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In 1985 Hibi introduced a class of algebras which nowadays are
called Hibi rings. They are semigroup rings attached to finite
posets, and may be viewed as natural generalizations of
polynomial rings.

Indeed, a polynomial ring in n variables over a field K is just the
Hibi ring of the poset [n − 1] = {1,2, . . . ,n − 1}.

Let P = {p1, . . . ,pn} be a finite poset. A poset ideal I of P is a
subset of P which satisfies the following condition: for every
p ∈ I, and q ∈ P with q ≤ p, it follows q ∈ I.

Let I(P) be the set of the poset ideals of P. Then I(P) is a
sublattice of the power set of P, and hence it is a distributive
lattice.
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Let K be a field. Then the Hibi ring over K attached to P is the
toric ring K [I(P)] ⊂ K [x1, . . . , xn, y1, . . . , yn] generated by the
set of monomials

{uI : I ∈ I(P)}

where uI =
∏

pi∈I xi
∏

pi 6∈I yi .

Let T = K [{tI : tI ∈ I(P)}] be the polynomial ring in the
variables tI over K , and ϕ T → K [I(P)] the K -algebra
homomorphism with tI 7→ uI.

One fundamental result concerning Hibi rings is that the toric
ideal LP = Kerϕ has a reduced Gröbner basis consisting of the
so-called Hibi relations:

tI tJ − tI∩J tI∪J with I 6⊆ J and J 6⊆ I.
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domain of dimension 1 + |P|, and that it is Gorenstein if and
only if the attached poset P is graded, that is, all maximal
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Hibi showed that any Hibi ring is a normal Cohen–Macaulay
domain of dimension 1 + |P|, and that it is Gorenstein if and
only if the attached poset P is graded, that is, all maximal
chains of P have the same cardinality.

More generally, for any finite lattice L, not necessarily
distributive, one may consider the K algebra K [L] with
generators yα, α ∈ L, and relations yαyβ = yα∧βyα∨β where ∧
and ∨ denote meet and join in L. Hibi showed that K [L] is a
domain if and only if L is distributive, in other words, if L is an
ideal lattice of a poset.
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a matrix of indeterminates.

We denote by K [X ] the polynomial ring over K with the
indeterminates xij , and by A the K -subalgebra of K [X ]
generated by all maximal minors of X .

The K-algebra A ⊂ K [X ] is the coordinate ring of the
Grassmannian of the m-dimensional vector K -subspaces of K n.

Let < be the lexicographic order on K [X ] induced by

x11 > x12 > · · · > x1n > x21 > x22 > · · · > xm1 > xm2 > · · · > xmn.

We denote by δ = [a1,a2, . . . ,am] the maximal minor of X with
columns a1 < a2 < · · · < am. Then

in<(δ) = x1,a1x2,a2 · · · xm,am

is the ‘diagonal’ of δ.
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Then the K -algebra in<(A) generated by all monomials in<(f )
with f ∈ A is called the initial algebra of A with respect to <.

In general in<(A) is not finitely generated. A subset S ⊂ A is
called a Sagbi bases of A with respect to <, if the elements
f ∈ S generate A over K . This concept has been introduced by
Robbiano and Sweedler and independently by Kapur and
Madlener.

Theorem The maximal minors of X form a Sagbi bases of the
Grassmannian algebra A.

What is the use of this theorem?
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Theorem in<(A) is isomorphic to the Hibi ring K [L] of the
lattice L.

Indeed, let T be the polynomial ring over K in the variables tδ
with δ ∈ L, and let ψ : T → in<(A) be the K -algebra
homomorphism with ψ(tδ) = in<(δ). One shows that the Hibi
relations

tδ1 tδ2 − tδ1∨δ2 tδ1∧δ2 , δ1, δ1 ∈ L

generate Kerψ.

Corollary The coordinate ring A of the Grassmannian of
m-dimensional K -subspaces of K n is a Gorenstein ring of
dimension m(n − m) + 1.
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is called the Hibi ideal of P.

Theorem (a) HP has a linear resolution.
(b) HP =

⋂
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Application: Let G be a finite simple graph on the vertex set [n].
One defines the edge ideal IG of G as the monomial ideal in
K [x1, . . . , xn] with set of generators {xi xj : {i , j} ∈ E(G)}.

For which graphs is IG Cohen–Macaulay?



Theorem (H-Hibi) Let G be a bipartite graph with vertex
partition V ∪ V ′. Then the following conditions are equivalent:

(a) G is a Cohen–Macaulay graph;
(b) |V | = |V ′| and the vertices V = {x1, . . . , xn} and

V ′ = {y1, . . . , yn} can be labelled such that:
(i) {xi , yi} are edges for i = 1, . . . ,n;
(ii) if {xi , yj} is an edge, then i ≤ j;
(iii) if {xi , yj} and {xj , yk}are edges, then {xi , yk} is an edge.
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I =
r⋂

j=1

PFj
,

where for a subset F ⊂ [n] we set PF = ({xi : i ∈ F}).

The ideal
I∨ = (xF1

, . . . , xFr )

is called the Alexander dual of I. Here for a subset F ⊂ [n] we
set xF =

∏
i∈F xi .

Example:
I = (x1x4, x1x5, x2x5, x3x5) = (x1, x2, x3) ∩ (x1, x5) ∩ (x4, x5).

Therefore I∨ = (x1x2x3, x1x5, x4x5).
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Theorem (Eagon-Reiner) Let I ⊂ S be a squarefree monomial
ideal. Then I∨ is Cohen-Macaulay, if and only if I has a linear
resolution.

Since HP =
⋂

p≤q(xp, yq) and has a linear resolution, the
Alexander dual H∨

P is Cohen–Macaulay by the Eagon–Reiner
Theorem.

But H∨
P = ({xpyq : p ≤ q}) is the edge ideal of a bipartite graph

satisfying the conditions (i), (ii) and (ii). This proves one
direction of the classification theorem of Cohen-Macaulay
bipartite graphs.



Generalized Hibi ideals and Hibi rings
Let P be a finite poset and I(P) the set of poset ideals of P. An
r -multichain of I(P) is a chain of poset ideals of length r ,

I : I1 ⊆ I2 ⊆ · · · ⊆ Ir = P.



Generalized Hibi ideals and Hibi rings
Let P be a finite poset and I(P) the set of poset ideals of P. An
r -multichain of I(P) is a chain of poset ideals of length r ,

I : I1 ⊆ I2 ⊆ · · · ⊆ Ir = P.

We define a partial order on the set Ir (P) of all r -multichains of
I(P) by setting I ≤ I ′ if Ik ⊆ I ′k for k = 1, . . . , r .



Generalized Hibi ideals and Hibi rings
Let P be a finite poset and I(P) the set of poset ideals of P. An
r -multichain of I(P) is a chain of poset ideals of length r ,

I : I1 ⊆ I2 ⊆ · · · ⊆ Ir = P.

We define a partial order on the set Ir (P) of all r -multichains of
I(P) by setting I ≤ I ′ if Ik ⊆ I ′k for k = 1, . . . , r .

The partially ordered set Ir (P) is a distributive lattice, if we
define the meet of I : I1 ⊆ · · · ⊆ Ir and I ′ : I ′1 ⊆ · · · ⊆ I ′r as
I ∩ I ′ where

(I ∩ I ′)k = Ik ∩ I ′k

for k = 1, . . . , r , and the join as I ∪ I ′ where

(I ∪ I ′)k = Ik ∪ I ′k

for k = 1, . . . , r .
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in the polynomial ring S = K [{xij : 1 ≤ i ≤ r ,1 ≤ j ≤ n}] in rn
indeterminates which is defined as

uI = x1J1
x2J2

· · · xrJr ,

where xkJk
=

∏
pℓ∈Jk

xkℓ and Jk = Ik \ Ik−1 for k = 1, . . . , r .

We denote by Hr ,P the monomial ideal in S generated by these
monomials and by Rr (P) the K -subalgebra generated by the
monomial generators of Hr ,P .

For r = 2 the ideal Hr ,P is just the classical Hibi ideal, and
Rr (P) the Hibi ring of the ideal lattice I(P) of P.
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Corollary Let P be a finite poset. The following conditions are
equivalent:

◮ Rr (P) is Gorenstein.
◮ R2(P) is Gorenstein.
◮ P is graded.

Proof: One shows that Rr (P) ∼= R2(P × [r − 1]).

Finally we consider the generalized Hibi ideal Hr ,P and its
Alexander dual.
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Let C ⊂ P a multichain of length r , i.e., C = {p1,p2, . . . ,pr}
with p1 ≤ p2 ≤ · · · ≤ pr . Let C be the set of all multichains of
length r of P.

We define the monomial uC =
∏r

i=1 xi ,pi
and let

Ir ,P = ({uC : C ∈ C})

.

The ideals Ir ,P may be interpreted as facet ideals of a
completely balanced simplicial complexes, as introduced by
Stanley.

Theorem (a) Hr ,P has a linear resolution.
(b) H∨

r ,P = Ir ,P .

Corollary The facet ideal of a completely balanced simplicial
complex arising from a poset is Cohen–Macaulay.
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