Generalized hook lengths in symbols and partitions

Christine Bessenrodt

Leibniz Universität Hannover

SLC 66 at Ellwangen
March 9, 2011

A new view of the

Hook formula

- inspired by recent work of Malle and Navarro on the characterization of nilpotent p-blocks of p-modular group algebras by the degrees of their ordinary characters.

Main aspect: for a given d, separation of hooks of a given partition into two multisets, according to its d-core and a suitable d-quotient.
B.-Gramain-Olsson: Generalized hook lengths in symbols and partitions, arXiv 1101.5067

For the symmetric groups and a prime p :
p-blocks $\leftrightarrow p$-core partitions
Degree computation for irreducible characters:
hook formula
But: not adequate for the purpose ...
Malle-Navarro: new degree formula, deduced from a formula for character degrees for classical groups.

The complex irreducible characters of the symmetric group S_{n} are labelled by partitions of n,

$$
\operatorname{lrr}\left(S_{n}\right)=\{[\lambda] \mid \lambda \vdash n\}
$$

The character degrees $[\lambda](1)$ are given by:

Theorem (Hook formula)

Let $\prod \mathcal{H}(\lambda)$ be the product of all hook lengths in $\lambda \vdash n$. Then

$$
[\lambda](1)=\frac{n!}{\prod \mathcal{H}(\lambda)} .
$$

Let $\lambda=(5,4,4,2,2) \vdash 17$.

9	8	5	4	1
7	6	3	2	
6	5	2	1	
3	2			
2	1			

$$
\begin{aligned}
{[\lambda](1) } & =\frac{17!}{9 \cdot 8 \cdot 5 \cdot 4 \cdot 1 \cdot 7 \cdot 6 \cdot 3 \cdot 2 \cdot 6 \cdot 5 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 2 \cdot 1} \\
& =1361360
\end{aligned}
$$

Fix $d \in \mathbb{N}$.
For a partition λ, denote by

$$
\lambda_{(d)} \text { its } d \text {-core, }
$$

obtained by removing as many d-hooks as possible.
The removal may be described by the d-quotient $\lambda^{(d)}$,
a d-tuple of partitions.
Useful tool: β-sets and the d-abacus

A β-set is a finite subset of \mathbb{N}_{0}.
For a β-set $X=\left\{a_{1}, \ldots, a_{s}\right\}_{>}$, the associated partition $p(X)$
has as its parts the positive numbers among

$$
a_{i}-(s-i), i=1, \ldots, s .
$$

For $k \in \mathbb{N}_{0}$,

$$
X^{+k}=\{a+k \mid a \in X\} \cup\{k-1, \ldots, 1,0\}
$$

is the k th shift of X.

A β-set is a finite subset of \mathbb{N}_{0}.
For a β-set $X=\left\{a_{1}, \ldots, a_{s}\right\}_{>}$, the associated partition $p(X)$ has as its parts the positive numbers among

$$
a_{i}-(s-i), i=1, \ldots, s .
$$

For $k \in \mathbb{N}_{0}$,

$$
X^{+k}=\{a+k \mid a \in X\} \cup\{k-1, \ldots, 1,0\}
$$

is the k th shift of X.

- $p(X)=p\left(X^{+k}\right)$, for all $k \in \mathbb{N}_{0}$.
- Any β-set Y with $p(Y)=\lambda$ is called a β-set for λ.
- For any λ, the set of first column hook lengths is a β-set for λ.

Hook removal and the d-abacus

Let X be a β-set.
A d-hook of X is a pair $(a, b) \in \mathbb{N}_{0}^{2}$ with

$$
a \in X, b<a, b \notin X \text { and } a-b=d
$$

Removal of this d-hook from X means: replacing a by b.
(This corresponds to the removal of a d-hook from $\lambda=p(X)$.)
Place the elements of X as beads on an abacus with d runners.
The removal of a d-hook corresponds to moving a bead to an empty space one level up. Easy computation of d-core!

Example

$$
X=\{11,8,6,2,0\} \text { is a } \beta \text {-set of } p(X)=\lambda=(7,5,4,1) \vdash 17 .
$$

Fix $d=3$. The 3 -abacus representation for X and the corresponding 3 -core:

$$
\begin{aligned}
& 345 \\
& \begin{array}{lll}
3 & 4 & 5
\end{array} \\
& 6 \quad 7 \quad 8 \\
& 9 \quad 10 \quad 11 \\
& \begin{array}{lll}
9 & 10 & 11
\end{array} \\
& \text { 3-core } C_{3}(X)=\{8,5,3,2,0\} \\
& c_{3}(X)=p\left(C_{3}(X)\right)=p(\{8,5,3,2,0\})=(4,2,1,1)=\lambda_{(3)}
\end{aligned}
$$

Theorem (Malle-Navarro)

Let p be a prime, $\lambda \vdash n$. Let $\mu \vdash r$ be the p-core of λ, S a symbol associated to the p-quotient $\lambda^{(p)}, b_{i}$ the number of beads on the $i^{t h}$ runner of the p-abacus for $\mu, c_{i}=p b_{i}+i-1$. Then

$$
[\lambda](1)=\frac{n!}{r!} \frac{1}{\prod_{h \text { hook of } S}\left|p \ell(h)+c_{i(h)}-c_{j(h)}\right|}[\mu](1)
$$

Proof: by specialization at $q=1$ of a formula for character degrees of unipotent characters of general linear groups due to Malle (1995).

Theorem (Malle-Navarro)

Let p be a prime, $\lambda \vdash n$. Let $\mu \vdash r$ be the p-core of λ, S a symbol associated to the p-quotient $\lambda^{(p)}, b_{i}$ the number of beads on the $i^{t h}$ runner of the p-abacus for $\mu, c_{i}=p b_{i}+i-1$. Then

$$
[\lambda](1)=\frac{n!}{r!} \frac{1}{\prod_{h \text { hook of } S}\left|p \ell(h)+c_{i(h)}-c_{j(h)}\right|}[\mu](1)
$$

Proof: by specialization at $q=1$ of a formula for character degrees of unipotent characters of general linear groups due to Malle (1995).

Suspicion: This is the hook formula in disguise.

A d-symbol is a d-tuple of β-sets $S=\left(X_{0}, \ldots, X_{d-1}\right)$.
Let X be a β-set. For $j \in\{0, \ldots, d-1\}$ set

$$
X_{j}^{(d)}=\left\{k \in \mathbb{N}_{0} \mid k d+j \in X\right\}
$$

This gives a bijection

$$
\begin{array}{rlc}
s_{d}:\{\beta \text {-sets }\} & \rightarrow & \{d \text {-symbols }\} \\
X & \mapsto\left(X_{0}^{(d)}, \ldots, X_{d-1}^{(d)}\right)
\end{array}
$$

A hook of $S: \quad(a, b, i, j) \in \mathbb{N}_{0}^{4}$ with $i, j \in\{0, \ldots, d-1\}$, $a \in X_{i}, b \notin X_{j}$, and either $a>b$, or $a=b$ and $i>j$. $H(S)$ denotes the set of all hooks of S.

Remark. There are canonical bijections between the hooks in $X, \lambda=p(X)$ and $S=s_{d}(X)$.

Example

β-set $X=\{11,8,6,2,0\}$ for $p(X)=\lambda=(7,5,4,1) \vdash 17$.
Let $d=3$; 3-abacus representation for X and $S=s_{3}(X)$:

$$
s_{3}: \begin{array}{ccc}
\begin{array}{c}
0 \\
0
\end{array} & 1 & 2 \\
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11
\end{array} \mapsto \begin{array}{lll}
0 & 1 & 2 \\
\hline 0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array} \quad \mapsto \begin{aligned}
& \\
& S=(\{2,0\}, \emptyset,\{3,2,0\})
\end{aligned}
$$

Example: hook $(11,4)$ in $X \leftrightarrow$ hook $(3,1,2,1)$ in S.

A d-symbol $S=\left(X_{0}, \ldots, X_{d-1}\right)$ is called balanced, if

$$
\left|X_{0}\right|=\ldots=\left|X_{d-1}\right| \text { and } 0 \notin X_{i} \text { for some } i .
$$

For any $S=\left(X_{0}, \ldots, X_{d-1}\right)$, its balanced quotient is the unique balanced d-symbol

$$
Q(S)=\left(X_{0}^{\prime}, \ldots, X_{d-1}^{\prime}\right) \text { with } p\left(X_{i}^{\prime}\right)=p\left(X_{i}\right) \text { for all } i .
$$

The core of S is the d-symbol $C(S)$ with i th component

$$
\left\{\left|X_{i}\right|-1, \ldots, 1,0\right\}, i=0, \ldots, d-1
$$

If $X=s_{d}^{-1}(S)$, we define the balanced d-quotient of X

$$
Q_{d}(X)=s_{d}^{-1}(Q(S))
$$

and the d-quotient partition of $\lambda=p(X)$:

$$
q_{d}(X)=p\left(Q_{d}(X)\right) .
$$

Example

Balanced quotient of $S=s_{3}(X)=(\{2,0\}, \emptyset,\{3,2,0\})$:

$$
\begin{gathered}
Q(S)=(\{2,0\},\{1,0\},\{2,1\}) . \\
Q(S): \begin{array}{ccccc}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array} \stackrel{\stackrel{s_{3}^{-1}}{\longleftrightarrow} Q_{3}(X): \begin{array}{ccc}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11
\end{array}}{q_{3}(X)=p\left(Q_{3}(X)\right)=p(\{8,6,5,4,1,0\})=(3,2,2,2)}
\end{gathered}
$$

Note. $\left|q_{3}(X)\right|+\left|c_{3}(X)\right|=9+8=17=|p(X)|$.

Let $S=\left(X_{0}, \ldots, X_{d-1}\right)$ be a d-symbol.
We consider only the hooks between the runners i and j :

$$
\begin{aligned}
H_{i j}(S) & =\{(a, b, i, j) \mid(a, b, i, j) \in H(S)\}, \\
H_{i j\}}(S) & =H_{i j}(S) \cup H_{j i}(S) .
\end{aligned}
$$

For $\ell \geq 0$ we define the ℓ-level section

$$
H_{i j}^{\ell}(S)=\left\{(a, b, i, j) \in H_{i j}(S) \mid a-b=\ell\right\} .
$$

Theorem (Hook correspondence in symbols)

Let S be a d-symbol with balanced quotient $Q(S)=Q$ and core $C(S)=C$.
For all i,j, we have bijective multiset correspondences

$$
H_{\{i j\}}(S) \rightarrow H_{\{i j\}}(Q) \cup H_{\{j\}}(C),
$$

with control on the level sections.
We glue these bijections together to a universal bijection

$$
\omega_{s}: H(S) \rightarrow H(Q) \cup H(C) .
$$

Remark. For $S=\left(X_{0}, \ldots, X_{d-1}\right), \Delta=\left|X_{i}\right|-\left|X_{j}\right|$ is crucial for controlling the correspondence of the level sections.

Theorem. Let S, Q, C be as above, $i \neq j, \Delta=\left|X_{i}\right|-\left|X_{j}\right| \geq 0$.
When $\Delta>0$, we have the following equalities:

- For all $\ell>\Delta:\left|H_{i j}^{\ell}(S)\right|=\left|H_{i j}^{\ell-\Delta}(Q)\right|$.
- For all $\ell>\Delta:\left|H_{j i}^{\ell-\Delta}(S)\right|=\left|H_{j i}^{\ell}(Q)\right|$.
- For all $0<\ell<\Delta:\left|H_{i j}^{\ell}(S)\right|=\left|H_{j i}^{\Delta-\ell}(Q)\right|+\left|H_{i j}^{\ell}(C)\right|$.
- For $\ell=\Delta:\left|H_{i j}^{\wedge}(S)\right|=\left\{\begin{array}{ll}\left|H_{i j}^{0}(Q)\right|=\left|H_{\{i j\}}^{0}(Q)\right| & \text { if } i>j \\ \left|H_{j i}^{0}(Q)\right|=\left|H_{\{i j\}}^{j}(Q)\right| & \text { if } i<j\end{array}\right.$.
- For $\ell=0$:

$$
\left|H_{j i}^{\wedge}(Q)\right|+\left|H_{i j}^{0}(C)\right|=\left\{\begin{array}{l}
\left|H_{i j}^{0}(S)\right|=\left|H_{i j i\}}^{0}(S)\right| \text { if } i>j \\
\left|H_{j i}^{0}(S)\right|=\left|H_{\{i j\}}^{0}(S)\right| \text { if } i<j .
\end{array} .\right.
$$

- $\left|H_{i j}^{\Delta}(S)\right|+\left|H_{i j j}^{0}(S)\right|=\left|H_{j i}^{\Delta}(Q)\right|+\left|H_{\{i j\}}^{0}(Q)\right|+\left|H_{i j}^{0}(C)\right|$.

When $\Delta=0$, we have

- $\left|H_{i j}^{\ell}(S)\right|=\left|H_{i j}^{\ell}(Q)\right|, H_{i j}^{\ell}(C)=\emptyset$, for all $\ell \geq 0$.

- ••••• • • ○○ ○ ... -•••••• $\bullet \bullet \bullet \bullet .$.

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet ० ० ० ० . .$. - •••••• • • •

- ••••• • • ○○○

 - •••••• •• \bullet...
$i>j$

$i>j$

$i>j$

Let $\quad H=\{(a, b, i, j) \mid a \geq b$ and $i>j$ if $a=b\}$.
Consider (generalized) hook length functions $h: H \rightarrow \mathbb{R}$ s.t. the value $h(a, b, i, j)$ depends only on $\ell=a-b, i$ and j.

Let $\quad H=\{(a, b, i, j) \mid a \geq b$ and $i>j$ if $a=b\}$.
Consider (generalized) hook length functions $h: H \rightarrow \mathbb{R}$ s.t. the value $h(a, b, i, j)$ depends only on $\ell=a-b, i$ and j.
Important hook length functions for \boldsymbol{d}-symbols:
A d-hook data tuple is a $(d+1)$-tuple $\delta=\left(c_{0}, c_{1}, \ldots, c_{d-1} ; k\right)$ of real numbers, $k \geq 0$.
We define the δ-length of $(a, b, i, j) \in H$ to be

$$
h^{\delta}(a, b, i, j)=k(a-b)+c_{i}-c_{j}
$$

For any d-symbol S, we denote the multiset of generalized hook lengths by

$$
\mathcal{H}^{\delta}(S)=\left\{h^{\delta}(a, b, i, j) \mid(a, b, i, j) \in H(S)\right\}
$$

Important special choices for applications:

- $\delta=(0,1, \ldots, d-1 ; d)$ the partition d-hook data tuple. Then the δ-length of a hook of S equals the usual hook length $a-b$ of the corresponding hook (a, b) of X.
- $\delta=(0,0, \ldots, 0 ; 1)$ the minimal d-hook data tuple.

Then the δ-length of long hooks $(a>b)$ in S coincides with the hook length in symbols as defined by Malle, and the short hooks $(a=b)$ have δ-length 0 .

Theorem (The Meta-Theorem)

Let $S=\left(X_{0}, X_{1}, \ldots, X_{d-1}\right)$ be a d-symbol, $x_{i}=\left|X_{i}\right|$. Let $Q=Q(S)$ be its balanced quotient, $C=C(S)$ its core.
Let $\delta=\left(c_{0}, c_{1}, \ldots, c_{d-1} ; k\right)$ be a d-hook data tuple.
Then with $\delta_{S}=\left(c_{0}+x_{0} k, c_{1}+x_{1} k, \ldots, c_{d-1}+x_{d-1} k ; k\right)$, we have the multiset equality

$$
\mathcal{H}^{\delta}(S)=\overline{\mathcal{H}}^{\delta_{S}}(Q) \cup \mathcal{H}^{\delta}(C)
$$

where $\overline{\mathcal{H}}^{\delta_{S}}(Q)$ is the multiset of all modified hook lengths $\bar{h}^{\delta}(z), z \in H(Q)$.

Modified hook lengths

We assume that i, j are such that $\Delta=x_{i}-x_{j} \geq 0$.
Let $\quad H_{i j}^{\ell}=\{(a, b, i, j) \in H \mid a-b=\ell\}$.
Then for $z \in H_{\{i j\}}$ we define

$$
\bar{h}^{\delta_{s}}(z)=\left\{\begin{aligned}
h^{\delta_{s}}(z) & \text { if } z \in H_{i j} \cup H_{j i}^{>\Delta}, \text { or } z \in H_{j i}^{\Delta} \text { if } i<j \\
-h^{\delta_{s}}(z) & \text { otherwise }
\end{aligned}\right.
$$

Crucial property w.r.t. the universal bijection ω_{S} :

$$
h^{\delta}(z)=\left\{\begin{array}{lll}
h^{\delta}\left(\omega_{S}(z)\right) & \text { if } & \omega_{S}(z) \in H(C) \\
\bar{h}^{\delta_{S}}\left(\omega_{S}(z)\right) & \text { if } & \omega_{S}(z) \in H(Q)
\end{array}\right.
$$

Theorem

Let $d \in \mathbb{N}, \lambda$ a partition, X a β-set for $\lambda, x_{i}=\left|X_{i}^{(d)}\right|$. Let $q_{d}(X)$ be the d-quotient partition of X.
For $z \in H\left(q_{d}(X)\right)$, let $\bar{h}(z)=h(z)+\left(x_{i}-x_{j}\right) d$,
if z has hand and foot d-residue i and $j+1$, respectively.
Let $\overline{\mathcal{H}}\left(q_{d}(X)\right)$ be the multiset of all $\bar{h}(z), z \in H\left(q_{d}(X)\right)$.
Then we have the multiset equality

$$
\mathcal{H}(\lambda)=\mathcal{H}\left(\lambda_{(d)}\right) \cup \operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)\right.
$$

where $\operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)=\left\{|h| \mid h \in \overline{\mathcal{H}}\left(q_{d}(X)\right)\right\}\right.$.
Corollary Generalization of the Malle-Navarro formula.
In particular, the Malle-Navarro formula is the hook formula!

Example

(cont.)
$\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}), q_{3}(X)=(3,2,2,2), \lambda_{(3)}=(4,2,1,1)$.
We take $\delta=(0,1,2 ; 3)$, the partition data tuple.
As $\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3), \delta^{S}=(6,1,11 ; 3)$.

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1							1				2	1	

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1							1			2	1		

Consider the 3-residue diagram; we need to modify the hook lengths of $q_{3}(X)$ by $d\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ at the end of row and column. Finally, take absolute values!

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1							1			2	1		

Consider the 3-residue diagram; we need to modify the hook lengths of $q_{3}(X)$ by $d\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ at the end of row and column. Finally, take absolute values!

0	1	2
2	0	
1	2	
0	1	

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1							1			2	1		

Consider the 3-residue diagram; we need to modify the hook lengths of $q_{3}(X)$ by $d\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ at the end of row and column. Finally, take absolute values!

				-9	-6	0
	1	2	9	6	5	1
2	0		6	4	3	
1	2		9	3	2	
0	1		0	2	1	

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1							1			2	1		

Consider the 3-residue diagram; we need to modify the hook lengths of $q_{3}(X)$ by $d\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ at the end of row and column. Finally, take absolute values!

				-9	-6	0			
	1	2	9	6	5	1		6	8
2	0		6	4	3		\rightarrow	1	3
1	2		9	3	2		3	5	
0	1		0	2	1		-7	-5	

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2			3	2		
1						1			2	1			

Consider the 3-residue diagram; we need to modify the hook lengths of $q_{3}(X)$ by $d\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ at the end of row and column. Finally, take absolute values!

			-9	-6	0							
0	1	2	9	6	5	1		6	8	10	6	8
2	0		6	4	3		\rightarrow	1	3		\rightarrow	1
3	3											
1	2		9	3	2		3	5		3	5	
0	1		0	2	1			-7	-5		7	5

More general: combinatorics towards a relative hook formula for unipotent characters of classical groups ...
Theorem
Let $S=\left(X_{0}, X_{1}, \ldots, X_{d-1}\right)$ be a d-symbol, $\delta=(0, \ldots, 0 ; 1)$ the minimal d-hook data tuple, $\ell \in \mathbb{N}$. Let C be the ℓ-core and Q the balanced ℓ-quotient of S. Then

$$
\mathcal{H}^{\delta}(S)=\mathcal{H}^{\delta}(C) \cup \operatorname{abs}\left(\mathcal{H}^{\delta_{R, S}}(Q)\right)
$$

where abs $\left(\mathcal{H}^{\delta_{\ell, S}}(Q)\right)$ is the multiset of all $\left|h^{\delta_{\ell, S}}(z)\right|, z \in H(Q)$, $\delta_{\ell, S}$ a modified $d \ell$-hook data tuple.

Theorem

Let $S=\left(X_{0}, X_{1}, \ldots, X_{d-1}\right)$ be a d-symbol, $\delta=(0, \ldots, 0 ; 1)$ the minimal d-hook data tuple, $\ell \in \mathbb{N}, e \in\{0, \ldots, d-1\}$. Let C be the (ℓ, e)-core of S, Q the balanced (ℓ, e)-quotient of S. With $\delta^{\prime}=\delta_{\ell, \sigma(S)}$ we have

$$
\mathcal{H}_{>0}^{\delta}(S)=\mathcal{H}_{>0}^{\delta}(C) \cup \operatorname{abs}\left(\mathcal{H}_{>0}^{\delta^{\prime}}(Q)\right),
$$

where abs $\left(\mathcal{H}_{>0}^{\delta^{\prime}}(Q)\right)$ is the multiset of all non-zero $\left|h^{\delta^{\prime}}(z)\right|$, $z \in H(Q)$.

