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Around the hook formula
Symbols

Decomposition of the hook multiset

A new view of the

Hook formula

– inspired by recent work of Malle and Navarro on the
characterization of nilpotent p-blocks of p-modular group
algebras by the degrees of their ordinary characters.

Main aspect: for a given d , separation of hooks of a given
partition into two multisets, according to its d-core and a
suitable d-quotient.

B.-Gramain-Olsson: Generalized hook lengths in symbols and
partitions, arXiv 1101.5067
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Around the hook formula
Symbols

Decomposition of the hook multiset

For the symmetric groups and a prime p:
p-blocks ↔ p-core partitions

Degree computation for irreducible characters:
hook formula

But: not adequate for the purpose ...

Malle-Navarro: new degree formula, deduced from a formula
for character degrees for classical groups.
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Around the hook formula
Symbols
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The Hook formula
Cores, β-sets and the abacus
The Malle-Navarro formula

The complex irreducible characters of the symmetric group Sn

are labelled by partitions of n,

Irr(Sn) = {[λ] | λ ⊢ n}

The character degrees [λ](1) are given by:

Theorem (Hook formula)

Let
∏
ℋ(λ) be the product of all hook lengths in λ ⊢ n. Then

[λ](1) =
n!∏
ℋ(λ)

.
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Around the hook formula
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Decomposition of the hook multiset

The Hook formula
Cores, β-sets and the abacus
The Malle-Navarro formula

Let λ = (5, 4, 4, 2, 2) ⊢ 17.

9 8 5 4 1
7 6 3 2
6 5 2 1
3 2
2 1

[λ](1) =
17!

9 ⋅ 8 ⋅ 5 ⋅ 4 ⋅ 1 ⋅ 7 ⋅ 6 ⋅ 3 ⋅ 2 ⋅ 6 ⋅ 5 ⋅ 2 ⋅ 1 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 1
= 1361360

Christine Bessenrodt Generalized hook lengths in symbols and partitions



Around the hook formula
Symbols

Decomposition of the hook multiset

The Hook formula
Cores, β-sets and the abacus
The Malle-Navarro formula

Fix d ∈ ℕ.

For a partition λ, denote by
λ(d) its d-core,

obtained by removing as many d-hooks as possible.

The removal may be described by the
d-quotient λ(d),

a d-tuple of partitions.

Useful tool: β-sets and the d-abacus
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The Hook formula
Cores, β-sets and the abacus
The Malle-Navarro formula

A β-set is a finite subset of ℕ0.

For a β-set X = {a1, . . . , as}> , the associated partition p(X )
has as its parts the positive numbers among

ai − (s − i), i = 1, . . . , s.
For k ∈ ℕ0,

X+k = {a + k | a ∈ X } ∪ {k − 1, . . . , 1, 0}
is the kth shift of X .

▶ p(X ) = p(X+k), for all k ∈ ℕ0.

▶ Any β-set Y with p(Y ) = λ is called a β-set for λ.

▶ For any λ, the set of first column hook lengths is a β-set
for λ.
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Hook removal and the d-abacus

Let X be a β-set.
A d-hook of X is a pair (a, b) ∈ ℕ2

0 with
a ∈ X , b < a, b ∕∈ X and a − b = d .

Removal of this d-hook from X means: replacing a by b.
(This corresponds to the removal of a d-hook from λ = p(X ).)

Place the elements of X as beads on an abacus with d runners.
The removal of a d-hook corresponds to moving a bead to an
empty space one level up. Easy computation of d-core!
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The Hook formula
Cores, β-sets and the abacus
The Malle-Navarro formula

Example

X = {11, 8, 6, 2, 0} is a β-set of p(X ) = λ = (7, 5, 4, 1) ⊢ 17.
Fix d = 3. The 3-abacus representation for X and the
corresponding 3-core:

0 1 2
0 1 2
3 4 5
6 7 8
9 10 11

0 1 2
0 1 2
3 4 5
6 7 8
9 10 11

3-core C3(X ) = {8, 5, 3, 2, 0}

c3(X ) = p(C3(X )) = p({8, 5, 3, 2, 0}) = (4, 2, 1, 1) = λ(3)
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The Malle-Navarro formula

Theorem (Malle-Navarro)

Let p be a prime, λ ⊢ n. Let µ ⊢ r be the p-core of λ, S a
symbol associated to the p-quotient λ(p), bi the number of
beads on the i th runner of the p-abacus for µ, ci = pbi + i − 1.
Then

[λ](1) =
n!

r !

1∏
h hook of S

|pℓ(h) + ci(h) − cj(h)|
[µ](1) .

Proof: by specialization at q = 1 of a formula for character
degrees of unipotent characters of general linear groups due to
Malle (1995).

Suspicion: This is the hook formula in disguise.
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β-sets and symbols
Balanced quotients
Hooks in symbols

A d-symbol is a d-tuple of β-sets S = (X0, . . . ,Xd−1) .

Let X be a β-set. For j ∈ {0, . . . , d − 1} set

X
(d)
j = {k ∈ ℕ0 | kd + j ∈ X }.

This gives a bijection

sd : {β-sets} → {d-symbols}

X 7→ (X
(d)
0 , . . . ,X

(d)
d−1)

A hook of S : (a, b, i , j) ∈ ℕ4
0 with i , j ∈ {0, . . . , d − 1},

a ∈ Xi , b ∕∈ Xj , and either a > b, or a = b and i > j .
H(S) denotes the set of all hooks of S .

Remark. There are canonical bijections between the hooks in
X , λ = p(X ) and S = sd(X ).
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β-sets and symbols
Balanced quotients
Hooks in symbols

Example

β-set X = {11, 8, 6, 2, 0} for p(X ) = λ = (7, 5, 4, 1) ⊢ 17.
Let d = 3; 3-abacus representation for X and S = s3(X ):

s3 :

0 1 2
0 1 2
3 4 5
6 7 8
9 10 11

7→
0 1 2
0 0 0
1 1 1
2 2 2
3 3 3

S = ({2, 0}, ∅, {3, 2, 0})

Example: hook (11, 4) in X ↔ hook (3, 1, 2, 1) in S .
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β-sets and symbols
Balanced quotients
Hooks in symbols

A d-symbol S = (X0, . . . ,Xd−1) is called balanced, if

|X0| = . . . = |Xd−1| and 0 ∕∈ Xi for some i .
For any S = (X0, . . . ,Xd−1), its balanced quotient is the
unique balanced d -symbol

Q(S) = (X ′
0 , . . . ,X

′
d−1) with p(X ′

i ) = p(Xi) for all i .
The core of S is the d-symbol C (S) with ith component

{|Xi |− 1, . . . , 1, 0}, i = 0, . . . , d − 1.
If X = s−1

d (S), we define the balanced d-quotient of X

Qd(X ) = s−1
d (Q(S))

and the d-quotient partition of λ = p(X ):

qd(X ) = p(Qd(X )) .
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β-sets and symbols
Balanced quotients
Hooks in symbols

Example

Balanced quotient of S = s3(X ) = ({2, 0}, ∅, {3, 2, 0}):

Q(S) = ({2, 0}, {1, 0}, {2, 1}).

Q(S) :

0 0 0
1 1 1
2 2 2
3 3 3

s−1
37−→ Q3(X ) :

0 1 2
3 4 5
6 7 8
9 10 11

q3(X ) = p(Q3(X )) = p({8, 6, 5, 4, 1, 0}) = (3, 2, 2, 2)

Note. |q3(X )|+ |c3(X )| = 9 + 8 = 17 = |p(X )|.
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β-sets and symbols
Balanced quotients
Hooks in symbols

Let S = (X0, . . . ,Xd−1) be a d-symbol.
We consider only the hooks between the runners i and j :

Hij(S) = {(a, b, i , j) | (a, b, i , j) ∈ H(S)} ,

H{ij}(S) = Hij(S) ∪ Hji(S) .

For ℓ ≥ 0 we define the ℓ-level section

H ℓ
ij(S) = {(a, b, i , j) ∈ Hij(S) | a − b = ℓ} .
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Decomposition of the hook multiset

Hook correspondence
Generalized hook lengths
Application for partitions and generalizations

Theorem (Hook correspondence in symbols)

Let S be a d-symbol with balanced quotient Q(S) = Q and
core C (S) = C .
For all i , j , we have bijective multiset correspondences

H{ij}(S)→ H{ij}(Q) ∪ H{ij}(C ) ,

with control on the level sections.
We glue these bijections together to a universal bijection

ωS : H(S)→ H(Q) ∪ H(C ) .

Remark. For S = (X0, . . . ,Xd−1), ∆ = |Xi |− |Xj | is crucial for
controlling the correspondence of the level sections.
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Generalized hook lengths
Application for partitions and generalizations

Theorem. Let S , Q, C be as above, i ∕= j , ∆ = |Xi |− |Xj | ≥ 0.
When ∆ > 0, we have the following equalities:
∙ For all ℓ > ∆: |H ℓ

ij(S)| = |H ℓ−∆
ij (Q)|.

∙ For all ℓ > ∆: |H ℓ−∆
ji (S)| = |H ℓ

ji(Q)|.

∙ For all 0 < ℓ < ∆: |H ℓ
ij(S)| = |H∆−ℓ

ji (Q)|+ |H ℓ
ij(C )|.

∙ For ℓ = ∆: |H∆
ij (S)| =

{
|H0

ij (Q)| = |H0
{ij}(Q)| if i > j

|H0
ji (Q)| = |H0

{ij}(Q)| if i < j
.

∙ For ℓ = 0:

|H∆
ji (Q)|+ |H0

ij (C )| =

{
|H0

ij (S)| = |H0
{ij}(S)| if i > j

|H0
ji (S)| = |H0

{ij}(S)| if i < j
.

∙ |H∆
ij (S)|+ |H0

{ij}(S)| = |H∆
ji (Q)|+ |H0

{ij}(Q)|+ |H0
ij (C )|.

When ∆ = 0, we have

∙ |H ℓ
ij(S)| = |H ℓ

ij(Q)|, H ℓ
ij(C ) = ∅, for all ℓ ≥ 0.
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Generalized hook lengths
Application for partitions and generalizations

n ~ n ~ ~ n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~~~~

~~~~~~

n ~ n ~ ~ n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~~~~

~~~~~~

n ~ n ~ ~ n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~
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i > j

n ~ n ~ ~ n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i

n ~ n ~ ~ n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆
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i > j

n ~ nm ~ ~ n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i ︸ ︷︷ ︸
≥ ∆

n ~ nm ~ ~ n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆
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~~~~~~

~~~~~~

j

i ︸ ︷︷ ︸
> 0

n ~ n ~ ~ n n⋅ ⋅ ⋅

~ nm ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸ ︷︷ ︸
> ∆
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i > j

n ~× n ~ ~× n n n n n⋅ ⋅ ⋅

~ nm× ~ ~ nm× ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i

n ~ n ~ ~ n n⋅ ⋅ ⋅

~ nm ~ ~ nm ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j
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i > j

nm ~× nm ~ ~× nm n nm n n⋅ ⋅ ⋅
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~~~~~~

~~~~~~

j

i

n ~ n ~ ~ n n⋅ ⋅ ⋅

~ nm ~ ~ nm ~ n ~ n⋅ ⋅ ⋅

~~~nnmnm~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸ ︷︷ ︸
≤ ∆
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Application for partitions and generalizations

Let H = {(a, b, i , j) | a ≥ b and i > j if a = b} .

Consider (generalized) hook length functions h : H → ℝ s.t.
the value h(a, b, i , j) depends only on ℓ = a − b, i and j .

Important hook length functions for d-symbols:
A d-hook data tuple is a (d + 1)-tuple δ = (c0, c1, . . . , cd−1; k)
of real numbers, k ≥ 0.
We define the δ-length of (a, b, i , j) ∈ H to be

hδ(a, b, i , j) = k(a − b) + ci − cj .

For any d-symbol S , we denote the multiset of generalized
hook lengths by

ℋδ(S) = {hδ(a, b, i , j) | (a, b, i , j) ∈ H(S)}.
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Important special choices for applications:

▶ δ = (0, 1, . . . , d − 1; d) the partition d-hook data tuple.

Then the δ-length of a hook of S equals the usual hook
length a − b of the corresponding hook (a, b) of X .

▶ δ = (0, 0, . . . , 0; 1) the minimal d-hook data tuple.

Then the δ-length of long hooks (a > b) in S coincides
with the hook length in symbols as defined by Malle, and
the short hooks (a = b) have δ-length 0.
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Theorem (The Meta-Theorem)

Let S = (X0,X1, . . . ,Xd−1) be a d-symbol, xi = |Xi |.
Let Q = Q(S) be its balanced quotient, C = C (S) its core.
Let δ = (c0, c1, . . . , cd−1; k) be a d-hook data tuple.
Then with δS = (c0 + x0k , c1 + x1k , . . . , cd−1 + xd−1k ; k), we
have the multiset equality

ℋδ(S) = ℋδS (Q) ∪ℋδ(C ),

where ℋδS (Q) is the multiset of all modified hook lengths

h
δS
(z), z ∈ H(Q).
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Modified hook lengths
We assume that i , j are such that ∆ = xi − xj ≥ 0.
Let H ℓ

ij = {(a, b, i , j) ∈ H | a − b = ℓ}.
Then for z ∈ H{ij} we define

h
δS
(z) =

{
hδS (z) if z ∈ Hij ∪ H>∆

ji , or z ∈ H∆
ji if i < j

−hδS (z) otherwise

Crucial property w.r.t. the universal bijection ωS :

hδ(z) =

{
hδ(ωS(z)) if ωS(z) ∈ H(C )

h
δS
(ωS(z)) if ωS(z) ∈ H(Q)
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Theorem
Let d ∈ ℕ, λ a partition, X a β-set for λ, xi = |X

(d)
i |. Let

qd(X ) be the d-quotient partition of X .
For z ∈ H(qd(X )), let h(z) = h(z) + (xi − xj)d,
if z has hand and foot d-residue i and j + 1, respectively.
Let ℋ(qd(X )) be the multiset of all h(z), z ∈ H(qd(X )).
Then we have the multiset equality

ℋ(λ) = ℋ(λ(d)) ∪ abs(ℋ(qd(X ))

where abs(ℋ(qd(X )) = {|h| | h ∈ ℋ(qd(X ))}.

Corollary Generalization of the Malle-Navarro formula.
In particular, the Malle-Navarro formula is the hook formula!
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Example

(cont.)
λ = (7, 5, 4, 1), X = {11, 8, 6, 2, 0}, d = 3.

S = ({2, 0}, ∅, {3, 2, 0}), q3(X ) = (3, 2, 2, 2), λ(3) = (4, 2, 1, 1).

We take δ = (0, 1, 2; 3), the partition data tuple.

As (x0, x1, x2) = (2, 0, 3), δS = (6, 1, 11; 3).
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Generalized hook lengths
Application for partitions and generalizations

Hook diagrams for λ, λ(3), q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

7 4 2 1
4 1
2
1

6 5 1
4 3
3 2
2 1

Consider the 3-residue diagram; we need to modify the hook
lengths of q3(X ) by d(xi − xj) according to residues i and j + 1
at the end of row and column. Finally, take absolute values!

0 1 2
2 0
1 2
0 1

−9 −6 0
9 6 5 1
6 4 3
9 3 2
0 2 1

→ 6 8 10
1 3
3 5

−7 −5

→ 6 8 10
1 3
3 5
7 5
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Around the hook formula
Symbols
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More general: combinatorics towards a relative hook formula
for unipotent characters of classical groups ...

Theorem
Let S = (X0,X1, . . . ,Xd−1) be a d-symbol, δ = (0, . . . , 0; 1)
the minimal d-hook data tuple, ℓ ∈ ℕ. Let C be the ℓ-core
and Q the balanced ℓ-quotient of S. Then

ℋδ(S) = ℋδ(C ) ∪ abs(ℋδℓ,S (Q))

where abs(ℋδℓ,S (Q)) is the multiset of all |hδℓ,S (z)|, z ∈ H(Q),
δℓ,S a modified dℓ-hook data tuple.
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Theorem
Let S = (X0,X1, . . . ,Xd−1) be a d-symbol, δ = (0, . . . , 0; 1)
the minimal d-hook data tuple, ℓ ∈ ℕ, e ∈ {0, . . . , d − 1}. Let
C be the (ℓ, e)-core of S, Q the balanced (ℓ, e)-quotient of S.
With δ ′ = δℓ,σ(S) we have

ℋδ>0(S) = ℋδ>0(C ) ∪ abs(ℋδ ′>0(Q)) ,

where abs(ℋδ ′>0(Q)) is the multiset of all non-zero |hδ
′
(z)|,

z ∈ H(Q).
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