1− s)
(1 + s)2 (q − s2)

{x2 − sx3}
]
.

To generalize this setup to an arbitrary irreducible module Vλ (basis corresponding
to Tabλ), we need to define w; a necessary condition is that there be an intertwining
operator S on V so that STi = Ti+1S for 1 ≤ i < N . The correct definition is
S = T1T2 · · ·TN−1. Indeed,

STi = T1 · · ·Ti−1TiTi+1TiTi+2 · · ·TN−1

= T1 · · ·Ti−1Ti+1TiTi+1Ti+2 · · ·TN−1

= Ti+1S.

Definition 3.1. The space of vector valued polynomials for the isotype λ (a partition
of N) will be denoted by Mλ := C[x1, . . . , xN ]⊗ Vλ.

The elements of Mλ are linear combinations of xvT, where xv := x
v[1]
1 · · · xv[N ]

N . We
denote by ‘normal symbols’ (si, Ti, w, ξi, etc.) the operators acting only on tableaux.
The operators acting only on letters will be denoted with superscript x (sxi , T

x
i , wx,

ξxi , etc.). The operators acting on both letters and tableaux will be denoted by bold
symbols (si, Ti, w, ξi, etc.).

3.2. Action of the double Hecke algebra on vectors. Denote δxi := T xi − s · sxi =
∂xi xi+1(1− s) and Ti := δxi + sxi Ti. We have the following fact.

Lemma 3.2. The operator Ti satisfies the quadratic relation:

(3.1) (Ti + 1)(Ti − s) = 0.
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Proof. From
∂xi xi+1∂

x
i = ∂xi ∂

x
i xi+1 + ∂xi s

x
i (xi+1∂

x
i ) = −∂xi ,

we deduce

(3.2) δxi
2 − (1− s)2∂xi xi+1 = −(1− s)δxi .

Moreover, from
∂xi xi+1s

x
i + sxi ∂

x
i xi+1 = ∂xi (xi − xi+1) = 1− sxi ,

one obtains

(3.3) δxi s
x
i + sxi δ

x
i = (1− s)(1− sxi ).

Now, expanding (Ti + 1)(Ti − s), from eqs. (3.2) and (3.3) we observe that

(Ti + 1)(Ti − s) = (δxi
2 + (1− s)δxi ) + (δxi s

x
i + sxi δ

x
i + (1− s)(sxi − 1))Ti

= 0,

�

We find also commutation relations.

Lemma 3.3. If |i− j| > 1, we have

(3.4) TiTj = TjTi.

Proof. First we expand

(3.5) TiTj = δxi δ
x
j + δxi s

x
jTj + sxi δ

x
j Ti + sxi s

x
jTiTj.

But since |i − j| > 1, one has straightforwardly sxi s
x
j = sxj s

x
i , TiTj = TjTi, δ

x
i s

x
j = sxj δ

x
i

and δxi δ
x
j = δxj δ

x
i . Using these relations in eq. (3.5), we find the result. �

To prove the braid relations, we need the following preliminary results.

Lemma 3.4. (1) sxi s
x
i+1s

x
i TiTi+1Ti = sxi+1s

x
i s
x
i+1Ti+1TiTi+1,

(2) δxi δ
x
i+1δ

x
i = δxi+1δ

x
i δ

x
i+1,

(3) δxi+1siδ
x
i+1 = sxi δ

x
i+1δ

x
i + δxi δ

x
i+1s

x
i + (s− 1)sxi δ

x
i+1s

x
i ,

(4) δxi s
x
i+1δ

x
i = sxi+1δ

x
i δ

x
i+1 + δxi+1δ

x
i s

x
i+1 + (s− 1)sxi+1δ

x
i s

x
i+1,

(5) δxi s
x
i+1s

x
i = sxi+1s

x
i δ
x
i+1,

(6) δxi+1s
x
i s
x
i+1 = sxi s

x
i+1δ

x
i ,

(7) sxi δ
x
i+1s

x
i = sxi+1δ

x
i s

x
i+1.

Proof. The first identity is trivial, but the others need to be proved. The simplest way
to check these formulae is the direct verification of the action on a monomial xai x

b
i+1x

c
i+2.

For instance, the second equality follows from

xai x
b
i+1x

c
i+2δ

x
i δ

x
i+1δ

x
i = (1− s)3 x2

i+2xi+1

V (xi, xi+1, xi+2)
det

 xai xbi xci
xai+1 xbi+1 xci+1

xai+2 xbi+2 xci+2


= xai x

b
i+1x

c
i+2δ

x
i+1δ

x
i δ

x
i+1,

where V (x1, x2, x3) :=
∏

0<i<j<4(xi − xj) denotes the Vandermonde determinant. The

other identities can be verified in a similar fashion (for simplicity we omit the superscript
x on δ and s):
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(3)

xai x
b
i+1x

c
i+2δisi+1δi

= (1− s)2 xi+2xi+1

V (xi, xi+1, xi+1)

[
xai+2

(
xi+2(xbix

c
i+1 − xcixbi+1)− (xbix

c+1
i+1 − xc+1

i xbi+1)
)

−xbi+2

(
xi+2(xai x

c
i+1 − xcixai+1)− (xai x

c+1
i+1 − xc+1

i xai+1)
)]

= xai x
b
i+1x

c
i+2(si+1δiδi+1 + δi+1δisi+1 + (s− 1)si+1δisi+1).

(4)

xai x
b
i+1x

c
i+2δi+1siδi+1 = (1− s)2 xi+1

V (xi, xi+1, xi+1)

×
[
xbi
(
xi(x

a
i+1x

c+1
i+2 − xc+1

i+1x
a
i+2)− (xa+1

i+1 x
c+1
i+2 − xc+1

i+1x
a+2
i+2 )

)
−xci

(
xi(x

a
i+1x

b+1
i+2 − xb+1

i+1x
a
i+2)− (xa+1

i+1 x
b+1
i+2 − xb+1

i+1x
a+1
i+2 )

)]
= xai x

b
i+1x

c
i+2(siδi+1δi + δiδi+1si + (s− 1)siδi+1si).

(5)

xai x
b
i+1x

c
i+2(si+1siδi+1) = (1− s)xi+1x

a
i+2

xbix
c
i+1 − xcixbi+1

xi − xi+1

= xai x
b
i+1x

c
i+2(δisi+1si).

(6)

xai x
b
i+1x

c
i+2(sisi+1δi) = (1− s)xi+2x

c
i

xai+1x
b
i+2 − xbi+1x

a
i+2

xi+1 − xi+2

= xai x
b
i+1x

c
i+2(δi+1sisi+1).

(7)

xai x
b
i+1x

c
i+2(siδi+1si) = (1− s)xi+2x

b
i+1

xai x
c
i+2 − xcixai+2

xi − xi+2

= xai x
b
i+1x

c
i+2(si+1δisi+1).

�

Next we show that the operators {Ti} satisfy the braid relations.

Proposition 3.5. For each i < N − 1, one has

(3.6) TiTi+1Ti = Ti+1TiTi+1.

Proof. Expanding the braid TiTi+1Ti, we obtain

TiTi+1Ti = δxi δ
x
i+1δ

x
i + δxi s

x
i+1δ

x
i Ti+1

+
(
sxi δ

x
i+1δ

x
i + δxi δ

x
i+1s

x
i

)
Ti + sxi s

x
i+1s

x
i Ti+1Ti + sxi s

x
i+1δ

x
i TiTi+1

+ sxi δ
x
i+1s

x
i T

2
i + sxi s

x
i+1s

x
i TiTi+1Ti.
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Using the fact that T 2
i = (s− 1)Ti + s, we obtain

TiTi+1Ti = δxi δ
x
i+1δ

x
i + δxi s

x
i+1δ

x
i Ti+1

+
(
sxi δ

x
i+1δ

x
i + δxi δ

x
i+1s

x
i + (s− 1)sxi δ

x
i+1s

x
i

)
Ti + sxi sxi+1s

x
i Ti+1Ti

+ sxi s
x
i+1δ

x
i TiTi+1 + ssxi δ

x
i+1s

x
i + sxi s

x
i+1s

x
i TiTi+1Ti.

Now applying Lemma 3.4, we arrive at the desired result. �

Next we examine the relation between the generators Ti and the multiplication by
an indeterminate xi. There are three identities satisfied by these operations.

Proposition 3.6. (1) xiTi −Tixi+1 − (1− s)xi+1 = 0;
(2) xi+1Ti −Tixi + (1− s)xi+1 = 0;
(3) xiTj = Tjxi when |i− j| > 1.

Proof. (1) One has

xiδ
x
i = (1− s)xi∂xi xi+1

= (1− s)∂xi x2
i+1 + (1− s)xi+1

= δxi xi+1 + (1− s)xi+1.

Hence, we obtain

xiTi = [δxi + sxi Ti]xi+1 + (1− s)xi+1

= Tixi+1 + (1− s)xi+1,

as expected.
(2) The second equality is proved in the same way, by observing that

xi+1δ
x
i = (1− s)xi+1∂

x
i xi+1

= (1− s)∂xi xi+1xi − (1− s)xi+1

= δxi xi − (1− s)xi+1.

(3) The third equality is straightforward.
�

Now, we examine the affine action and set

w = τx1 θ
xS,

where θx = sx1 · · · sxN−1 and S = T1 · · ·TN−1. When i < N − 1, one has

wTi = (τx1 θ
xS)(δxi + sxi Ti).

But since i < N − 1, one has

τx1 θ
x∂xi xi+1 = τx1 ∂

x
i+1xi+2θ

x,

and i+ 1 > 1 implies τx1 ∂
x
i+1xi+2 = ∂xi+1xi+2τ

x
1 . Hence,

τx1 θ
xδxi = δxi+1τ

x
1 θ

x.

One easily obtains τx1 θ
xsxi = sxi+1τ

x
1 θ

x and STi = Ti+1S. From this, we deduce the
following commutation relation.
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Lemma 3.7. For each i, we have wTi = Ti+1w.

From Lemmas 3.2, 3.3, 3.7, Propositions 3.5 and 3.6, we obtain the following result.

Theorem 3.8. The algebra C(s, q)[x±1
1 , . . . , x±1

N ,T1, . . . ,TN−1,w
±1] is isomorphic to

HN(s, q). More precisely, the morphism sends Ti to Ti, w to w, and xi to xi.

3.3. Cherednik and Dunkl operators.

Definition 3.9. In this context, the (vector valued) Cherednik operators are defined
by

ξi = si−NT−1
i−1 · · ·T−1

1 wTN−1 · · ·Ti,

where

T−1
i =

1

s
(Ti + (1− s)) =

1

s
((1− s)(∂xi xi+1 + 1) + sxi Ti).

It follows immediately that

(3.7) [ξi, ξj] = 0,

since, by Theorem 3.8, the operators ξi are the image of the Cherednik operators ξi.
Furthermore, the tableaux are simultaneous eigenfunctions of the Cherednik elements,
and the associated spectral vectors can be expressed in terms of contents.

Proposition 3.10. For each tableau T, one has

Tξi = sCTT[i]T.

Proof. Since,

(1) TTi = TTi,
(2) TTi

−1 = TT−1
i ,

(3) Tw = TS,

one has Tξi = Tφi. Hence, the result follows from Proposition 2.4. �

In the aim to define the Dunkl–Cherednik operators, we set FN = 1− ξN .

Proposition 3.11. The operator FN is divisible by xN , that is, for each P ∈
C[x1, . . . , xN ]⊗ Vλ, PFN = xNQ with Q ∈ C[x1, . . . , xN ]⊗ Vλ.

Proof. We prove the result by induction on N . Suppose first that N = 2. Then our
operator is

F2 = 1− 1

s
((1− s)(∂x1x2 + 1) + sx1T1)(τx1 s

x
1T1)

= 1− 1

s
((1− s)(∂x1x2 + 1)τx1 s

x
1 + sx1τ

x
1 s

x
1T

2
1 ).

From T 2
1 = (s− 1)T1 + s and s1τ1s1 = τ2, one obtains

F2 = 1− 1

s
((1− s)(∂x1x2 + 1− s1)τx1 s

x
1T1 + sτx2 ) .

Note that
∂x1x2 + 1− sx1 = ∂x1x1
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implies

F2 =
s− 1

s
q∂x1 τ

x
1 s

x
1T1x2 + 1− τx2 .

But, for any polynomial P , one has

P (x1)xb2(1− τx2 ) =

{
0 if b = 0,

P (x1)xb2(1− qb) if b > 0.

This proves the result for N = 2.
Now suppose that N > 2. Then we have

FN = 1−T−1
N−1 · · ·T

−1
1 (τx1 s

x
1 · · · sxN−1T1 · · ·TN−1).

Similarly to the case N = 2, one obtains

FN = 1− 1

s
T−1
N−1 · · ·T

−1
2

(
(sq∂x1 τ

x
1 s

x
1 · · · sxN−1T1 · · ·TN−1)xN−1

+sτx2 s
x
2 · · · sxN−1T2 · · ·TN−1

)
.

So it suffices to prove that the operator 1−T−1
N−1 · · ·T

−1
2 sx2 · · · sxN−1T2 · · ·TN−1 is divisible

by xN . Observing that

1−T−1
N−1 · · ·T

−1
2 (sx2 · · · sxN−1T2 · · ·TN−1) = θ−1FN−1θ,

the result follows by induction. �

Definition 3.12. The vector valued Dunkl operators are defined by DN := FNx
−1
N and

Di := 1
s
TiDi+1Ti.

As for the Cherednik operators, Theorem 3.8 implies that the classical relations hold.
For instance, one has

[Di,Dj] = 0,

and the relations with respect to the generators Ti are

Di+1Ti = −sT−1
i Di, −TiDi+1 + (1− s)Di + DiTi = 0,(3.8)

−Di+1T
−1
i − (1− 1

s
)Di+1 + T−1

i Di = 0(3.9)

[Di,Tj] = 0 if |i− j| > 1.

Note that identities (1) and (2) of Proposition 3.6 are equivalent to xiTi = sxi+1T
−1
i

or sxi+1 = TixiTi (these are dual to the Di relations Di = (1/s)TiDi+1Ti ).

3.4. Triangularity of the Cherednik operators. Let v be a vector. In the sequel
we will denote by v+ (respectively vR) the unique decreasing (respectively increasing)
partition whose entries are obtained by permuting those of v.

Let πxi = ∂xi xi+1 = 1
1−sδ

x
i , πxi = ∂xi xi+1 + 1, and, more generally, πxij = ∂xijxj + 1.

Observe that, if i < j, then one has

(3.10) xvπxij =
∑
v′Ev

(∗)xv′ ,
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where (∗) denotes a coefficient and E is the dominance order on vectors defined by

v E v′ if and only if

{
v+ ≺ v′+ if v+ 6= v′+,

v ≺ v′ if v+ = v′+.

Here, ≺ denotes the (classical) dominance order on partitions given by

v ≺ v′ if and only if, for each i, v[1] + · · ·+ v[i] ≤ v′[1] + · · ·+ v′[i].

Indeed, it suffices to understand the computation of xa1x
b
2π1. We have three cases to

consider:

(1) if a < b, then

xa1x
b
2π

x
1 = −

b−a−1∑
i=1

xa+i
i xb−i2 .

In this case, one has xa1x
b
2π

x
1 =

∑
v′+≺[b,a](∗)xv

′
.

(2) if a = b, then
xa1x

b
2π

x
1 = xa1x

b
2.

(3) if a > b, then

xa1x
b
2π

x
1 =

a−b∑
i=0

xa−ii xb+i2 ,

and the leading term in this expression is x[a,b].

Similarly,

(3.11) xvπxij =
∑
v′Ev

(∗)xv′ .

With these notations, write

Ti = (∗)πxi + (∗)sxi Ti
and

T−1
i = (∗)πxi + (∗)sxi Ti.

Here, (∗) denotes a certain coefficient (we need not know it to follow the computation).
Observe that, for each j, we have

T−1
1 sx1 · · · sxj−1 = [(∗)πx1 + (∗)sx1T1]sx1 · · · sxj−1 = [(∗)πx1 + (∗)T1]sx2 · · · sxj−1

since πx1s
x
1 = πx1 . But πx1s

x
2 · · · sxj−1 = sx2 · · · sxj−1π

x
1,j, and hence

T−1
1 sx1 · · · sxj−1 = sx2 · · · sxj−1[(∗)πx1j + (∗)T1].ya

Iterating the process, one finds

(3.12) T−1
j−1 · · ·T−1

1 sx1 · · · sxj−1 = [(∗)πxj−1j + (∗)Tj−1] · · · [(∗)πx1j + (∗)T1].

One has also

sxj · · · sxN−1TN−1 = sxj · · · sxN−1[(∗)πxN−1 + (∗)sxN−1TN−1];

but sxN−1∂
x
N−1 = −∂xN−1, and hence

sxj · · · sxN−1TN−1 = sxj · · · sxN−2[(∗)πxN−1 + (∗)TN−1].
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Since sxj · · · sxN−2π
x
N−1 = πxj,Ns

x
j · · · sxN−2, one obtains

sxj · · · sxN−1TN−1 = [(∗)πxj,N + (∗)TN−1]sxj · · · sxN−2.

Iterating this process, one finds

(3.13) sxj · · · sxN−1TN−1 · · ·Tj = [(∗)πxj,N + (∗)TN−1] · · · [(∗)πxj,j+1 + (∗)Tj].

Now, with these notations, the Cherednik operator reads

ξj =
[
(∗)πxj−1 + (∗)sxj−1Tj−1

]
· · · [(∗)πx1 + (∗)sx1T1] τx1 s

x
1 · · · sxN−1S[

(∗)πxN−1 + (∗)sxN−1TN−1

]
· · ·
[
(∗)πxj + (∗)sxjTj

]
.

Now apply eq. (3.12) and (3.13) to obtain

ξi = (∗)[(∗)πxj−1,N + (∗)Tj−1] · · · [(∗)πx1,N + (∗)T1](τxj S)[
(∗)πxj,N−1 + (∗)TN−1

]
· · ·
[
(∗)πxj,j+1 + (∗)Tj

]
,

where xiτ
x
j = xi if i 6= j and xjτ

x
j = qxj.

From (3.10) and (3.11), we obtain

(3.14) Txvξi = T

[
xvHv +

∑
v′Cv

xv
′
Hv′

]
,

with Hu ∈ HN(q, s) (we apply an algebraic combination of πx and πx to xv, and the
operator τxj does not change the exponents). Finally, we arrive at the following theorem.

Theorem 3.13. We have

xvTξj = xv(T ·Hv) +
∑
v′Cv

xv
′
(T ·Hv′),

where Hu ∈ HN(q, s).

Proof. Eq. 3.14 gives

xvTξj = Txvξj
= xv(THv) +

∑
v′Cv

xv
′
(T ·Hv′).

�

4. Eigenfunctions of Cherednik operators

4.1. Yang–Baxter graph. As in [6], we construct a Yang–Baxter-type graph with
vertices labeled by 4-tuples (T, ζ, v, σ), where T is an RST, ζ is a vector of length N
(ζ will be called the spectral vector), v ∈ NN , and σ ∈ SN . First, consider an RST
of shape λ and write a vertex labeled by the 4-tuple (T,CTs

T, 0
N , [1, . . . , N ]), where
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CTs
T[i] = sCTT[i]. Now, we consider the action of the elementary transposition of SN on

the 4-tuple given by

(T, ζ, v, σ)si :=


(T, ζsi, vsi, σsi) if v[i+ 1] 6= v[i],

(T(σ[i],σ[i+1]), ζsi, v, σ) if v[i] = v[i+ 1]

and T(σ[i],σ[i+1]) ∈ Tabλ,

(T, ζ, v, σ) otherwise,

where T(i,j) denotes the filling obtained by permuting the values i and j in T. Consider
also the affine action given by

(T, ζ, v, σ)Ψ := (T, [ζ[2], . . . , ζ[N ], qζ[1]], [v[2], . . . , v[N ], v[1] + 1], [σ2, . . . , σN , σ1]).

In the sequel we will use the notation vΨq = [v2, . . . , vN , qv1].

Example 4.1.

(1)
(

31
542 , [s, 1, q

2, qs2, qs−1], [0, 0, 2, 1, 1], [45123]
)
s2

=
(

31
542 , [s, q

2, 1, qs2, qs−1], [0, 2, 0, 1, 1], [41523]
)
.

(2)
(

31
542 , [s, 1, q

2, qs2, qs−1], [0, 0, 2, 1, 1], [45123]
)
s4

=
(

21
543 , [s, 1, q

2, qs−1, qs2], [0, 0, 2, 1, 1], [45123]
)
.

(3)
(

31
542 , [s, 1, q

2, q2s2, qs−1], [0, 0, 2, 1, 1], [45123]
)
s1

=
(

31
542 , [s, 1, q

2, qs2, qs−1], [0, 0, 2, 1, 1], [45123]
)
.

(4)
(

31
542 , [s, 1, q

2, qs2, qs−1], [0, 0, 2, 1, 1], [45123]
)

Ψ

=
(

31
542 , [1, q

2, qs2, qs−1, qs], [0, 2, 1, 1, 1], [51234]
)
.

Definition 4.2. If λ is a partition, denote by Tλ the tableau obtained by filling the
shape λ from bottom to top and left to right by the integers {1, . . . , N} in decreasing
order.

The graph Gq,s
λ is the infinite directed graph constructed from the 4-tuple

(Tλ,CTs
Tλ , [0

N ], [1, 2, . . . , N ]),

called the root, adding vertices and edges according to the following rules:

(1) We add an arrow labeled by si from the vertex (T, ζ, v, σ) to (T′, ζ ′, v′, σ′) if
(T, ζ, v, σ)si = (T′, ζ ′, v′, σ′) and v[i] < v[i + 1] or v[i] = v[i + 1], and τ is
obtained from τ ′ by interchanging the position of two integers k < ` such that
k is in the south-east of ` (i.e., CTT(k) ≥ CTT(`) + 2).

(2) We add an arrow labeled by Ψ from the vertex (T, ζ, v, σ) to (T′, ζ ′, v′, σ′) if
(T, ζ, v, σ)Ψ = (T′, ζ ′, v′, σ′).

(3) We add an arrow si from the vertex (τ, ζ, v, σ) to ∅ if (T, ζ, v, σ)si = (T, ζ, v, σ).

An arrow of the form

(T, ζ, v, σ) (T, ζ′, v′, σ′)si or Ψ

will be called a step. The other arrows will be called jumps, and in particular an
arrow

(T, ζ, v, σ) ∅si
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will be called a fall; the other jumps will be called correct jumps.
As usual, a path is a finite sequence of consecutive arrows in Gλ starting from the

root, and it is denoted by the vector of the labels of its arrows. Two paths P1 =
(a1, . . . , ak) and P2 = (b1, . . . , b`) are said to be equivalent (denoted by P1 ≡ P2) if
they lead to the same vertex.

We note that, when v[i] = v[i + 1], part (1) of Definition 4.2 is equivalent to the
following statement: T′ is obtained from T by interchanging σv[i] and σv[i+1] = σv[i]+1,
where σv[i] is to the south-east of σv[i] + 1, that is, CTT[σv[i]]− CTT[σv[i] + 1] ≥ 2.

Example 4.3. The arrow below is a correct jump,
31
542

,[s,1,q2,qs2,qs−1]

[0,0,2,1,1],[45123]

21
543

,[s,1,q2,qs−1,qs2]

[0,0,2,1,1],[45123]
s4 ,

whilst
31
542

,[q,1,q2,qs2,qs−1]

[0,0,2,1,1],[45123]

31
542

,[s,q2,1,qs−1,qs2]

[0,2,0,1,1],[41523]
s2

is a step. The arrows
31
542

,[s,1,q2,qs2,qs−1]

[0,0,2,1,1],[45123]

21
543

,[s,1,q2,qs−1,qs2]

[0,0,2,1,1],[45123]
s4

and
31
542

,[s,1,q2,qs2,qs−1]

[0,0,2,1,1],[45123]

31
542

,[s,q2,1,qs−1,qs2]

[0,2,0,1,1],[41523]
s2

are not allowed.

The graph Gq,s
λ is very similar to the Yang–Baxter graph Gλ described in [6]: only the

spectral vectors change. Indeed, these are the same graphs, but with different labels:
the spectral vector of Gq,s

λ is obtained from Gλ by sending aα+ b to qasb. Hence, many
properties still apply. An example is given in the next proposition.

Proposition 4.4. All the paths joining two given vertices in Gλ have the same length.

For a given 4-tuple (T, ζ, v, σ), the values of ζ and σ are determined by those of T
and v, as provided by the following proposition.

Proposition 4.5. If (T, ζ, v, σ) is a vertex in Gλ, then σ = rv and ζ[i] = qv[i]sCTT[σ[i]].

We will set ζv,T := ζ.

Example 4.6. Consider the RST

τ =
3
7 4 1
8 6 5 2

and the vector v = [6, 2, 4, 2, 2, 3, 1, 4]. One has rv = [1, 5, 2, 6, 7, 4, 8, 3] and CTT =
[1, 3,−2, 0, 2, 1,−1, 0]. Consequently,

ζv,τ = [q6s, q2s2, q4s3, q2s1, q2s−1, q3, q, q4s−2].
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Hence, the 4-tuple 3
7 4 1

8 6 5 2

, [q6, q2s2, q4s3, q2s1, q2s−1, q3, q, q4s−2], [6, 2, 4, 2, 2, 3, 1, 4], [1, 5, 2, 6, 7, 4, 8, 3]


labels a vertex of Gq,s

431.

As a consequence, we obtain the following result.

Corollary 4.7. Let (T, v) be a pair consisting of T ∈ Tab(λ) (where λ is a partition
of N) and a multi-index v ∈ NN . Then there exists a unique vertex in Gq,s

λ labeled by a
4-tuple of the form (T, ζ, v, σ).

We will write VT,ζ,v,σ := (T, v) .

Conversely, all the information can be retrieved from the spectral vector ζ — the
exponents of q give v, the rank function of v gives σ, and the exponent of s in the
spectral vector gives the content vector which does uniquely determine the RST T.

For simplicity, when needed, we will label the vertices by pairs (T, v) or by the
associated spectral vector ζv,T.

Example 4.8. In Figure 1, the first several vertices are labeled by pairs (T, v) of the
graph Gq,s

21 , while, in Figure 2, the vertices are labeled by spectral vectors.

Definition 4.9. We define the subgraph Gq,s
T as the graph obtained from Gq,s

λ by erasing
all the vertices labeled by RST’s other than T and the associated arrows. Such a graph
is connected.

The graph Gq,s
λ is the union of the graphs Gq,s

T connected by jumps. Furthermore, if
Gq,s
T and Gq,s

T′ are connected by a succession of jumps, then there is no step from Gq,s
T′

to Gq,s
T . Since the graphs Gq,s

T are connected graphs, we infer the following result.

Proposition 4.10. Each vertex (T, v) is obtained from (T, 0N) by a sequence of steps.

Example 4.11. In Figures 1 and 2, the graph Gq,s
21 is constituted by the two graphs Gq,s

1
32

and Gq,s
2
31

connected by jumps (in blue).

4.2. Macdonald polynomials from scratch. Following [1], we define the operator

Φ = T−1
1 · · ·T−1

N−1xN ,

which satisfies

Φξj = ξj+1Φ, 1 ≤ j < N,

ΦξN = qξ1Φ.

The operator Φ is injective (its kernel is {0}).
Let λ be a partition and Gq,s

λ be the associated graph. We construct the set of
polynomials (PP)

P path in Gλ
using the following recurrence rules:

(1) P[] := (Tλ).
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2
31
, [000]

1
32
, [000]

s1

1
32
, [001]

1
32
, [010]

1
32
, [100]

2
31
, [001]

2
31
, [010]

2
31
, [100]

s
2

s
1

s 2

s 1

Ψ Ψ

1
32
, [011] 2

31
, [011]

1
32
, [101] 2

31
, [101]

1
32
, [002] 2

31
, [002]

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

s2

s
1 s 1Ψ

1
32
, [110] 2

31
, [110]

s 2
s
2

s1

1
32
, [020]

1
32
, [200]

2
31
, [020]

2
31
, [200]

s
2

s
1

s 2

s 1

Figure 1. The first vertices labeled by pairs (T, v) of the graph Gq,s
21

where we omit to write the vertex ∅ and the associated arrows.

(2) If P = [a1, . . . , ak−1, si], then

PP := P[a1,...,ak−1]

(
Ti +

1− s
1− ζ[i+1]

ζ[i]

)
,



24 C. F. DUNKL AND J.-G. LUQUE

[s, s−1, 1]

[s−1, s, 1]

s1

[s, 1, q−1]

[s, qs−1, 1]

[qs−1, s, 1]

[s−1, 1, qs]

[s−1, qs, 1]

[qs, s−1, 1]

s
2

s
1

s 2

s 1

Ψ Ψ

[1, qs−1, qs] [1, qs, qs−1]

[qs−1, 1, qs] [qs, 1, qs−1]

[s, 1, q2s−1] [s−1, 1, q2s]

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

s2

s
1 s 1Ψ

[qs−1, qs, 1] [qs, qs−1, 1]

s 2
s
2

s1

[s, q2s−1, 1]

[q2s−1, s, 1]

[s−1, q2s, 1]

[q2s, s−1, 1]

s
2

s
1

s 2

s 1

Figure 2. The first vertices labeled by spectral vector of the graph Gq,s
21 .

where the vector ζ is defined by

(Tλ,CTs
Tλ , 0

N , [1, 2, . . . , N ])a1 · · · ak−1 = (T, ζ, v, σ).
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(3) If P = [a1, . . . , ak−1,Ψ], then

PP = P[a1,...,ak−1]Φ.

One has the following theorem.

Theorem 4.12. Let P = [a0, . . . , ak] be a path in Gq,s
λ from the root to (T, ζ, v, σ)

with no fall. The polynomial PP is a simultaneous eigenfunction of the operators ξi.
Furthermore, the eigenvalues of ξi associated to PP are equal to ζ[i].

Consequently, PP does not depend on the path, but only on the end point (T, ζ, v, σ),
and it will be denoted by Pv,T or alternatively by Pζ. The family (Pv,T)v,T forms a basis
of Mλ of simultaneous eigenfunctions of the Cherednik operators.

Proof. We prove the result by induction on the length k. If k = 0 then the result follows
from Proposition 3.10.

Suppose now that k > 0 and let

(T′, ζ ′, v′, rv′) = (Tλ,CTq,s
Tλ , 0

N , [1, . . . , N ])a1 · · · ak−1.

By induction, P[a1,...,ak−1] is a simultaneous eigenfunction of the operators ξi such that
the associated vector of eigenvalues is given by

P[a1,...,ak−1]ξi = ζ ′[i]P[a1,...,ak−1].

The argument depends on the value of the last operator ak.

(1) If ak = Ψ is an affine arrow, then T = T′, ζ = [ζ ′[2], . . . , ζ ′[N ], qζ ′[1]], v = v′Ψ,
rv = rv′ [2, . . . , N, 1] and PP = J[a1,...,ak−1]Φ.

If i 6= N , then

PPξi = P[a1,...,ak−1]Φξi
= P[a1,...,ak−1]ξi+1Φ

= ζ ′[i+ 1]PP

= ζ[i]PP.

If i = N , then

PPξN = P[a1,...,ak−1]ΦξN
= P[a1,...,ak−1]qξ1Φ

= (ζ ′[1]q)PP

= ζ[N ]PP.

(2) Suppose now that ak = si is a non-affine arrow. Then we have ζ = ζ ′si, v = v′si,
and

PP = P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
.
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If j 6= i, i+ 1, then

PPξj = P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
ξj

= P[a1,...,ak−1]ξj

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
= ζ ′[j]PP

= ζ[j]PP.

If j = i, then

PPξi = P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
ξi

= P[a1,...,ak−1]

(
ξi+1Ti + (1− s)

(
−1 +

1

1− ζ′[i+1]
ζ′[i]

)
ξi

)

= P[a1,...,ak−1]

(
ζ ′[i+ 1]Ti + (1− s)

(
−1 +

1

1− ζ′[i+1]
ζ′[i]

)
ζ ′[i]

)

= ζ ′[i+ 1]P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
= ζ[i]PP.

If j = i+ 1, then

PPξi+1 = P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
ξi+1

= P[a1,...,ak−1]

(
sξiT

−1
i + ξi+1

1− s
1− ζ′[i+1]

ζ′[i]

)

= P[a1,...,ak−1]

(
ζ ′[i]Ti + ζ ′[i](1− s) + ζ ′[i+ 1]

1− s
1− ζ′[i+1]

ζ′[i]

)

= ζ ′[i]P[a1,...,ak−1]

(
Ti +

1− s
1− ζ′[i+1]

ζ′[i]

)
= ζ[i+ 1]PP.

�

Example 4.13. Figure 3 illustrates how to obtain the first values of the polynomial Pζ
for isotype (2, 1).

Besides Φ = T−1
1 · · ·T−1

N−1xN , there is another raising operator, namely Φ′ := wxN .
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P[s,s−1,1]

P[s−1,s,1]

T1 + 1−s
1−s2

P[s,1,qs−1]

P[s,qs−1,1]

P[qs−1,s,1]

P[s−1,1,qs]

P[s−1,qs,1]

P[qs,s−1,1]

T2 + 1−s
1−qs−1

T1 + 1−s
1−qs−2

T2 + 1−s
1−qs

T1 + 1−s
1−qs2

Φ
Φ

P[1,qs−1,qs] P[1,qs,qs−1]

P[qs−1,1,qs] P[qs,1,qs−1]

P[s,1,q2s−1] P[s−1,1,q2s]

Φ

Φ

Φ

Φ

Φ

Φ

T2 + 1−s
1−s−2

T1 + 1−s
1−qs−1 T1 + 1−s

1−qsΦ

P[qs−1,qs,1] P[qs,qs−1,1]

T2 + 1−s
1−qs T2 + 1−s

1−qs−1

T1 + 1−s
1−s−2

P[s,q2s−1,1]

P[q2s−1,s,1]

P[s−1,q2s,1]

P[q2s,s−1,1]

T2 + 1−s
1−q2s

T1 + 1−s
1−q2s2

T2 + 1−s
1−q2s−1

T2 + 1−s
1−q2s−2

Figure 3. The first Macdonald polynomials for isotype (21).

Proposition 4.14. We have
Φ′ = sN−1ξ1Φ,

and, if v ∈ NN0 ,T ∈ Tabλ, then

Pv,TΦ′ = sN−1+CTT[rv [1]]qv[1]Pv,TΦ.
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Proof. From ξ1 = s1−NwTN−1 · · ·T1, it follows that

ξ1T
−1
1 T−1

2 · · ·T−1
N−1 = s1−Nw,

ξ1Φ = s1−NΦ′.

Moreover, we have Pv,Tξ1 = qv[1]sN−1+CTT[rv [1]]Pv,T. �

Note that it is easier to compute PΦ′ for a polynomial P .

4.3. Leading terms. We will write xv,T := xvTRv. By abuse of language, xv,T will be
referred to as a monomial. Note that the spaceMλ is spanned by the set of polynomials

Mλ := {xv,T : v ∈ NN ,T ∈ Tabλ},
which can be naturally endowed with the order C defined by

xv,T C xv
′,T′ if and only if v C v′.

Theorem 4.15. The leading term (up to constant multiple) of Pv,T is xv,T.

Proof. Theorem 3.13 shows that the leading term of Pv,T is xvTHv for some Hv ∈
HN(q, s) (because the eigenvalues determine qv[i]).

Use induction on #inv(v) = # {(i, j) : 1 ≤ i < j ≤ N, v [i] < v [j]}. The claim is true
for partitions v, that is, in the case where #inv(v) = 0. Suppose the claim is true for
all u with #inv(u) ≤ k and #inv(v) = k+ 1. There is some i for which v [i] < v [i+ 1].

By Theorem 4.12, we know that p := Pv,T

(
Ti + (1−s)ζ[i]

ζ[i]−ζ[i+1]

)
is a ξ-eigenvector with

eigenvalues [ζ[1], . . . , ζ[i+1], ζ[i], . . .], where ζ[j] = ζv,T[j]. The list of eigenvalues implies
that the leading term of p is xv·siT′ for some T′ ∈ Vλ. In fact, pξj = qvsi[j]sCTT[rvsi ]p
for all j, and so the inductive hypothesis (#inv(vsi) = #inv(v)− 1) implies that p is a
scalar multiple of Pvsi,T and has leading term xvsiTTrvsi . The only appearance of xvsi

in p comes from xvTHvTi (by dominance, xvsi does not appear in Pv,T).
However, if v [i] < v [i+ 1] and T ∈ Vλ, then

xvTTi = xvδiT+ xvsi (TTi)(4.1)

= −(1− s)xvT+ xvsi (TTi) +
∑
v′Cv
Pv′∈Vλ

xv
′Pv′ .

Hence, by (4.1), we have

xvTHvTi = −(1− s)xvTHv + xvsi (THvTi) +
∑
v′Cv
Pv′∈Vλ

xv
′Pv′ .

Thus THvTi = TRrvsi
and

THv = TRrvsi
T−1
i = TRrv ,

by Lemma 2.14. This completes the proof of the theorem. �

The last theorem has the following consequence.

Corollary 4.16. Let P = [a1, . . . , ak] such that ak is a fall. Then we have PP = 0.
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Proof. Without loss of generality, we can suppose that [a1, . . . , ak−1] is a path without
fall. By Theorem 4.12, there exists a pair (v,T) such that Pv,T = P[a1,...,ak−1]. On the
other hand, by Theorem 4.15, one has

Pv,T = xv,T +
∑
v′Cv
Pv′∈Vλ

xv
′Pv′ .

Since ak is a fall, one has

PP = xvP+
∑
v′Cv
Pv′∈Vλ

xv
′Pv′ ,

with P ∈ Vλ. Since PP is a simultaneous eigenfunction of the Cherednik operators, it is
proportional to Pv,T. Noting that the associated eigenvectors are uniquely determined,
one obtains PP = 0. �

4.4. Action of Ti. We have more formulae than those exhibited in the proof of The-
orem 4.12. Examples are given by the following theorem.

Proposition 4.17. Suppose that v ∈ NN0 ,T ∈ Tabλ, v [i] = v [i+ 1] for some i, and
k := rv[i], m := CTT[k + 1]− CTT[k]. Then we have:
(1) if CTT[k + 1] = CTT[k]− 1 then Pv,TTi = sPv,T;
(2) if CTT[k + 1] = CTT[k] + 1 then Pv,TTi = −Pv,T;
(3) if CTT[k + 1] ≤ CTT[k]− 2 then Pv,TTi = Pv,T(k,k+1) − 1−s

1−smPv,T;

(4) if CTT[k + 1] ≥ CTT[k] + 2 then Pv,TTi =
s(1−sm+1)(1−sm−1)

(1−sm)2
Pv,T(k,k+1) − 1−s

1−smPv,T.

We introduce a partial order which will be used to compare eigenvalues, that is, the
spectral vectors.

Definition 4.18. For integers n1,m1, n2,m2 define

qn1sm1 � qn2sm2 if and only if n1 > n2 or n1 = n2,m1 ≤ m2 − 2;

qn1sm1 � qn2sm2 if and only if n1 = n2, |m1 −m2| = 1.

We will also write qn1sm1 > qn2sm2 if n1 > n2.

This formulation is used to unify the various recursion relations. Note that, if ζ = ζv,T
is a spectral vector, then we have necessarily ζ[i] 6= ζ[i + 1] for each i. Indeed, either
v[i] <> v[i+ 1] or v[i] = v[i+ 1], and the contents are different (since an RST can not
have adjacent entries on a diagonal).

Here is a unified transformation formula. Theorem 4.12 is implicitly used.

Proposition 4.19. Suppose that v ∈ NN0 ,T ∈ Tabλ, and 1 ≤ i < N . Then

(4.2) Pζ

(
Ti +

(1− s) ζ[i]

ζ[i]− ζ[i+ 1]

)
=


Pζsi if ζ[i+ 1] � ζ[i],

(ζ[i]−sζ[i+1])(sζ[i]−ζ[i+1])

(ζ[i]−ζ[i+1])2
Pζsi if ζ[i] � ζ[i+ 1],

0 if ζ[i] � ζ[i+ 1].

and

(4.3) PζΦ = PζΨq .
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This proposition shows that we can easily use the spectral vector ζ instead of the
pair (v,T) for labeling the Macdonald polynomials (assuming that ζ = ζv,T for a given
vector v and a given tableau T).

Indeed, we showed that, if ζ is a spectral vector and ζ[i] � ζ[i+1] or ζ[i] ≺ ζ[i+1], then
ζsi is also a spectral vector. Such an action is called a permissible transposition. If ζ[i] �
ζ[i+ 1] then ζ · si is not a spectral vector. We use some of the ideas developed by [14],
see Theorem 5.8, p. 22 there. Let µ be a decreasing partition. Suppose that µ [i] = µ [j],
i < j, and CTT[i]) = CTT[j] = a. Then {a− 1, a+ 1} ⊂ {CTT[i+ 1], . . . ,CTT[j − 1]}.
That is, there exists k with i < k < j such that CTT[k] = a + 1, and µ [k] = µ [i]
(because of the partition property). Thus the spectral vector ζ contains a substring(
qµ[i]sa, qµ[i]sa+1, qµ[i]sa

)
(preserving the order from ζ; it is impossible to move qµ[i]sa

past qµ[i]sa+1 with a permissible transposition), and adjacent entries of a spectral vector
can not be equal.

One description of permissible permutations is as the set of permutations of ζ in
which each pair (ζ[i], ζ[j]) with ζ[i] � ζ[j] maintains its order, that is, if i < j and

ζ[i] � ζ[j] and (ζ[i · σ])Ni=1 is a spectral vector then i · σ < j · σ. The structure of
permissible permutations is analyzed in Section 5.1.

For example, take λ = (3, 2) , µ = (1, 1, 1, 1, 0),

T =
2 1
5 4 3

,

ζ =
(
q, qs−1, qs2, qs, 1

)
,

ζ[1] � ζ[2] � ζ[3] � ζ[4] � ζ[5].

However, also ζ[1] � ζ[4], so the order of the pairs (ζ[1], ζ[2]) , (ζ[3], ζ[4]) , (ζ[1], ζ[4])
must be preserved in the permissible permutations (of which there are 25). Observe
that ζ is a maximal element, in the sense that only � and � occur in the comparisons
of adjacent elements. Clearly there must be a minimal element (if ζ[i] � ζ[i+ 1], then
apply si to ζ). In the example this is

ζ =
(
1, qs2, q, qs, qs−1

)
= ζ(0,1,1,1,1),T1 ,

T1 =
4 2
5 3 1

.

To finish this discussion, we show that the maximal and minimal elements are unique.
By the definition of �, we need only consider the possible arrangements of ζ[i], ζ[i +
1], . . . , ζ[j] where µ [i− 1] > µ [i] = · · · = µ [j] > µ [j + 1] (or i = 1, or j = N and
µ [N ] > 0). Let

inv (µ,T) = {(i, j) : µ [i] = µ [j] , i < j, ζµ,T[i] ≺ ζµ,T[j]} .
We showed that there is a unique RST T0, where (ζµ,T0 [i])

N
i=1 is a permissible per-

mutation of ζ and #inv (µ,T0) = 0. By a similar argument there is a unique RST

T1 which maximizes inv (µ,T). The minimum spectral vector is
(
ζµR,T1

[i]
)N
i=1

, where

µR [i] = µ [N + 1− i], 1 ≤ i ≤ N .
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According to the previous remark, we will use the following notations.

Definition 4.20. If ζ = ζv,T, we write

inv/(ζ) := {(i, j) : 1 ≤ i < j ≤ N, ζ[i] / ζ[j]},
for / ∈ {<,>,≺,�}. If ζ = ζv,T, then we write ζ+ = ζv+,T. Note that ζ+[1] ≥ ζ+[2] ≥
· · · ≥ ζ+[N ]. We set

inv(ζ) := inv<(ζ) = inv(v).

The action of the symmetric group SN on the spectral vector is defined by

(4.4) ζsi =


[ζ[1], . . . , ζ[i− 1], ζ[i+ 1], ζ[i], ζ[i+ 2], . . . , ζ[N ]] if ζ[i] ≺ ζ[i+ 1],

or ζ[i] � ζ[i+ 1],

ζ otherwise.

Say ζ ′ ≺ ζ if and only if there exists a sequence of elementary transpositions (si1 , . . . , sik)
such that

ζ0 = ζ, ζ1 = ζ0si1 , . . . , ζk = ζsi1 · · · sik = ζ ′

and, for each j < k, ζj[ij+1] ≺ ζj[ij+1 + 1].

5. Stable subspaces

5.1. Connected components. We denote by Hq,s
λ the graph obtained from Gq,s

λ by
removing the affine edges, all the falls, and the vertex ∅.

Recall that v+ is the unique decreasing partition obtained by permuting the entries
of v.

Definition 5.1. Let v ∈ NN and T ∈ Tabλ (where λ a partition). We define the filling
T (T, v) as the one obtained from T by replacing i by v+[i] for each i..

As in [6], the following fact holds true.

Proposition 5.2. Two 4-tuples (T, ζ, v, σ) and (T′, ζ ′, v′, σ′) are in the same connected
component of Hq,s

λ if and only if T (T, v) = T (T, v′).

This shows that the connected components of Hq,s
λ are indexed by the T (T, µ), where

µ is a partition.

Definition 5.3. We denote by Hq,s
T the connected component associated with T in

Hq,s
λ . The component Hq,s

T will be said to be 1-compatible if T is a column-strict
tableau. The component Hq,s

T will be said to be (−1)-compatible if T is a row-strict
tableau.

Note that each connected component has a unique minimal element (i.e., an element
without antecedent) called its root and denoted by

root(T ) := (Troot(T ), ζroot(T ), vroot(T ), rroot(T )),

and a unique maximal element called its sink and denoted by

sink(T ) := (Tsink(T ), ζsink(T ), vsink(T ), rsink(T )).

.
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With the notations of the previous section, we have vsink(T ) = v+ and Tsink(T ) = T0

for any pair (v,T) ∈ T . In the same way, vroot(T ) = vRsink(T ) and Troot(T ) = T1.

Example 5.4. Let µ = [2, 1, 1, 0, 0] and λ = [3, 2]. There are four connected components
with vertices labeled by permutations of µ in Hq,s

λ . The possible values of T (T, µ) are

12
001

,
02
011

,
01
012

, and
11
002

.

The 1-compatible components are Hq,s
12
001

and Hq,s
11
002

, while there is only one (−1)-compa-

tible component Hq,s
01
012

. The component Hq,s
02
011

is neither 1-compatible nor (−1)-compa-

tible.
The component Hq,s

12
001

contains vertices of Gq,s
31
542

and Gq,s
21
543

connected by jumps. In

Figure 4 we have drawn the components Hq,s
11
002

and Hq,s
01
012

.

[s−1, 1, q, qs, q2s2]

[s−1,1,q,q2s2,qs] [s−1, q, 1, qs, q2s2]
01
012

[s−1, 1, q2s2, q, qs]
[s−1,q,1,q2s2,qs] 42

531
[01021]

[q,s−1,1,qs,q2s2] 42
531

[10012]

s
4 s 2

s
3 s 2

s
4 s 1

[s, 1, qs2, qs−1, q2] [s, 1, qs−1, qs2, q2]

[s, 1, qs2, q2, qs−1] [s, qs2, 1, qs−1, q2]

[s, 1, q2, qs2, qs−1] [s, qs2, 1, q2, qs−1] [qs2, s, 1, qs−1, q2]

12
001

[s, 1, qs−1, q2, qs2] [s, qs−1, 1, qs2, q2]

[s, 1, q2, qs−1, qs2] [s, qs−1, 1, q2, qs2] [qs−1, s, 1, qs2, q2]

s
4 s 2

s
3 s 2

s
4 s 1

s
4 s 2

s 3 s 2

s
4 s 1

s3

s4

. . . . . .. . . . . . . . . . . .

. . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

Figure 4. Two connected components of Hq,s
32

Example 5.5. Consider the tableau T = 01
00 . The graph Hq,s

T is given by:
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[s, s−1, 1, q] [s, s−1, q, 1] [s, q, s−1, 1] [q, s, s−1, 1]

[s−1, s, 1, q] [s−1, s, q, 1] [s−1, q, s, 1] [q, s−1, s, 1]

s 1

s 1

s 2

s3 s2 s1

s3 s2 s1

The sink is indicated by a red disk and the root by a green disk.

By abuse of language, we write ζ ∈ T to mean that ζ appears in a vertex of the
connected component Hq,s

T .

Definition 5.6. In the same way, we define std0T of T to be the reverse standard
tableau of shape λ obtained by the following process:

(1) Denote by |T |i the number of occurrences of i in T .
(2) Read the tableau T from the left to the right and the bottom to the top and

replace occurrences of i in the order of their appearance by the numbers N −
|T |0 − · · · − |T |i−1, N − |T |0 − · · · − |T |i−1 − 1, . . .N − |T |0 − · · · − |T |i.

Let T be a filling of shape λ. Then std1T of T is defined to be the reverse standard
tableau of shape λ obtained by the following process:

(1) Denote by |T |i the number of occurrences of i in T .
(2) Read the tableau T from the bottom to the top and the left to the right and

replace occurrences of i in the order of their appearance by the numbers N −
|T |0 − · · · − |T |i−1, N − |T |0 − · · · − |T |i−1 − 1, . . .N − |T |0 − · · · − |T |i.

Example 5.7. To construct std0

(
0 1
0 0 2

)
we first write:

0 0 0 1 2
0 0 0 . .
. . . 1 .
. . . . 2

and we renumber entries in increasing order from the bottom to the top and the right
to the left:

0 0 0 1 2
5 4 3 . .
. . . 2 .
. . . . 1
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We obtain std0

(
0 1
0 0 2

)
=

4 2
5 3 1

.

Pictorially, we construct std1

(
0 1
0 0 2

)
writing:

0 0 2 0 1
0 0 . 0 .
. . . . 1
. . 2 . .

and renumbering entries in increasing order from the bottom to the top and the right
to the left:

0 0 2 0 1
5 4 . 3 .
. . . . 2
. . 1 . .

This gives std1

(
0 1
0 0 2

)
=

3 2
5 4 1

.

Alternatively, one has

std0(T )[i, j] := #{(k, l) : T [k, l] > T [i, j]}+ #{(k, l) : k > i, T [k, l] = T [i, j]}
+ #{(i, l) : l ≥ j, T [i, l] = T [i, j]}

and

std1(T )[i, j] := #{(k, l) : T [k, l] > T [i, j]}+ #{(k, l) : l > j, T [k, l] = T [i, j]}
+ #{(k, j) : k ≥ i, T [k, j] = T [i, j]}.

We can characterize the root and the sink of a connected component.

Lemma 5.8. One has:

(1) Troot(T ) = std0T and Tsink(T ) = std1T ,
(2) vroot(T ) = vR and vsink(T ) = v+.

Proof. First observe that T (std0(T ), v) = T (std1(T ), v) = T by construction. So we
have (vR, std0(T )), (v+, std1(T )) ∈ Hq,s

T .
Since, vR is an increasing partition, each arrow

(T, u) (std0(T ), vR)si

is a jump (i.e., u = vR). Let [i, j] be a cell of std0(T ) and k = std0(T )[i, j]. Let [i′, j′] be
the cell such that k + 1 = std0(T )[i′, j′]. From the definition of std0(T ), we have either
T [i, j] 6= T [i′, j′] or j = j′ or i < i′ and j > j′ (that is, CTstd0(T )[k] < CTstd0(T )[k+1]−1).
Hence, such a row does not exist and (std0(T ), vR) has no antecedent in Hq,s

T . This is
equivalent to std0(T ) = Troot(T ).

In an equivalent way, we find that there is no arrow in Hq,s
T of the form
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(std1(T ), v+) (T, u)si

Consequently, we have std1(T ) = Tsink(T ). �

Example 5.9. We write Example 5.5 in terms of tableaux:

31
42

[0001]

31
42

[0010]

31
42

[0100]

31
42

[1000]

21
43

[0001]

21
43

[0010]

21
43

[0100]

21
43

[1000]

s 1 s 1 s 2

s3 s2 s1

s3 s2 s1

We observe that std0

(
01
00

)
= 31

42
= Troot( 01

00) and std1

(
01
00

)
= 21

43
= Tsink( 01

00).

Remark 5.10. As a consequence, we obtain that, ifmi denotes the number of occurrences
of i among the entries of T , then

rroot(T ) = [. . . ,m0 + · · ·+mi + 1, . . . ,m0 + · · ·+mi+1 + 1, . . . ,

m0 + 1, . . . ,m0 +m1, 1, . . . ,m0],

and rsink(T ) = [1, . . . , N ].

The notion of (±1)-compatibility is easily detectable from the root and the sink.

Lemma 5.11. If Hq,s
T is 1-compatible then, for each i, i and i+ 1 are not in the same

column of Troot(T ). If Hq,s
T is (−1)-compatible then, for each i, i and i + 1 are not in

the same row of Tsink(T ).

Proof. From Lemma 5.8, we have Troot(T ) = std0(T ) and Tsink(T ) = std1(T ). But if k
and k + 1 are in the same column of std0(T ), where we suppose that std0(T )[i, j] = k,
then std0(T )[i, j+ 1] = k+ 1, and the only possibility is that T [i, j] = T [i, j+ 1], which
contradicts the fact that T is a column-strict tableau. Similarly, if k and k + 1 are in
the same row of std1(T ), then T [i, j] = T [i+ 1, j] for some (i, j), which contradicts the
fact that T is a row-strict tableau. �

Now we have all the material for an interpretation of the (±1)-compatibility in terms
of spectral vectors.

Proposition 5.12. If Hq,s
T is 1-compatible then, for each i, ζroot(T )[i] 6∼ ζroot(T )[i + 1]

implies ζroot(T )[i] = sζroot(T )[i+1]. If Hq,s
T is (−1)-compatible then, for each i, ζsink(T )[i] 6∼

ζsink(T )[i+ 1] implies ζsink(T )[i] = s−1ζsink(T )[i+ 1].

Proof. This is just the translation of Lemma 5.11 in terms of spectral vectors. �
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5.2. Invariant subspaces. The Yang–Baxter graph and the previous section imply
that we can characterize the irreducible subspaces U of polynomials invariant under
HN(s) and {ξi : 1 ≤ i ≤ N}, that is, UTi, Uξi ⊂ U .

Definition 5.13. Let T be a tableau with increasing row and column entries. We
denote by MT the space generated by the polynomials Pζ with ζ ∈ T .

Example 5.14. For instance, M 0 1

0 0

is spanned by

{P[s,s−1,1,q], P[s,s−1,q,1], P[s,q,s−1,1], P[q,s,s−1,1]P[s−1,s,1,q], P[s−1,s,q,1], P[s−1,q,s,1], P[q,s−1,s,1]}.
The spaces MT are the irreducible invariant subspaces.

Proposition 5.15. We have MTTi,MTξi ⊂ MT . Furthermore, if U is a proper
subspace of MT , then UTi 6⊂ U or Uξi 6⊂ U .

Proof. Let U be a subspace ofMTTi such that UTi, Uξi ⊂ U . The operators ξi being
simultaneously diagonalizable, U is spanned by a set of polynomials {Pζ1 , . . . , Pζk} with
k ∈ N and ζi ∈ T. But from the Yang–Baxter construction, if there exists ζ ∈ T such
that Pζ ∈ U , then, for each ζ ∈ T , Pζ ∈ U . So U is not a proper subspace. �

In the rest of the section, we investigate the dimension of the spaces MT . The
dimension of such a space equals the number of permutations of the vector of the
entries of T multiplied by the number of tableaux T appearing in HT . The first number
is easy to obtain, but for the second we need some additional considerations.

Suppose that µ, λ are partitions with µ ⊂ λ (µ[i] ≤ λ[i] for all i), |µ| = k, |λ| = n,
then the set {(i, j) : 1 ≤ i ≤ ` (λ) , µ [i] < j ≤ λ [i]} is the skew diagram λ\µ. The basic
step in determining the dimension of a connected component is to find the number
(denoted dim (λ\µ)) of RST’s of shape λ\µ, that is, the number of ways the numbers
(n− k) , (n− k − 1) , . . . , 1 can be entered in λ\µ so that the entries decrease in each
row and in each column. Equivalently, we ask for the number of standard Young
tableaux of shape λ\µ (see [12] or [15] for the definition). There is a classical formula
for this number (see [15, Cor. 7.16.3]). If det (aij) denotes the determinant of the matrix
(aij)

p
i,j=1, where p ≥ ` (λ) (the formula is independent of p), the formula says that

dim (λ\µ) = (n− k)! det

[
1

(λ [i]− µ [j]− i+ j)!

]
,

Here, 1
p!

= 0 for p = −1,−2, . . . (as in the zeros of 1
Γ(p+1)

).

Now consider a tableau T . Let M denote the maximum entry (also of any v in this
component) and let

µm = {(i, j) ∈ T : T (i, j) ≤ m} , 0 ≤ m ≤M.

Then each µm is the Ferrers diagram of a partition, µm ⊂ µm+1 (possibly µm = µm+1 for
some m and dim (µm+1\µm) = 1 trivially), and v+ [j] = m if j is an entry in µm\µm−1.
The number of RST’s in the connected component of T is

dim (µ0\ [0])
M∏
m=1

dim (µm\µm−1) ,
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and the number of permutations of v+ is N !/
(
|µ0|!

∏M
m=1 (|µm| − |µm−1|)!

)
; the dimen-

sion of the component is

N ! det

[
1

(µ0 [i]− i+ j)!

] M∏
m=1

det

[
1

(µm [i]− µm−1 [j]− i+ j)!

]
.

This product can be restricted to the values of m for which µm−1 6= µm, that is, the set
of entries of v+.

Example 5.16. (1) Consider again the tableau T =
0 1
0 0

. Then µ0 = [2, 1] and

µ1 = [2, 2]. Hence,

dim (µ0\ [0]) = 3! det

[
1
2

1
6

1 1

]
= 2,

dim (µ1\µ0) = 1! det

[
1 1

2
0 1

]
= 1.

Consequently, the number of tableaux T in T equals 2. The tableaux are
2 1
4 3

and
3 1
4 2

. So the dimension of MT is 4!
3!1!
× 2 = 8.

(2) Consider the bigger example given by the tableau T =
1 2
0 0 1

(see Figure 4).

Here µ0 = [2], µ1 = [3, 1], and µ2 = [3, 2]. We compute

dim (µ0\ [0]) = 2! det

[
1
2

1
6

0 1

]
= 1,

dim (µ1\µ0) = 2! det

[
1 1

24
0 1

]
= 2,

dim (µ2\µ1) = 1! det

[
1 1

6
0 1

]
= 1.

There are two tableaux; the graph decomposes into two parts when we remove
the jump edges. The dimension of MT is 5!

2!2!1!
× 2 = 60.

(3) Consider T =
0 1
0 1 2

(see Figure 4). One has µ0 = [1, 1], µ1 = [2, 2], and

µ2 = [3, 2]. Hence, we have only one tableau in the connected component.
Graphically, there is no jump (blue arrow) in the connected component Hq,s

T .
The dimension of MT is 30.

5.3. Symmetrizer/Antisymmetrizer. We define the operator

SN :=
∑
σ∈SN

T̃σ,

where T̃σ = Ti1 · · ·Tik if there is a shortest expression σ = si1 · · · sik . The operator SN
is an s-deformation of the classical symmetrizer in the following sense.
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Proposition 5.17. For each i, one has

SNTi = sSN .

Proof. It suffices to split the sum as

(5.1) SNTi =
∑
σ∈SN

`(σsi)>`(σ)

T̃σTi +
∑
σ∈SN

`(σsi)<`(σ)

T̃σTi.

We use the quadratic relation to write the second sum as∑
σ∈SN

`(σsi)<`(σ)

T̃σTi = (s− 1)
∑
σ∈SN

`(σsi)<`(σ)

T̃σsiTi + s
∑
σ∈SN

`(σsi)<`(σ)

T̃σsi .

But ∑
σ∈SN

`(σsi)<`(σ)

T̃σsiTi =
∑
σ∈SN

`(σsi)>`(σ)

T̃σ

Hence, ∑
σ∈SN

`(σsi)<`(σ)

T̃σTi = (s− 1)
∑
σ∈SN

`(σsi)>`(σ)

T̃σ + s
∑
σ∈SN

`(σsi)<`(σ)

T̃σsi .

Substituting this in (5.1), we obtain the result. �

As a consequence, we obtain the following result.

Corollary 5.18. The operator SN satisfies

S2
N = φN(s)SN ,

where φN(s) :=
∏N

j=2
1−sj
1−s is the Poincaré polynomial of SN .

Proof. From Proposition 5.17, one obtains

S2
N = SN

∑
σ∈SN

T̃u =
∑
σ∈Sn

s`(σ)SN = φN(s)SN .

�

Alternatively, we define

S′N =
∑
σ∈SN

`(σ)=k,σ=si1 ···sik

T−1
i1
· · ·T−1

ik
.

This operator satisfies

(5.2) S′NTi = sS′N

and

(5.3) S′
2
N = φN

(
1

s

)
S′N .

The action of the symmetrizer on leading terms has some nice properties.
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Lemma 5.19. Let v and T be such that COLT[rv[i]] = COLT[rv[i]+1] and v[i] = v[i+1]
for some i. Then

xv,TSN = 0.

Proof. We have
xv,TTi = xvδxi T+ xvsiTRvTi.

But v[i] = v[i + 1] implies xvδxi = 0 and, since COLT[rv[i]] = COLT[rv[i] + 1], we have
TTrv [i] = −T. Hence

(5.4) xv,TTi = xvTTrv [i]Rv = −xv,T.

Now we split the sum xv,TSN into two sums,

xv,TSN = xv,T
∑

`(siσ)<`(σ)

T̃σ + xv,T
∑

`(siσ)>`(σ)

T̃σ

= xv,T
∑

`(siσ)<`(σ)

TiT̃siσ + xv,T
∑

`(siσ)>`(σ)

T̃σ.

From eq. (5.4), one obtains

xv,TSN = −xv,T
∑

`(siσ)<`(σ)

T̃siσ + xv,T
∑

`(siσ)>`(σ)

T̃σ

= −xv,T
∑

`(siσ)>`(σ)

T̃σ + xv,T
∑

`(siσ)>`(σ)

T̃σ

= 0.

�

In the same way, we define

AN =
∑
σ∈SN

(−s)`(σ)Tσ,

where Tσ = T−1
i1
· · ·T−1

ik
given there is a shortest expression σ = si1 · · · sik . The operator

AN satisfies the following relation.

Proposition 5.20. For each i, we have

ANTi = −AN .

Proof. The proof is very close to the proof of Proposition 5.17 and is left to the reader.
�

The operator AN satisfies the following analog of Corollary 5.18.

Corollary 5.21. We have
A2
N = φN(s)AN .

Lemma 5.22. Let v and T be such that ROWT[rv[i]] = ROWT[rv[i] + 1] and v[i] =
v[i+ 1] for some i. Then

xv,TAN = 0.
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Lemma 5.23. Let v = [v[1] < · · · < v[N ]] and T be such that, for each i, v[i] = v[i+ 1]
implies COLT[rv[i]] = COLT[rv[i] + 1]. Then the coefficient of xv,T in xv,TAN equals∏

i s
miφmi(s), where mi denotes the number of parts i in v.

5.4. Symmetric/Antisymmetric polynomials. For ζ = ζv,T and ζsi = ζv′,T′ , we set

siζ := Pζsi +
s− ζ[i+1]

ζ[i]

1− ζ[i+1]
ζ[i]

Pζ and aiζ := Pζsi −
1−s ζ[i+1]

ζ[i]

1− ζ[i+1]
ζ[i]

Pζ .

Lemma 5.24. If ζ[i+ 1] � ζ[i], then we have

siζTi = ssiζ and aiζTi = −aiζ .

Proof. We prove only the result for siζ since the proof is very similar for aiζ . Recall that
Proposition 4.19 yields

PζTi = Pζsi − (1− s) ζ[i]

ζ[i]− ζ[i+ 1]
Pζ

and

PζsiTi =
(ζ[i+ 1]− sζ[i])(sζ[i+ 1]− ζ[i])

(ζ[i+ 1]− ζ[i])2
Pζ − (1− s) ζ[i+ 1]

ζ[i+ 1]− ζ[i]
Pζsi .

Hence,

siζTi =

(
(ζ[i+ 1]− sζ[i])(sζ[i+ 1]− ζ[i])

(ζ[i+ 1]− ζ[i])2
−

(1− s)ζ[i](s− ζ[i+1]
ζ[i]

)

(ζ[i]− ζ[i+ 1])(1− ζ[i+1]
ζ[i]

)

)
Pζ

+

(
s− ζ[i+1]

ζ[i]

1− ζ[i+1]
ζ[i]

− (1− s) ζ[i+ 1]

ζ[i+ 1]− ζ[i]

)
Pζsi

= sPζsi + s

(
s− ζ[i+1]

ζ[i]

1− ζ[i+1]
ζ[i]

)
= ssiζ .

�

Let f =
∑

ζ∈T bζPζ ∈MT be a symmetric polynomial, i.e., fTi = sf for each i.

Lemma 5.25. If ζ[i+ 1] � ζ[i], then
bζ
bζsi

= sζ[i]−ζ[i+1]
ζ[i]−ζ[i+1]

.

Proof. Since fTi = sf, we have

(bζPζ + bζsiPζsi) Ti = s (bζPζ + bζsiPζsi) .

Then bζPζ + bζsiPζsi is proportional to siζ . This finishes the proof of the lemma. �

Since each vertex of T is connected to sink(T ) by a series of edges

ζ ζsisi
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the polynomial f is unique up to a global multiplicative coefficient, and bζ 6= 0 for all ζ
if f 6= 0.

If T [i, j] = T [i, j + 1] for some (i, j) then ζroot(T )[k] = qnsm 6∼ ζroot(T )[k + 1] =
qnsm+1 for some k. Indeed, T [i, j] = T [i, j + 1] implies vroot(T )[k] = vroot(T )[k + 1],
hence rvroot(T )

[k] + 1 = rvroot(T )
[k + 1]. It follows that m = CTTroot(T )

[`] and m + 1 =

CTTroot(T )
[`+ 1] for some `.

Example 5.26. If T =
0 1
0 0

, we have

root(T ) =

(
3 1
4 2

, [s, s−1, 1, q], [0, 0, 0, 1], [2, 3, 4, 1]

)
.

We have T [1, 1] = T [1, 2] = 0. The corresponding cells in the tableau Troot(T ) are
Troot(T )[1, 1] = 4 and Troot(T )[1, 2] = 3. So ` = 3, k = 2, and m = −1 = CTTroot(T)

[3] =

CTTroot(T)
[4]− 1.

From fTk = sf, one deduces bζroot(T )
= s(s−1)−1ζroot(T )[k]− ζroot(T )[k+1]

ζroot(T )[k]
bζroot(T )

. Finally,
ζroot(T )[k]

ζroot(T )[k]−ζroot(T )[k+1]
= 1

1−s implies bζroot(T )
= 0 and f = 0.

In the other cases, the coefficients bζ are not zero, and they can be computed via
the recurrence given in Lemma 5.25. More precisely, setting bζroot(T )

= 1, and bζsi =
ζ[i]−ζ[i+1]
sζ[i]−ζ[i+1]

bζ if ζ[i+ 1] � ζ[i], we define the polynomial

MT =
∑
ζ∈T

bζPζ ,

which is the unique generator of the subspace of symmetric polynomials of MT .
So, one arrives at the following result.

Theorem 5.27. The subspace of MT of symmetric polynomials is

(1) a 1-dimension space generated by MT if T is a strict-column tableau;
(2) a 0-dimension space in the other cases.

Example 5.28. Consider the graph Hq,s
11
00

(see Figure 5). The polynomial

M 11
00

= P[s,1,q,qs−1] +
1− q
s− q

P[s,q,1,qs−1] +
(1− q)
(s2 − q)

P[q,s,1,qs−1] +
(1− q)
(s2 − q)

P[s,q,qs−1,1]

+
(1− q)(s− q)

(s2 − q)2
P[q,s,qs−1] +

(1− q)(s− q)
(s2 − q)(s3 − q)

P[q,qs−1,s,1]

is symmetric.

In the same way, define baζroot(T )
= 1, and baζsi = − ζ[i]−ζ[i+1]

ζ[i]−sζ[i+1]
baζ if ζ[i + 1] � ζ[i], and

the polynomial

Ma
T =

∑
ζ∈T

baζPζ .

We then have the following result.



42 C. F. DUNKL AND J.-G. LUQUE

[s, 1, q, qs−1]

[s, q, 1, qs−1]

[s, q, qs−1, 1][q, s, 1, qs−1]

[q, s, qs−1, 1]

[q, qs−1, s, 1]

s 2
×

1
−
q

s
−
q

s
1×

s−
qs 2

−
q

s 3

×
s−
q

s
2 −
q

s
1×

s−
qs 2

−
q

s 3

×
s−
q

s
2 −
q

s 2

×
s
2
−
q

s
3
−
q

Figure 5. The graph Hq,s
11
00

Theorem 5.29. The subspace of Ma
T of antisymmetric polynomials is

(1) a 1-dimension space generated by Ma
T if T is a strict-row tableau;

(2) a 0-dimension space in the other cases.

5.5. The group of permutations leaving T invariant. Let T be a filling of shape
λ with increasing rows and strictly increasing columns.

To each i we associate the pair COORDT [i] =
(
COLstd1(T )[i],ROWstd1(T )[i]

)
. An ele-

mentary transposition si acts on T by permuting the cells COORDT [i] and COORDT [i+
1].

For a tableau T, we denote by ST the maximal subgroup of SN leaving invariant the
sets of entries of each line.
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Example 5.30. For instance, consider the tableau T =
3 2
5 4 1

. We have ST =

S{1,4,5} ×S{2,3}.

We denote also by ST the maximal subgroup of Sstd1(T ) leaving T invariant.

Example 5.31. Let T =
1 1
0 0 1

. Then we have std1(T ) =
3 2
5 4 1

and

ST = S{2,3} ×S{4,5} ×S{1} ⊂ Sstd1(T ) = S{1,4,5} ×S{2,3}.

Let Sr(T ) be the subgroup of SN leaving the partition vsink(T ) invariant.

Example 5.32. Again, with T =
1 1
0 0 1

, we have vsink(T ) = [1, 1, 1, 0, 0] and

Sr(T ) = S{1,2,3} ×S{4,5}.

Observe that ST = Sstd1(T ) ∩ Sr(T ). This implies that for each σ ∈ ST one has
(vsink(T ), std1(T ))σ = (vsink(T ), std1(T )).

Remark 5.33. In terms of spectral vectors, we have ζsink(T )σ = ζsink(T ) (here we use the
action defined in eq. (4.4)). The property of T to have only strictly increasing columns
can also be interpreted in terms of spectral vectors. Indeed, for each i, we have

(5.5) ζsink(T )[i] � ζsink(T )[i+ 1] or ζsink(T )[i] = qnsm+1 6∼ ζsink(T )[i+ 1] = qnsm.

Example 5.34. Consider the tableau T =
1 1
0 0 1

. We compute ζsink(T ) from the vector

vsink(T ) = [1, 1, 1, 0, 0] and the tableau std1(T ) =
3 2
5 4 1

. Here, rsink(T ) = [1, 2, 3, 4, 5],

hence ζsink(T ) = [s2q, q, s−1q, s, 1]. Observe that ζsink(T )[1] � ζsink(T )[2], ζsink(T )[2] 6∼
ζsink(T )[3], with

ζsink(T )[2]

ζsink(T )[3]
= s, ζsink(T )[3] � ζsink(T )[4] and ζsink(T )[4] 6∼ ζsink(T )[5], with

ζsink(T )[4]

ζsink(T )[5]
= s.

Let σT be the minimal permutation such that ζrootTσT = ζsink(T ). It can be used to
characterize the group ST .

Lemma 5.35. The group ST is the subgroup of SN consisting of the permutations σ
such that `(σTσ) = `(σT ) + `(σ).

Furthermore, we will use the following result.

Lemma 5.36. For each permutation σ such that ζroot(T ) � ζroot(T )σ one has:

Pζroot(T )
T̃σ = Pζroot(T )σ +

∑
ζ′≺ζroot(T )σ

(∗)Pζ′ .

Proof. We prove the result by induction on the length of σ. If σ = id, then the result is
obvious. Now suppose that σ = σ′sj, with `(σ) = `(σ′)+1, and so ζroot(T )σ ≺ ζroot(T )σsj.

Then T̃σ = T̃σ′Tj. Furthermore, using the induction hypothesis, we obtain

(5.6) Pζroot(T )
T̃σ = Pζroot(T )σ

′Tj +
∑

ζ′≺ζroot(T )σ

(∗)Pζ′Tj.
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But Pζroot(T )σ
′Tj = Pζroot(T )σsj + (∗)Pζroot(T )σ. Furthermore, since ζ ′ ≺ ζroot(T )σ

′, we have
ζ ′sj ≺ ζroot(T )σ. But

Pζ′Tj = (∗)Pζ′sj + (∗)Pζ′ .
Hence, by substituting this in (5.6), we arrive at the claimed result. �

We are now in the position to deduce the following auxiliary result.

Lemma 5.37. Denote by βσT the coefficient of Pζsink(T )
in Pζroot(T )

T̃σ. Then we have:

(1) If σ−1
T σ 6∈ ST , then βσT = 0.

(2) If σ−1
T σ ∈ ST , then βσT = s`(σ)−`(σT ).

Proof. Part (1) is a direct consequence of Lemma 5.36. To show Part (2), we first use

Lemma 5.36 and write Pζroot(T )
T̃σT = Pζsink(T )

+
∑

ζ≺ζsink(T )
(∗)Pζ . Now set τ := σ−1

T σ ∈
ST and observe that, for each element τ ′ ∈ ST , ζτ ′ = ζsink(T ) implies ζ = ζsink(T ).

Hence, the coefficient of ζsink(T ) in
∑

ζ≺ζsink(T )
(∗)PζT̃τ is 0. It follows that βσT equals

the coefficient of ζsink(T ) in Pζsink(T )
T̃τ . But ST is generated by transpositions si such

that ζsink(T )[i] = qsm+1 6∼ ζsink(T )[i+ 1] = qnsm (see eq. (5.5)). This implies Pζsink(T )
si =

sPζsink(T )
. Hence, Pζsink(T )

τ = s`(τ)Pζsink(T )
. Since, from Lemma 5.35, `(τ) = `(σ)− `(σT ),

we obtain the desired result. �

Proposition 5.38. The coefficient of Pζsink(T )
in Pζroot(T )

SN equals the Poincaré poly-

nomial φT (s) of ST .

Proof. We write

Pζroot(T )
SN = Pζroot(T )

∑
σ∈ST

T̃σT T̃σ + Pζroot(T )

∑
`(σT σ)<`(σT )+`(σ)

T̃σ.

By Lemma 5.37, the coefficient of Pζsink(T )
in

Pζroot(T )

∑
`(σT σ)<`(σT )+`(σ)

T̃σ = Pζroot(T )

∑
σ−1
T σ 6∈ST

T̃σ

is 0. Furthermore, Lemma 5.37 implies

Pζroot(T )

∑
σ∈ST

T̃σT T̃σ = Pζsink(T )

∑
σ∈ST

T̃σ +
∑

ζ≺ζsink(T )

(∗)PζT̃σ.

But, since ζ 6= ζsink(T ), the coefficient of Pζsink(T )
in PζT̃σ is 0. Hence, the coefficient of

Pζsink(T )
in Pζroot(T )

SN equals the coefficient of Pζsink(T )
in Pζsink(T )

∑
σ∈ST T̃σ. The result

now follows from Lemma 5.37. �

The polynomial MT is proportional to any PζSN for ζ ∈ T . In fact, we can compute
the proportion factor.

Theorem 5.39. We have

MT =
bζsink(T )

φT (s)
Pζroot(T )

SN

.
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Proof. It suffices to compare the coefficient of Pζsink(T )
in MT (given by Theorem 5.27)

and in PζSN (given by Proposition 5.38). �

Example 5.40. Consider the tableau T =
1
0 0 1

. Here, ζroot(T ) = [s, 1, qs2, qs−1] and

ζsink(T ) = [qs−1, qs2, s, 1]. The images of ζroot(T ) by

S4 = {[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2],
[2, 1, 3, 4], [2, 1, 4, 3], [2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 1, 3], [2, 4, 3, 1],
[3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1], [3, 4, 2, 3], [3, 4, 2, 1]
[4, 1, 2, 3], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1]}

are

[s, 1, qs2, qs−1], [s, 1, qs−1, qs2], [s, qs−1, 1, qs2], [s, qs−1, qs2, 1],
[s, qs2, 1, qs−1], [s, qs2, qs−1, 1], [s, 1, qs2, qs−1], [s, 1, qs−1, qs2],
[s, qs−1, 1, qs2], [s, qs−1, qs2, 1], [s, qs2, 1, qs−1], [s, qs2, qs−1, 1],
[qs2, s, 1, qs−1], [qs2, s, qs−1, 1], [qs2, s, 1, qs−1], [qs2, s, qs−1, 1],
[qs2, qs−1, s, 1], [qs2, qs−1, s, 1], [qs−1, s, 1, qs2], [qs−1, s, qs2, 1],
[qs−1, s, 1, qs2], [qs−1, s, qs2, 1], [qs−1, qs2, s, 1], [qs−1, qs2, s, 1],

respectively. Only two permutations give ζsink(T ): [4, 3, 1, 2] and [4, 3, 2, 1]. Indeed, one
computes σT by choosing a maximal path in the Yang–Baxter graph: σT = s2s3s1s2s1 =
[4, 3, 1, 2]. The group ST is the order-two group ST = S{3,4}. We see that acting by
T3 on P[qs−1,qs2,s,1] gives sP[qs−1,qs2,s,1]. Hence,

P[qs−1,qs2,s,1](1 + T3) = (1 + s)P[qs−1,qs2,s,1] = φT (s)P[qs−1,qs2,s,1].

Note that φT (s) is the product of the φλ(s) for each row λ = [am1
1 , . . . , amkk ] of T ,

where φλ(s) =
∏

i φm1(s).
In the same way, we prove a similar formula for antisymmetric polynomials.

Theorem 5.41. We have

Ma
T =

baζsink(T )

φT (s)
Pζroot(T )

AN ,

where T denotes the conjugate of T (that is, the tableau obtained by exchanging rows
and columns).

Proof. Similarly to Lemma 5.37, we denote by β
σ

T the coefficient of Pζsink(T )
in Pζroot(T )

Tσ.
We then have the following:

(1) If σ−1

T
σ 6∈ ST , then β

σ

T = 0.

(2) If σ−1

T
σ ∈ ST , then β

σ

T = (−1)`(σ)−`(σ
T̃

).

Using these properties, we prove as in Proposition 5.38 that the coefficient of Pζsink(T )

in Pζroot(T )
AN equals the Poincaré polynomial φT (s). The result follows. �
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Example 5.42. Consider the tableau T =
1
0
0 1

. Here, ζroot(T ) = [s−1, 1, qs, qs−2] and

ζsink(T ) = [qs−2, qs, s−1, 1]. The images of ζroot(T ) by S4 are:

[s−1, 1, sq, qs−2], [s−1, 1, qs−2, sq], [s−1, sq, 1, qs−2], [s−1, sq, qs−2, 1],
[s−1, qs−2, 1, sq], [s−1, qs−2, sq, 1], [s−1, 1, sq, qs−2], [s−1, 1, qs−2, sq],
[s−1, sq, 1, qs−2], [s−1, sq, qs−2, 1], [s−1, qs−2, 1, sq], [s−1, qs−2, sq, 1],
[sq, s−1, 1, qs−2], [sq, s−1, qs−2, 1], [sq, s−1, 1, qs−2], [sq, s−1, qs−2, 1],
[sq, qs−2, s−1, 1], [sq, qs−2, s−1, 1], [qs−2, s−1, 1, sq], [qs−2, s−1, sq, 1],
[qs−2, s−1, 1, sq], [qs−2, s−1, sq, 1], [qs−2, sq, s−1, 1], [qs−2, sq, s−1, 1].

Only two permutations give ζsink(T ): [4, 3, 1, 2] and [4, 3, 2, 1]. These permutations gen-

erate ST with T =
1
0 0 1

.

5.6. Minimal symmetric/antisymmetric polynomials. We have seen that for a
given isotype λ the symmetric polynomials are indexed by column-strict tableaux T of
shape λ. There exists only one tableau filling of λ such that the sum of its entries is
minimal. This tableau is obtained by filling the first row with 0’s, the second with 1’s,
etc. Let

Tλ :=

m− 1 . . . m− 1
...

...
1 . . . . . . 1
0 . . . . . . . . . 0

if λ = [λ1, . . . , λm], with λ1 ≥ · · · ≥ λm, and the number of i’s among the entries of Tλ
equals λi.

Example 5.43. Let λ = [5, 3, 2, 2, 1], then

Tλ =

4
3 3
2 2
1 1 1
0 0 0 0 0

.

Corollary 5.44. The space of the minimal symmetric polynomials for isotype λ is
spanned by MTλ, and similarly the space of minimal antisymmetric polynomials is
spanned by Ma

Tλ
, where λ denotes the conjugate partition of λ.

Example 5.45. Consider the isotype λ = [5, 3, 2, 2, 1]. Then λ = [5, 4, 2, 1, 1] and

Tλ =

4
3
2 2
1 1 1 1
0 0 0 0 0

.
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Hence, the space of minimal antisymmetric polynomials for isotype λ is spanned by

Ma
0

0 1

0 1
0 1 2

0 1 2 3 4

.

6. Bilinear form

6.1. Bilinear form on the space Vλ. To define a pairing for Vλ, introduce the dual
Hecke algebra HN (q−1, s−1); we use ∗ to indicate objects associated with HN (q−1,s−1),
e.g., T∗i , (c0 + c1s)

∗ = c0 + c1
s

. Recall that, when acting on Vλ, Ti = Ti. There is a
bilinear form on V ∗λ × Vλ, (u∗, v) 7→ 〈u∗, v〉 ∈ Q (s, q), such that 〈u∗T ∗i , vTi〉 = 〈u∗, v〉
for 1 ≤ i < N , and such that T1,T2 ∈ Tabλ,T1 6= T2 implies 〈T∗1,T2〉 = 0; the latter
property follows from the eigenvalues of Li, since 〈u∗φ∗i , vφi〉 = 〈u∗, v〉. We establish a
formula for 〈T∗,T〉 after the following recurrence relation.

Lemma 6.1. If T ∈ Tabλ and m := CTT[i]−CTT[i+ 1]) ≥ 2 then T(i,i+1) ∈ Tabλ and〈
(T(i,i+1))∗,T(i,i+1)

〉
=

(1− sm−1) (1− sm+1)

(1− sm)2 〈T∗,T〉 .

Proof. The equation TTi = T(i,i+1) − 1−s
1−s−mT implies

〈T∗,T〉 =
〈
T(i,i+1)∗,T(i,i+1)

〉
+

(1− s−1) (1− s)
(1− sm) (1− s−m)

〈T∗,T〉 ,

thus 〈
T(i,i+1)∗,T(i,i+1)

〉
=

(
1− sm−1 (1− s)2

(1− sm)2

)
〈T∗,T〉 .

�

Definition 6.2. For T ∈ Tabλ let

ν (T) :=
∏

1≤i<j≤N
CTT[i]−CTT[j]≤−2

(
1− sCTT[j]−CTT[i]−1

) (
1− sCTT[j]−CTT[i]+1

)
(1− sCTT[j]−CTT[i])

2 .

Proposition 6.3. The bilinear form defined by 〈T∗1,T2〉 = 0 for T1 6= T2 and 〈T∗,T〉 =
ν (T) (for T,T1,T2) and extended by linearity satisfies 〈P ∗T ∗i , QTi〉 = 〈P ∗, Q〉 for all
P ∗, Q, i.

Proof. It suffices to show that 〈T∗T ∗i ,TTi〉 = 〈T∗,T〉 for all T. If TTi = sT then
T∗T ∗i = s−1T∗ and 〈T∗T ∗i ,TTi〉 = s−1s 〈T∗,T〉. The case TTi = −T is treated similarly.
Otherwise, consider the pair

(
T,T(i,i+1)

)
with CTT[i]−CTT[i+1] ≥ 2. There is only one

factor in ν
(
T(i,i+1)

)
different from ν (T), the one corresponding to j = i+ 1. The proof

then follows from Lemma 6.1 and CTT(i,i+1) [i] = CTT[i+1], CTT(i,i+1) [i+1] = CTT[i]. �

Any other bilinear form satisfying 〈P ∗T ∗i , QTi〉 = 〈P ∗, Q〉 is a constant multiple of
the above form.
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6.2. Bilinear form on the space Mλ. Consider the bilinear form 〈 , 〉 defined by

(6.1) 〈T∗1,T2〉 = δT2,T2ν(T1)

and

(6.2) 〈Pxi, Q〉 = 〈P,QDi〉.
This form has the following property.

Proposition 6.4. We have

〈P (T∗i )
±1, Q〉 = 〈P,QT∓1

i 〉.

Proof. We proceed by induction on the degree of the polynomials. The start of the
induction is given by the inner product on the tableaux. Using the induction hypothesis,
we have from eq. (3.8) and Proposition 3.6

〈PxiT∗i , Q〉 = 〈Pxi, QT−1
i 〉,(6.3)

〈Pxi+1(T∗i )
−1, Q〉 = 〈Pxi+1, QTi〉,(6.4)

and
(6.5)
〈Pxj(T∗i )±1, Q〉 = 〈Pxj, QT∓1

i 〉 = 〈P,QT∓1
i Dj〉 = 〈P,QDjT

∓1
i 〉 when |i− j| > 1.

Indeed, one has

〈Pxi+1(T∗i )
−1, Q〉 =

1

s
〈PT∗i

−1xi+1, Q〉 =
1

s
〈PT∗i

−1, QDi+1〉 =
1

s
〈P,QDi+1Ti〉,

using the induction hypothesis. Hence,

〈Pxi+1(T∗i )
−1, Q〉 = 〈P,QDi+1Ti〉 = 〈P,QT−1

i Di〉 = 〈Pxi, QT−1
i 〉

which gives (6.3). The proofs of (6.4) and (6.5) are similar.
Now, by Proposition 3.6, one has

〈Pxi+1T
∗
i , Q〉 = 〈PT∗ixi − (1− 1

s
)Pxi+1, Q〉 = 〈P,Q(DiT

−1
i − (1− 1

s
)Di+1)〉

by induction hypothesis. Hence, by (3.8), one obtains

(6.6) 〈Pxi+1T
∗
i , Q〉 = 〈P,QT−1

i Di+1〉 = 〈Pxi+1, QT−1
i 〉.

Similarly, one has

(6.7) 〈PxiT∗i
−1, Q〉 = 〈Pxi, QTi〉.

Eqs. (6.3), (6.4),(6.5), (6.6) and (6.7) give the result. �

Now one has also the following equalities involving the operator w:

Di+1w
−1 = w−1Di, xi+1w = wxi+1, i 6= 1,

and

DNw−1 = qw−1D1, x1w = qwxN .

This entails the following identity.
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Proposition 6.5. We have

〈Pw∗±1, Q〉 = 〈P,Qw∓1〉.

From Proposition 6.5 and 6.5 one deduces the following theorem.

Theorem 6.6. We have

(1) 〈Pξ∗i , Q〉 = 〈P,Qξ−1
i 〉,

(2) 〈P ∗ζ , Pζ′〉 = (∗)δζ,ζ′,
where (∗) denotes a certain coefficient which remains to be computed.

6.3. Computation of 〈P ∗ζ , Pζ〉. First we establish some recurrences.

Proposition 6.7. Let ζ = ζv,T for some T ∈ Tabλ and v ∈ NN . Suppose that ζ[i+1) �
ζ[i] for some i. Then

〈
P ∗ζsi , Pζsi

〉
=

(
1− s ζ[i+1]

ζ[i]

)(
s− ζ[i+1]

ζ[i]

)
s
(

1− ζ[i+1]
ζ[i]

)2

〈
P ∗ζ , Pζ

〉
.

Proof. From eq. (4.2), we infer PζTi = − 1−s
1− ζ[i+1]

ζ[i]

Pζ + Pζsi . Thus〈
P ∗ζ , Pζ

〉
=
〈
P ∗ζ T∗i , PζTi

〉
=

(
1− s

1− ζ[i+1]
ζ[i]

)(
1− s

1− ζ[i+1]
ζ[i]

)∗ 〈
P ∗ζ , Pζ

〉
+
〈
P ∗ζsi , Pζsi

〉
.

Hence 〈
P ∗ζsi , Pζsi

〉
=

1− (1− s) (1− s−1)(
1− ζ[i+1]

ζ[i]

)(
1− ζ[i]

ζ[i+1]

)
〈P ∗ζ , Pζ〉

=

(
1− s ζ[i+1]

ζ[i]

)(
s− ζ[i+1]

ζ[i]

)
s
(

1− ζ[i+1]
ζ[i]

)2

〈
P ∗ζ , Pζ

〉
.

�

Definition 6.8. We define

Ea(ζ) =
∏

(i,j)∈inv(ζ)

1− sa ζ[j]
ζ[i]

1− ζ[j]
ζ[i]

and

E(ζ) = E1(ζ)E−1(ζ).

Proposition 6.9. Let ζ = ζv,T for some v ∈ NN and T ∈ Tabλ. One has〈
P ∗ζ , Pζ

〉
= E (ζ)−1 〈P ∗ζ+ , Pζ+〉 .
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Proof. we argue by induction on #inv (ζ). The statement is trivially true for #inv (ζ) =
0, that is, if ζ = ζ+. Suppose the statement is true for all ζ ′ = ζv′,T′ with #inv (ζ ′) ≤ n
and #inv (ζ) = n + 1. Thus ζ [i] < ζ [i+ 1] for some i < N . By Proposition 6.7, we
have 〈

P ∗ζ , Pζ
〉

=

(
1− ζ[i+1]

ζ[i]

)2(
1− s ζ[i+1]

ζ[i]

)(
1− s−1 ζ[i+1]

ζ[i]

) 〈P ∗ζsi , Pζsi〉 ,
thus 〈

P ∗ζ , Pζ
〉〈

P ∗ζsi , Pζ·si
〉 =
E (ζ · si)
E (ζ)

.

This completes the induction since #inv (ζsi) = #inv (ζ)− 1. �

Alternatively, the computation of
〈
P ∗ζ , Pζ

〉
can be related to the root or the sink of

the connected component of ζ.

Proposition 6.10. Let ζ = ζv,T for some v and T. Let Hq,s
T be the connected component

of ζ. We define the values

S(ζ) =
∏

(i,j)∈inv≺(ζ)

(1− s ζ[j]
ζ[i]

)(1− s−1 ζ[j]
ζ[i]

)

(1− ζ[j]
ζ[i]

)2

and

R(ζ) =
∏

(i,j)∈inv�(ζ)

(1− s ζ[j]
ζ[i]

)(1− s−1 ζ[j]
ζ[i]

)

(1− ζ[j]
ζ[i]

)2
.

Then one has

(1)
〈
P ∗ζ , Pζ

〉
= S(ζ)−1

〈
P ∗ζsink(T )

, Pζsink(T )

〉
,

(2)
〈
P ∗ζ , Pζ

〉
= R(ζ)

〈
P ∗ζroot(T )

, Pζroot(T )

〉
.

Proof. The proof works as in Proposition 6.9, using induction on ]inv/(ζ) (/ ∈ {≺,�
}), since there is a unique maximal (respectively minimal) element in the connected
component: the sink (respectively the root). These elements are connected to ζ by a
sequence of steps or jumps. �

There holds as well the following identity.

Proposition 6.11. Let ζ = ζv,T for some v ∈ NN and T ∈ Tabλ. Then one has

〈P ∗ζΨq , PζΨq〉 = (1− qζ[1])〈P ∗ζ , Pζ〉.

Proof. From Proposition 4.19 one has

〈P ∗ζΨq , PζΨq〉 = 〈P ∗ζ Φ∗, PζΦ〉 = 〈P ∗ζ
(
T−1

1 · · ·T−1
N−1

)∗
xN , PζT

−1
1 · · ·T−1

N−1xN〉.
But Proposition 6.4 implies

〈P ∗ζ
(
T−1

1 · · ·T−1
N−1

)∗
xN , PζT

−1
1 · · ·T−1

N−1xN〉
= 〈P ∗ζ , PζT−1

1 · · ·T−1
N−1xNDNTN−1 · · ·T1〉,
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and, by DN = (1− ξN)x−1
N , we obtain

〈P ∗ζΨq , PζΨq〉 = 〈P ∗ζ , Pζ〉 − 〈P ∗ζ , PζΨqξNx−1
N TN−1 · · ·T1〉

= 〈P ∗ζ , Pζ〉 − (ζΨq)[N ]〈P ∗ζ , PζΨqΦ−1〉.

Using again Proposition 4.19, we find

〈P ∗ζΨq , PζΨq〉 = (1− (ζΨq)[N ])〈P ∗ζ , Pζ〉.

Since (ζΨq)[N ] = qζ[1], we arrive at the desired result. �

Definition 6.12. We let χ(i, j) = 1 if j < i and χ(i, j) = 0 if j ≥ i.

Let ρ(a, b) = (a−s−1b)(a−sb)
(a−b)2 and

4(ζ) :=
N∏
j=1

∏
ζ[i]�ζ[j]qk
k≥χ(i,j)

ρ(ζ[j]qk, ζ[i]).

Let �(qnsm) = (q; qsm)n, where (a; q)n = (1 − a)(1 − qa) · · · (1 − qn−1a), and �(ζ) =∏N
i=1�(ζ[i]).

Example 6.13. Let ζ := [q2s−1, qs2, qs, q] be the spectral vector associated with v =

[2, 1, 1, 1] and T =
1
4 3 2

. Then we have

�(ζ) = �(q2s−1)�(qs2)�(qs)�(q) = (1− qs−1)(1− q2s−1)(1− qs2)(1− qs)(1− q).

With the aim of computing 4(ζ), we list the triples (i, j, k) such that ζ[i] � ζ[j]qk.
Here we find 6 triples:

(1, 2, 0), (1, 2, 1), (1, 3, 0), (1, 3, 1), (1, 4, 0), (4, 2, 0).

Note that (1, 4, 1) does not occur in the list since q2s−1 6∼ q2. Furthermore, there is no
factor corresponding to (4, 2, 0) in 4(ζ) because χ(4, 2) = 1. Hence, 4(ζ) is a product
of 5 factors:

4(ζ) = ρ(qs2, q2s−1)ρ(q2s2, q2s−1)ρ(qs, q2s−1)ρ(q2s, q2s−1)ρ(q, q2s−1)

=
(q − s4) (s2 + 1) (−1 + q)

(−s3 + q) (s2 + 1 + s) (q − s)

With these notations, one has the following auxiliary result.

Lemma 6.14. (1) If ζ = ζ0N ,T then 4(ζ) = ν(T) and �(ζ) = 1.
(2) If ζ = ζv,T with ζ[`+ 1] � ζ[`] then 4(ζs`) = ρ(ζ[`], ζ[`+ 1])4(ζ) and �(ζs`) =
�(ζ).

(3) If ζ = ζv,T then 4(ζΨq) = 4(ζ) and �(ζΨq) = (1− qζ[1])�(ζ).
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Proof. (1) First note that, if ζ = ζ0N ,T, then there is no occurrence of q in ζ, so we
have �(ζ) = 1. Moreover, we have

ν(T) =
∏

1≤i<j≤N
CTT[i]−CTT[j]≤−2

ρ(ζ[i], ζ[j])

=
N∏
j=1

∏
ζ[i]�ζ[j]

ρ(ζ[j], ζ[i]).

(2) Obviously we have �(ζs`) = �(ζ). Furthermore,

4(ζs`)

4(ζ)
=

∏
ζs`[`]�ζs`[`+1]qk

k≥χ(`,`+1)

ρ(ζs`[`+ 1]qk, ζs`[`])

∏
ζ[`+1]�ζ[`]qk
k≥χ(`+1,`)

ρ(ζ[`]qk, ζ[`+ 1])

=

∏
ζ[`+1]�ζ[`]qk

k≥0

ρ(ζ[`]qk, ζ[`+ 1])

∏
ζ[`+1]�ζ[`]qk

k≥1

ρ(ζ[`]qk, ζ[`+ 1])

= ρ(ζ[`], ζ[`+ 1]).

This proves the result.
(3) One has �(ζΨq) = (1− (ζΨq)[N ])�(ζ) = (1− qζ[1])�(ζ). Furthermore,

4(ζΨq)

4(ζ)
=

N−1∏
i=1



∏
(ζΨq)[i]�ζΨq [N ]qk

k≥0

ρ((ζΨq)[N ]qk, (ζΨq)[i])

∏
ζ[i+1]�ζ[1]qk

k≥1

ρ(ζ[1]qk, ζ[i+ 1])

×

∏
(ζΨq)[N ]�ζΨq [i]qk

k≥1

ρ((ζΨq)[i]qk, (ζΨq)[N ])

∏
ζ[1]�ζ[i+1]qk

k≥0

ρ(ζ[i+ 1]qk, ζ[i])

 .

But (ζΨq)[N ] = qζ[1] and (ζΨq)[i] = ζ[i+ 1]. Hence, (ζΨq)[i] � (ζΨq)[N ]qk for
k ≥ 0 implies ζ[i + 1] ≥ ζ[1]qk+1. In the same way (ζΨq)[N ] � ζ[i]qk for k ≥ 1
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implies ζ[1] � ζ[i+ 1]qk−1. Hence, the quotient simplifies to

4(ζΨq)

4(ζ)
= 1,

as expected.
�

We deduce the following result.

Theorem 6.15. Let ζ = ζv,T). Then the value of the pairing 〈P ∗ζ , Pζ〉 is

〈P ∗ζ , Pζ〉 = �(ζ)4(ζ).

Proof. Comparing the statement of Lemma 6.14 to Propositions 6.7, 6.11, and 6.3, we
see that 〈P ∗ζ , Pζ〉 and �(ζ)4(ζ) satisfy the same recurrence rules and have the same
values when ζ = ζ0N ,T. �

6.4. Computation of 〈M∗
T ,MT 〉. First observe that

(6.8) 〈P,QSN〉 = 〈PS′N
∗
, Q〉.

We use Theorem 5.39 to write

〈M∗
T ,MT 〉 =

bζsink(T )

φT (s)
〈M∗

T , Pζroot(T )
SN〉.

Hence, by eq. (6.8), we have

〈M∗
T ,MT 〉 =

bζsink(T )

φT (s)
〈M∗

TS′
∗
N , Pζroot(T )

〉.

Since MT is symmetric, eq. (5.3) gives

〈M∗
T ,MT 〉 = bζsink(T )

φN(s)

φT (s)
〈M∗

T , Pζroot(T )
〉.

Hence,

〈M∗
T ,MT 〉 =

φN(s)

φT (s)
bζsink(T )

b∗ζroot(T )
〈P ∗ζroot(T )

, Pζroot(T )
〉.

Using the normalization described in Section 5.4, we have bζroot(T )
= 1.

Theorem 6.16. We have

〈M∗
T ,MT 〉 =

φN(s)

φT (s)
bζsink(T )

〈P ∗ζroot(T )
, Pζroot(T )

〉.

In the same way, for antisymmetric polynomials we obtain the following result.

Theorem 6.17. We have

〈Ma
T
∗,Ma

T 〉 =
φN(s)

φT (s)
baζsink(T )

〈P ∗ζroot(T )
, Pζroot(T )

〉.
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Proof. The proof works as in the symmetric case, but it uses the operator A′N with the
property that

〈P,QAN〉 = 〈PA′N
∗
, Q〉.

This operator is the antisymmetrizer

A′N =
∑
σ∈SN

(−s)`(T )T̃σ

satisfying

A′N
2

= φN(
1

s
)A′N .

Hence, by a similar reasoning we arrive at the claimed result. �

6.5. Hook-length type formula for minimal polynomials. The topic of this sec-
tion is simpler formulae for 〈M∗

Tλ
,MTλ〉 for a decreasing partition λ in the situation

where the entries of T are constant in each row. The formulae are then specialized to
the minimal symmetric/antisymmetric polynomials. In this case they are expressions
in terms of hook-lengths.

First consider a partition µ where µ = [µ
λ[m]
1 , . . . , µ

λ[1]
m ] with µ1 > · · · > µm. Let

T =

λ[m] . . . 1
λ[m− 1] + λ[m] . . . . . . λ[m] + 1

...
...

λ[1] + · · ·+ λ[m] . . . . . . . . . λ[2] + · · ·+ λ[m] + 1

be the RST obtained by filling the shape λ with 1, . . . , N(= λ[1] + · · · + λ[N ]) row by
row and

T =

µ1 . . . µ1
...

...
µm−1 . . . . . . µm−1

µm . . . . . . . . . µm
be the column strict tableau obtained by filling the shape λ with the entries of µ row
by row. Then µ = vsink(T ) and T = Tsink(T ). Hence,

(6.9) ζsink(T ) = [qµ1sλ[m]−m, . . . , qµ1s1−m, qµ2s1−m+λ[m−1], . . . , qµ2s2−m, . . . ,

qµms−1+λ[1], . . . , qµm ].

Example 6.18. Let λ = [3, 3, 2] and µ = [3, 3, 2, 2, 2, 1, 1, 1]. We construct

T =
2 1
5 4 3
8 7 6

and

T =
3 3
2 2 2
1 1 1

.

Here, ζsink(T ) = [q3s−1, q3s−2, q2s, q2, q2s−1, qs2, qs, q].
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We have

〈P ∗ζroot(T )
, P ∗ζroot(T )

〉 = S(ζroot(T ))
−1〈P ∗ζsink(T )

, Pζsink(T )
〉

= S(ζroot(T ))
−14(ζsink(T ))�(ζsink(T )),

where

(6.10) ζroot(T ) = [qµms−1+λ[1], . . . , qµm , . . . , qµ2s1−m+λ[m−1], . . . , qµ2s2−m,

qµ1sλ[m]−m, . . . , qµ1s1−m].

By telescoping, we find

(6.11) S(ζroot(T )) =
∏

1≤i<j≤m

(1− qµj−µisj−i−λ[m−i+1])(1− qµj−µisj−i+λ[m−j+1])

(1− qµj−µisj−i)(1− qµj−µisj−i+λ[m−j+1]−λ[m−i+1])
.

First we compute 4(ζsink(T )), and following eq. (6.9) we write

4(ζsink(T )) = 〈T∗,T〉♦,

with

♦ :=
∏

1≤i<j≤m

µi−µj−1∏
k=0

λ[m−i+1]∏
a=1

λ[m−j+1]∏
b=1

(1− qµj−µi+ksj−i+b−a−1)(1− qµj−µi+ksj−i+b−a+1)

(1− qµj−µi+ksj−i+b−a)2
.

Indeed, 〈P ∗ζsink(T )
, Pζsink(T )

〉 splits into two factors: the first factor 〈T∗,T〉 does not depend

on q, all the factors of the second factor ♦�(ζsink(T )) involve q. By telescoping, we have

λ[m−j+1]∏
b=1

(1− qµj−µi+ksj−i+b−a−1)(1− qµj−µi+ksj−i+b−a+1)

(1− qµj−µi+ksj−i+b−a)2

(6.12)

=
(1− qµj−µi+ksj−i−a)(1− qµj−µi+ksj−i+λ[m−j+1]−a+1)

(1− qµj−µi+ksj−i−a+1)(1− qµj−µi+ksj−i+λ[m−j+1]−a)
,

λ[m−i+1]∏
a=1

1− qµj−µi+ksj−i−a

1− qµj−µi+ksj−i−a+1
=

1− qµj−µisj−i−λ[m−i+1]

1− qµj−µisj−i
,

(6.13)

and

(6.14)

λ[m−i+1]∏
a=1

1− qµj−µi+ksj−i+λ[m−j+1]−a+1

1− qµj−µi+ksj−i+λ[m−j+1]−a =
1− qµj−µi+ksj−i+λ[m−j+1]

1− qµj−µi+ksj−i+λ[m−j+1]−λ[m−i+1]
.

So, equations (6.12), (6.13), and (6.14) give

♦ =
∏

1≤i<j≤m

µi−µj−1∏
k=0

(1− qµj−µi+ksj−i−λ[m−i+1])(1− qµj−µi+ksj−i+λ[m−j+1])

(1− qµj−µi+ksj−i)(1− qµj−µi+ksj−i+λ[m−j+1]−λ[m−i+1])
.
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Note that, by eq. (6.11), we have

♦
S(ζroot(T ))

=
∏

1≤i<j≤m

µi−µj−1∏
k=1

(1− qµj−µi+ksj−i−λ[m−i+1])(1− qµj−µi+ksj−i+λ[m−j+1])

(1− qµj−µi+ksj−i)(1− qµj−µi+ksj−i+λ[m−j+1]−λ[m−i+1])

=
∏

1≤i<j≤m

(qsi−j+λ[m−i+1]; q)µi−µj−1(qsi−j−λ[m−j+1]; q)µi−µj−1

(qsi−j+λ[m−i+1]−λ[m−j+1], q)µi−µj−1(qsi−j , q)µi−µj−1
.

Furthermore,

�(ζsink(T )) =
m∏
i=1

λ[m−i+1]∏
j=1

(qsj−m+i−1; q)µi .

Hence,

(6.15) 〈P ∗ζroot(T )
, Pζroot(T )

〉 = 〈T∗,T〉
m∏
i=1

λ[m−i+1]∏
j=1

(qsj−m+i−1; q)µi

×
∏

1≤i<j≤m

(qsi−j+λ[m−i+1]; q)µi−µj−1(qsi−j−λ[m−j+1]; q)µi−µj−1

(qsi−j+λ[m−i+1]−λ[m−j+1], q)µi−µj−1(qsi−j, q)µi−µj−1

.

We find also

bζsink(T )
=

∏
1≤i<j≤m

λ[m−i+1]∏
a=1

1− qµj−µisj−i+1−a

1− qµj−µisλ[m−j+1]−i+j+1−a .

Now we specialize µ = m− i. The tableau T then becomes

T =

m− 1 . . . m− 1
...

...
1 . . . . . . 1
0 . . . . . . . . . 0

.

For convenience, consider the normalization

M̃T := b−1
ζsink(T )

MT .

Furthermore, we set ∇λ := φT (s)
φN (s)

〈M̃∗T ,M̃T 〉
〈T∗,T〉 . So, we have

∇λ =
(
b−1

sink(T )

)∗ 〈P ∗ζroot(T )
, Pζroot(T )

〈T∗,T〉
〉.
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From equality (6.15), we obtain

(6.16) ∇λ =
m∏
i=1

λ[m−i+1]∏
j=1

(qsj−m+i−1; q)i−1

×
∏

1≤i<j≤m

(qsi−j+λ[m−i+1]; q)j−i−1(qsi−j−λ[m−j+1]; q)j−i−1

(qsi−j+λ[m−i+1]−λ[m−j+1], q)j−i−1(qsi−j, q)j−i−1

×
λ[m−i+1]∏
a=1

1− qj−isi−j+a−λ[m−j+1]−1

1− qj−isi−j+a−1
.

Note that this formula remains valid when λ[m] = 0:

∇[λ[1],...,λ[m−1],0] := ∇[λ[1],...,λ[m−1]].

Let λ′ = [λ[1], λ[2], . . . , λ[m − 1], λ[m] − 1] be the partition obtained from λ by
subtracting 1 from its last part. We denote by T ′ and T′ the associated tableaux.

Example 6.19. For instance, if λ = [6, 3, 2] then

T =
2 2
1 1 1
0 0 0 0 0 0

and T =
2 1
5 4 3
11 10 9 8 7 6

.

In this case λ′ = [6, 3, 1] and

T =
2
1 1 1
0 0 0 0 0 0

and T =
1
4 3 2
10 9 8 7 6 5

One has

∇λ

∇λ′
= (qsλ[m]−m; q)m−1(6.17)

×
m∏
j=2

[
(qs1−j+λ[m]; q)j−2(qsλ[m]−λ[m−j+1]−j; q)j−2

(qsλ[m]−j; q)j−2(qs1−j+λ[m]−λ[m−j+1]; q)j−2

× (1− qj−1sλ[m]−λ[m−j+1]−j)

(1− qj−1sλ[m]−j)

]
= (qsλ[m]−m; q)m−1

×
m∏
j=2

[
(qsλ[m]−j+1; q)j−2(qsλ[m]−λ[m−j+1]−j; q)j−1

(qsλ[m]−j; q)j−1(qs1−j+λ[m]−λ[m−j+1]; q)j−2

]
.

Observing that
m∏
j=2

(qsλ[m]−j+1; q)j−2

(qsλ[m]−j; q)j−1

=
1

(qsλ[m]−m; q)m−1

,
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we see that eq. (6.17) gives

∇λ

∇λ′
=

m∏
j=2

(qsλ[m]−λ[m−j+1]−j; q)j−1

(qs1−j+λ[m]−λ[m−j+1]; q)j−2

(6.18)

=
m−1∏
i=1

(qsλ[m]−λ[i]+i−m−1; q)m−i
(qsλ[m]−λ[i]+i−m; q)m−i−1

.

As usual, we define the arm, leg, and hook lengths of a node (x, y) ∈ λ by

Aλ[x, y] = λ[y]− x, bλ[x, y] = λ[x]− y and 2λ[x, y] =Aλ[x, y] +bλ[x, y] + 1,

where λ is the conjugate of λ.

Remark 6.20. Note that we use French notation for Ferrers diagrams. For instance, the
Ferrers diagram λ = [4, 2, 1] is

3 �
2 � �
1 � � � �
y/x 1 2 3 4

The coordinates of the node × in the diagram

�
� �
� × � �

are [2, 1]. We have

Aλ[2, 1] = λ[2]− 2 = 2, bλ[2, 1] = λ[1]− 1 = 1 and 2λ[2, 1] = 4.

Graphically, the values ofAλ[2, 1] (respectively of bλ[2, 1], or of 2λ[2, 1]) are ob-

tained by counting the numbers ofA (respectively ofb, or of symbols {A, b, ×})
in the following diagram:

�

� b
� × A A

Let

Hλ :=

`(λ)−1∏
y=1

λ[i]∏
x=1

(qs−2λ[x,y]; q)
bλ[x,y]

.
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The changes from Hλ′ to Hλ come from the node {(λ[m], y) : 1 ≤ i ≤ m − 1}; each
hook-length and each leg-length increases by 1, thus

(6.19)
Hλ

Hλ′
=

m−1∏
i=1

(sλ[m]−λ[i]+i−m−1; q)m−i
(qsλ[m]−λ[i]+i−m; q)m−i−1

.

Hence,

(6.20)
∇λ

∇λ′
=
Hλ

Hλ′
.

Using eq. (6.20) we obtain

(6.21) Hλ = ∇λ.

It remains to compute 〈T∗,T〉. We start from

〈T∗,T〉 =
∏

1≤i<j≤N
CTT[i]−CTT[j]≤−2

(1− sCTT[i]−CTT[j]−1)(1− sCTT[i]−CTT[j]+1)

(1− sCTT[i]−CTT[j])2
,

and we analyze this product in terms of nodes:

(6.22) 〈T∗,T〉 =
∏

(x,y)∈λ

∏
1≤t≤λ[x]−y,1≤z≤λ[y]

(x−y−t)−(z−t)≤−2

(1− s(x−y−t)−(z−t)+1)(1− s(x−y−t)−(z−t)+1)

(1− s(x−y−t)−(z−t))2
.

Indeed, consider the set Iλ of the pairs [(x, y), (z, t)] of nodes verifying T[x, y] < T[z, t]
and (x− y) ≤ z − t− 2. This set splits into N disjoint (possibly empty) sets:

E(x,y) := {[(x, y + t), (z, y)] : 1 ≤ t ≤ λ[x]− y,
1 ≤ z ≤ λ[y], (x− y − t)− (z − t) ≤ −2}.

Example 6.21. Consider the partition λ = [3, 2]. In this case,

T =
2 1
5 4 3

with contents
−1 0
0 1 2

.

Consequently,

Iλ = {[(2, 2), (3, 1)], [(1, 2), (3, 1)], [(1, 2), (2, 1)]},
E(1,1) = {[(1, 2), (2, 1)], [(1, 2), (3, 1)]},
E(2,1) = {[(2, 2), (3, 1)]}

and

E(3,1) = E(1,2) = E(2,2) = ∅.
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Hence,

〈T∗,T〉 =
∏

[(x,y),(z,t)]∈Iλ

(1− sx−y−z+t−1)(1− sx−y−z+t+1)

(1− sx−y−z+t)2

=
∏

(x,y)∈λ

∏
[(z1,t1),(z2,t2)]∈E(x,y)

(1− sz1−t1+t2−z2−1)(1− sz1−t1+t2−z2+1)

(1− sz1−t1+t2−z2)2
,

and we arrive at (6.22).
Let us compute the products

E(x,y) :=
∏

[(z1,t1),(z2,t2)]∈E(x,y)

(1− sz1−t1+t2−z2−1)(1− sz1−t1+t2−z2+1)

(1− sz1−t1+t2−z2)2
.

Observe that, if [(x, y + t), (z, y)] ∈ E(x,y), then t and z have bounds 1 ≤ z ≤ λ[y] and

1 ≤ t ≤ λ[x]− y, z + t− x− 2 ≥ 0. Hence,

E(x,y) :=

λ[x]−y∏
t=1

λ[y]∏
z=max{1,x+2−t}

(1− sx−t−z+1)(1− sx−t−z−1)

(1− sx−t−z)2
.

By telescoping, we find

(6.23) E(x,y) =

λ[x]−y∏
t=1

(1− smax{1,x+2−t}−x+t−1)(1− sλ[y]−x+t+1)

(1− smax{1,x+2−t}−x+t)(1− sλ[y]−x+t)
.

We also find

(6.24)

λ[x]−y∏
t=1

(1− sλ[y]−x+t+1)

(1− sλ[y]−x+t)
=

1− sλ[y]−x+λ[x]−y+1

1− sλ[y]−x+1
=

1− s2λ[x,y]

1− sAλ[x,y]

.

But, if λ[x]− y ≤ x, then max{1, x+ 2− t} = x+ 2− t, for 1 ≤ t ≤ λ[x]− y, and

(6.25)

λ[x]−y∏
t=1

(1− smax{1,x+2−t}−x+t−1)

(1− smax{1,y+2−t}−x+t)
=

(
1− s
1− s2

)λ[x]−y

.

If λ[x]− y > x, then we use telescoping to show that

(6.26)

λ[x]−y∏
t=1

(1− smax{1,x+2−t}−x+t−1)

(1− smax{1,y+2−t}−x+t)
=

(
1− s
1− s2

)x
1− s

1− sλ[x]−a−b+1
.

Eqs. (6.25) and (6.26) give
(6.27)

λ[x]−y∏
t=1

(1− smax{1,x+2−t}−x+t−1)

(1− smax{1,y+2−t}−x+t)
=

(
1− s
1− s2

)min

x,bλ[x,y]

 1− s

1− s
max

1,bλ[x,y]−x+1


.
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Hence, by (6.24) and (6.27), we obtain
(6.28)

E(x,y) =

(
1− s
1− s2

)min

x,bλ[x,y]

 (1− s)
(

1− s2λ[x,y]

)
1− s

max

1,bλ[x,y]−x+1



1− sAλ[x,y]


.

Finally, eqs. (6.21), (6.22), and (6.28) lead to the following result.

Theorem 6.22. We have

〈M̃∗
T , M̃T 〉 =

∏
(x,y)∈λ

( 1− s
1− s2

)min

x,bλ[x,y]



×
(1− s)(−s)2λ[x,y]

(
s−2λ[x,y]; q

)
bλ[x,y]+11− s

max

1,bλ[x,y]−x+1



1− sAλ[x,y]




.

For a rational expression f (s) let ιf (s) = f (s−1). Here are some immediate conse-
quences:

ιν (T) = ν (T) ,

CTT (i) = −CTT (i) , 1 ≤ i ≤ N,

ζv,T = qv[i]sCTT(i) = qv[i]s−CTT(i) = ιζv,T.

If T1,T2 ∈ Tabλ then

ν (T1)

ν (T2)
=
ν
(
T2

)
ν
(
T1

) .
If ρq (m,n) =

(qsn−1; q)m (qsn+1; q)m
(qsn; q)2

m

then ιρq (m,n) = ρq (m,−n). Using this in the

formula for
〈
P ∗v,T, Pv,T

〉
, we obtain

ι

(〈
P ∗v,T, Pv,T

〉
ν (T)

)
=

〈
P ∗
v,T, Pv,T

〉
ν
(
T
) .

Now suppose that λ is a partition of N , and T, T are the tableaux corresponding to the
minimal antisymmetric polynomial.
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Example 6.23. If λ = (3, 2), then

T =
0 1
0 1 2

, T =
4 2
5 3 1

.

As for symmetric polynomials, we set

M̃a
T =

(
baζ
)−1

Ma
T .

Our formulae show that

ι


〈
M̃a∗

T , M̃
a
T

〉
ν (T)

 =

〈
M̃∗

T
, M̃T

〉
ν
(
T
)

=
φN (s)∏`(λ)

i=1 φλ[i] (s)

∏
(i,j)∈λ

(
qs−2λ[i,j]; q

)
bλ[i,j]

=
φN (s)∏`(λ)

i=1 φλ[i] (s)

∏
(j,i)∈λ

(
qs−2λ[j,i]; q

)
Aλ[j,i]

.

This leads to the following theorem.

Theorem 6.24. We have〈
M̃a∗

T , M̃
a
T

〉
= ν (T)

φN (s−1)∏λ[1]
i=1 φλ′[i] (s−1)

∏
(i,j)∈λ

(
qs2λ[i,j]; q

)
Aλ[i,j]

.

Example 6.25. For λ = (3, 2), we have〈
M̃a∗

T , M̃
a
T

〉
=

φ5 (s−1)

φ2 (s−1)2

(
qs4; q

)
2

(
qs3; q

)
1

(
qs2; q

)
1

= s−8 φ5 (s)

φ2 (s)2

(
1− qs4

) (
1− q2s4

) (
1− qs3

) (
1− qs2

)
.

Note that ν(T) does not always equal 1. For instance, we have

ν


6
7
8 4 2
9 5 3 1

 =
1 + s2

(1 + s)2
.

7. Conclusion

Throughout this paper, we have constructed and analyzed a Macdonald-type struc-
ture for vector valued polynomials, that is, polynomials whose coefficients belong to
an irreducible module of the Hecke algebra. The “classical” Macdonald polynomials
are recovered for the trivial representation and then correspond to the shapes λ = (n),
n ∈ N. Thanks to the Yang–Baxter graph we have found algorithms and some explicit
formulae for computing the Macdonald polynomials, their (anti)symmetrizations, their
scalar products, etc., and we have given graphical interpretations of these properties.
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We remark that almost everything works as for vector valued Jack polynomials [6],
and that the Jack polynomials are recovered as a limit case of Macdonald polynomials,
as expected (setting q = sα and sending s to 1).

It remains to consider some constructions that could illuminate this theory. For
instance, the shifted Macdonald polynomials could be defined by slightly changing the
raising operators. For the trivial representation, shifted Macdonald polynomials are
easier to manipulate than the homogeneous ones since they can be defined by vanishing
properties [10, 11]. We have seen in [6], that this is no longer the case for shifted vector
valued Jack polynomials for a generic irreducible module. But this research is not yet
complete, and we speculate that the vanishing properties arise when considering some
polynomial representations of the Hecke algebra.

Comparing the results in [5] and [8], we find similarities between the concepts of sin-
gular non-symmetric Macdonald polynomials and highest weight symmetric Macdonald
polynomials. We hope that this similarity extends to vector valued polynomials. In
this context, minimal symmetric polynomials should play a special role and, perhaps,
provide applications to the study of the fractional quantum Hall effect. The fractional
quantum Hall effect is a state of matter with elusive physical properties whose theoreti-
cal study was pioneered by Laughlin based on wave functions describing the many-body
state of the interacting electrons. Some of these wave functions (called Read–Rezayi
states; see [13]) are multivariate symmetric polynomials with special vanishing prop-
erties, and it was shown, combining minimality of the polynomials for the vanishing
properties and results of [7], that they are Jack polynomials for a specialization of the
parameter α (see e.g. [2]). It would be interesting to know if we can identify other
relevant wave functions from vector valued Jack or Macdonald polynomials.
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Aλ[x, y] arm, 58

�(qnsm) = (q, qsm)n, 51
�(ζ), 51
bζ , 40

χ(i, j) = 1 if j < i and χ(i, j) = 0 if j ≥ i, 51
Ci a creation operator, 7
COLT the vector of columns of T, 4
CTT the vector of contents of T, 4

δxi := T xi − s · sxi , 12
Di a Dunkl operator, 3
♦, 55
∂i divided difference, 2

Ea(ζ), 49
E(ζ), 49

FN = 1− ξN , 16

Gλ Yang–Baxter graph associated to λ, 20
GT a subgraph of Gλ, 22

HN (q, s) double affine Hecke algebra, 3
Hλ the graph obtained from Gλ by removing

the affine edges, all the falls, and the
vertex ∅, 31

2λ[x, y] hook length, 58
HT a connected component of Hλ, 31

λ conjugate of λ, 46
〈 , 〉 bilinear form, 48

bλ[x, y] leg, 58

C : xv,T C xv
′,T′ if and only if v C v′ , 28

Li Murphy elements, 4

Mλ the space of vector valued polynomials for
the isotype λ , 12

MT symmetric Macdonald polynomial, 41
Ma
T antisymmetric Macdonald polynomial, 42

∇λ, 56
ν (T), 47

Φq := T−11 · · ·T−1N−1xN , 3

φi := si−NTiTi+1 · · ·TN−1TN−1 · · ·Ti, 4
Φ = T−11 · · ·T

−1
N−1xN , 22

φ̃i = sN−iφi, 8
φT (s) Poincaré polynomial of ST , 44
πi isobaric divided difference, 2

πi, 2
PP Macdonald polynomial associated to a

path in Gλ, 23
≺ dominance order on partitions, 18
Pv,T Macdonald polynomial associated to a

pair (v,T), 25
Pζ Macdonald polynomial associated to the

spectral vector ζ, 25

(a; q) = (1− a)(1− qa) · · · (1− qn−1a), 51

rv rank function of v, 9
R(ζ), 50

ρ(a, b) = (a−s−1b)(a−sb)
(a−b)2 , 51

root(T ) root of HT , 31
ROWT the vector of rows of T, 4
Rv a Hecke element associated to a

multi-index v, 9

S := T1 · · ·TN−1, 5
S(ζ), 50
si, 12
sink(T ) sink of HT , 31
sxi , 12
ST , 43
ST, 42

T an RST, 4
τi : f(x1, . . . , xN )→

f(x1, . . . , xi−1, qxi, xi+1, . . . , xN ), 2
θ := s1 · · · sN−1, 5
Ti generator of the Hecke algebra, 2
Ti, 12
T xi , 12
4(ζ), 51

T̃σ a Hecke element associated to a
permutation, 8

T (T, v) the filling obtained by replacing each i
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Tu a Hecke element associated to a
multi-index u, 5

E dominance order on vectors, 18

Vλ the vector space of tableaux, 4
v+ the unique decreasing partition whose

entries are obtained by permuting those
of v, 17

vR the unique increasing partition whose
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of v, 17
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VT,ζ,v,σ := (T, v), 22

w affine operation in the double affine Hecke
algebra, 2

wi, 12
wx, 12

ξi a Cherednik element, 3
ξi, 12
ξxi , 12
xv,T := xvTRv, 28

ζv,T spectral vector associated to (v,T), 22
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Appendix A. Some useful formulae for the affine double Hecke
algebra

A.1. Hecke algebra of type AN−1. The generators of HN (s) are T1, T2, . . . , TN−1

with sn 6= 1 for 1 ≤ n ≤ N . The generators satisfy the relations:

(Ti − s) (Ti + 1) = 0, T 2
i = (s− 1)Ti + s,

T−1
i =

1

s
(Ti − s+ 1) ,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i < N,

TiTj = TjTi, |i− j| > 1.

Let S = T1T2 · · ·TN−1. Then TiS = STi−1 for 1 < i ≤ N − 1 and TjS
N = SNTj for

1 ≤ j < N . Indeed,

TiS = T1 · · ·Ti−2TiTi−1TiTi+1 · · ·TN−1

= T1 · · ·Ti−2Ti−1TiTi−1Ti+1 · · ·TN−1

= STi−1,

and

TjS
N = Sj−1T1S

N−j+1

= Sj−1 ((s− 1)T1 + s) (T2 · · ·TN−1S)SN−j−1

= (s− 1)SN + sSj−1 (ST1 · · ·TN−2)SN−j−1,

SNTj = Sj+1TN−1S
N−j−1

= SjT1T2 · · ·TN−2 ((s− 1)TN−1 + s)SN−j−1

= (s− 1)SN + sSjT1 · · ·TN−2S
N−j−1.

A consequence of the above derivation is

T1S
2 = S2TN−1.

The Murphy elements are φi = si−NTiTi+1 · · ·TN−1TN−1 · · ·Ti. Let φ
′
i = sN−iφi and

Si = TiTi+1 · · ·TN−1 for 1 ≤ i < N . Then φ
′
iφ
′
i+1 · · ·φ

′
N−1 = SN+1−i

i . Indeed, for
i = N − 1, both sides equal T 2

N−1. Note that SiTj = Tj+1Si for i ≤ j < N . Now
suppose the statement is true for some i > 1. We compute

SN+1−i
i−1 = SN−ii−1 Ti−1Si = TN−1S

N−i
i−1 Si = TN−1S

N−i−1
i−1 Ti−1S

2
i

= TN−1TN−2S
N−i−1
i−1 S2

i = TN−1TN−2S
N−i−2
i−1 Ti−1S

3
i

= · · · = TN−1TN−2 · · ·Ti−1S
N−i+1
i ,

multiply both sides on the left by Si−1 = Ti−1 · · ·TN−1, and use the inductive hypothesis,
to obtain

SN+2−i
i−1 = Ti−1 · · ·TN−1TN−1 · · ·Ti−1S

N+1−i
i

= φ
′

i−1S
N+1−i
i = φ

′

i−1φ
′

i · · ·φ
′

N−1.

Thus, SN = sN(N−1)/2φ1φ2 · · ·φN−1.
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Adjoin an invertible operator w with relations

wTi = Ti+1w, 1 ≤ i < N − 1,

w2TN−1 = T1w
2,

wNTi = Tiw
N , 1 ≤ i < N.

A.2. Action on polynomials. Let P = K [x1, . . . , xN ], where K is an extension field
of Q (s, q). On P there is a representation of HN (s),

p (x)Ti = (1− s) p (x)− p (xsi)

xi − xi+1

+ sp (xsi) , 1 ≤ i < N,

where xsi = (x1, . . . , xi+1, xi, . . .) (si is the transposition (i, i+ 1)),

p (x)w = p (qxN , x1, x2, . . . , xN−1) .

Denote the multiplication operator p (x) 7→ xip (x) by xi, 1 ≤ i ≤ N . Then we have

xiTj = Tjxi, j 6= i, i− 1,

xiTi = sT−1
i xi+1, xi = sT−1

i xi+1T
−1
i ,

xi+1w = wxi, 1 ≤ i < N,

x1w = qwxN .

A.3. q-Dunkl operators. There are pairwise commuting operators D1, . . . , DN (dual
to the multiplication operators) with relations

DiTj = TjDi, j 6= i, i− 1,

sT−1
i Di = Di+1Ti, Di =

1

s
TiDi+1Ti,

Di+1w = wDi, 1 ≤ i < N,

qD1w = wDN .

They act on polynomials by

p (x)DN =
(
p (x)− sN−1p (x)T−1

N−1T
−1
N−2 · · ·T

−1
1 w

)
x−1
N ,

Di =
1

s
TiDi+1Ti = w−1Di+1w, 1 ≤ i < N.

The Cherednik operators satisfy

ξN = s1−N (1−DNxN) ,

ξi =
1

s
Tiξi+1Ti, 1 ≤ i < N.


