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Plan of the talk

In Sym[X ] and H⊔[X ] (commutative Hopf algebras)

◮ Notational preliminaries (we use informally graphical calculus)

◮ What are a loop operator?
– [inner outer] loop operators
– alternative forms and inverse loop operators
– some relations between loop operators

◮ Hirota-Miwa change of variables (used for vertex operators)

◮ Forced Laplace pairings expansions
– the associative case
– the ‘inverse’ case
– ‘undeformations’ i.e. generalized straightenings

(of Rota-Stein plethystic type Hopf algebras)



Sym[X ] definitions and graphical calculus

Sym[X ] Hopf algebra (self dual w.r.t. (− | −) )

Bases: {eµ}µ, {hµ}µ, {pµ}µ multiplicative, {mµ}µ, {sµ}µ

General elements: A, B, . . .; λ, µ, ν, . . . integer partitions
[outer inner products coproducts]:

m : Sym ⊗ Sym → Sym :: m(sµ ⊗ sν) =
∑

λ

cλ
µ,νsλ

∆ : Sym → Sym ⊗ Sym :: ∆(sλ) =
∑

µ,ν

cλ
µ,νsµ ⊗ sν = sλ(1)

⊗ sλ(2)

cλ
µ,ν Littlewood-Richardson coefficients

⋆ : Sym ⊗ Sym → Sym :: ⋆(sµ ⊗ sν) =
∑

λ

gλ
µ,νsλ

δ : Sym → Sym ⊗ Sym :: δ(sλ) =
∑

µ,ν

gλ
µ,νsµ ⊗ sν = sλ[1]

⊗ sλ[2]

gλ
µ,ν Kronecker coefficients



Sym[X ] definitions and graphical calculus, cont.

(co/)Plethysm: (pλ
µ,ν plethysm coeff. non-neg. integers)

∇

: Sym ⊗ Sym → Sym ::

∇

(sµ ⊗ sν) = (sµ[sν]) =
∑

λ

pλ
µ,νsλ

(

∇ : Sym+ → Sym+ ⊗ Sym+ :: ∇(sλ) =
∑

µ,ν

pλ
µ,νsµ ⊗ sν

)

Sym+ = ker ǫ0 augmentation ideal : Sym = Z · 1 + Sym+

Graphical notation: (downward/pessimistic and left-handed oriented)

;bcId ∼ ; m ∼ ⋆ ∼ ;

∇

∼;b

∆ ∼ ; σ ∼
b

δ ∼ ; ∇ ∼ ;
bc



Graphical manipulations “moves”

evV

b

b


evV

(− | −)

C [X , Y ]

;;;; ∼= ∼=;
b

b

tolopogical move Frobenius move

bc

bc

∼

bc bc

bcbc

Hopf algebra

∼
b

b

b

b

∼
b

b

Frobenius algebra



Loop operators (convolution)

Def: loop operators:

©oo(A) := (m ◦ ∆)(A) = m ◦ (Id ⊗ Id) ◦ ∆(A)

©io(A) := (m ◦ δ)(A) = m ◦ (Id ⊗ Id) ◦ δ(A)

©oi(A) := (⋆ ◦ ∆)(A) = ⋆ ◦ (Id ⊗ Id) ◦ ∆(A)

©ii (A) := (⋆ ◦ δ)(A) = ⋆ ◦ (Id ⊗ Id) ◦ δ(A)

Graphical notation: (these are convolutions of identity operators)

bc

b

b

bbc

b

;

bc

bc

; ;

©oo ©io
©io ©ii



Alternative forms and inverses of loop operators:

‘outer-outer’ loop operator:

t-Specialization: (t ∈ N, Z, Q, . . .)
Def: ǫt(sµ[X ]) := sµ[1t ] =: dimsµ(t) (ǫ0 counit of outer coproduct)

(Note: ǫ−t(sµ[X ]) = ǫt(sµ[−X ]) = ǫt(S(sµ)[X ]) : S(A) antipode in Sym)

Thm: (alternative forms for outer-outer loop operator)

[2](A)[X ] := ©oo(A)[X ] = (m ◦ ∆)(A)[X ] = (A(1)A(2))[X ]

= A[X + X ] = A[2 · X ] = A[2 · s(1)][X ]

= dimA[1]
(2)A[2]

(on power sums: [2](pµ) = 2ℓ(µ)pµ; relates to zonal sym. functions)

Plethysm allows to introduce the inverse outer-outer loop operator

[
1

2
](A) := dimA[1]

(
1

2
)A[2] ⇔ [

1

2
][2](A) = A = [2][

1

2
](A)



Graphical forms and inverses of loop operators:

in a suitable ring extension Q, Q[q] etc.

;
2

∼

bc

bc

b

∼

2s(1)

b[2] ∼

b

;
1
2

∼

b

∼

1
2s(1)

b[12 ] ∼

b



Alternative forms and inverses of loop operators:

‘inner-inner’ loop operator:

For power sums: (µ = (µ1, µ2, . . .) = [1r12r2 . . .]; zµ =
Q

i
i ri ri !)

δ(pµ) = pµ ⊗ pµ and ⋆(pµ ⊗ pν) = zµδµ,νpµ

Def: For power sums inner-inner loop operator and its inverse are:

ẑ : Sym → Sym :: pµ 7→ zµpµ

ẑ : Sym → Sym :: pµ 7→ 1
zµ

pµ

}
scaling by zµ; z−1

µ

Def: zee-specialization

z, z : Sym → Q ::

{
z : pµ 7→ zµ ; z : sµ 7→

∑
τ χµ(τ)

z : pµ 7→ 1
zµ

; z : sµ 7→
∑

τ
χµ(τ)

z2
τ

Prop: z and z are convolutive inverse 1-chains w.r.t. the inner
convolution (Ŝym ∋ M(z) =

∑
n hnz

z , ǫ1 : Sym → Q):

·Q ◦ (z ⊗ z) ◦ δ(A) = ǫ1(A) (= (M(1), A) =: ǫ1(A))



Graphical forms and inverses of loop operators:

in a suitable ring extension Q, Q[q] etc.

;∼∼bẑ

b

;∼bẑ

b

b

b

∼

b ∼

(M(1),−) = ǫ1

Thm: The inner-inner loop operator ©ii and its inverse have the
following alternative forms:

ẑ(A) = ©ii (A) = (⋆ ◦ δ)(A) = z(A[1])A[2]

ẑ(A) = z(A[1])A[2]



p-multiplicativity & Hirota-Miwa change of var.

Def: µ is relatively prime to ν (µ 6 | ν) iff gcd(µ, ν) = (0)
Prop: z (and z) is p-multiplicative and not a homomorphism
(hom = complete multiplicative in the sense of number theory)

z(pµpν) = z(pµ)z(pν)

(
µ ∪ ν

µ, ν

)
; w(pµ, pν) :=

(
µ ∪ ν

µ, ν

)
= 1 iff µ6 | ν

(That is: z : Sym → Q is not a 1-cocycle, w = ∂z is a non-trivial 2-cocycle )

Hirota-Miwa change of variables [Miw82]

Let {p∗µ}µ basis of Hom(QSym, Q) (gr. dual), s.t. p∗µ(pν) = δµ,ν

Def: γ : Sym → Sym :: pn 7→ 1
n
pn (our pµ 7→ z(pµ)pµ = (z ⊗ Id) ◦ δ(pµ))

We get two identifications QSym → QSym∗ related by ẑ, ẑ:

(A | B)bz := ǫ1 ◦ ⋆ ◦ (̂z ⊗ 1)(A ⊗ B) = (̂z(A) | B) = ev(A∗ ⊗ B)

Sym[X ]

(−)∗

(A|−)

Sym[X ]∗bz bz



Some relations between loop operators. . .

Thm: The n-fold outer-outer loop operator [n] = mn−1 ◦ ∆n−1

acts group like; The iterated n-fold outer-outer loop operator
behaves multiplicative; The outer-outer loop operator maps
left/right on inner products; ©oo and ©ii commute:

n

n n

bc

bc

bc

bc

bc

bc

bc bc

n

bc

m

bc

bc

bc

n · m

bc

bc

∼ ; ∼

n

n

b

bc

bc

bc

bc

b

n

bc

m

b

b

bc
∼ ∼

n

b

bc

bc
∼

m

b

n

bc

bc

b
;



Some relations between loop operators. . . cont.

Thm: An outer-outer loop operator inside an inner-inner loop
operator is equivalent to their composition; An inner-inner loop
operator inside and outer-outer loop operator is equivalent to the
linear form (as outer convolution of 1-chains : w := ·Q ◦ (ǫ1

⊗ z) ◦ ∆)

w : Sym → Z :: pλ 7→
∑

µ∪ν=λ

(
λ

µ, ν

)
zν =

∑

µ∪ν=λ

∏

i

((ri + si ) ↑ (1si ))i si

bc

b

b

bc
∼

b

bc

b

;

bc

b

∼

bc

b

b

bc

w



Forced Laplace expansions

In Hopf algebra deformation theory we encounter the following two
Laplace expansion laws (straightenings)

i) (AB) ⋆ C = (A ⋆ C(1))(B ⋆ C(2))

ii) A ⋆ (BC ) = (A(1) ⋆ B)(A(2) ⋆ C )

≃b b b

Left Laplace expansion

b b b

Right Laplace expansion

≃

Questions:
i) Can we have a Laplace expansion for m or ⋆ with itself?
ii) Can we have a Laplace expansion with m and ⋆ interchanged?
an easy check shows NO and NO! But. . .



Forced Laplace expansions: the associative case

Thm: The outer and inner products obtain a modified Laplace

expansion by introducing the resp. inverse loop operators [12 ], ẑ

(AB)C = (A([
1

2
](C ))(1)) (B([

1

2
](C ))(2))

A(BC ) = (([
1

2
](A))(1)B) (([

1

2
](A))(2)C )

(A ⋆ B) ⋆ C = (A ⋆ (̂z(C ))(1)) ⋆ (B ⋆ (̂z(C ))(2))

A ⋆ (B ⋆ C ) = ((̂z(A))(1) ⋆ B) ⋆ ((̂z(A))(2) ⋆ C )

Proof: (undecorated ∼= any assoc. com. prod.; • ∼= resp. inverse loop)

b b

∼ ∼



Forced Laplace expansions: the inverse case

Thm: The inverse Laplace expansion between inner and outer
product is given by

(A ∗ B)C = ẑ((̂z(A)C[1]) ∗ (BC[2])) = ẑ((AC[1]) ∗ (̂z(B)C[2]))

A(B ∗ C ) = ẑ((A[1]B) ∗ (A[2]ẑ(C ))) = ẑ((A[1]ẑ(B)) ∗ (A[2]C ))

Application to Rota-Stein’s plethystic Hopf algebras

Idea [Rota-Stein’94]: Recover Sym from H⊔

Def: H⊔ is the cofree cogenerated Hopf algebra on the module
spanned by the monomial sym. fun. {mµ}µ with structure maps

mµ ⊔ mν =

(
µ ∪ ν

µ, ν

)
mµ∪ν ∆⊔(mλ) = mλ(1)

⊗ mλ(2)
(∆⊔ ≡ ∆)

S⊔(mµ) = (−1)ℓ(µ)mµ shows mn’s are primitive



Forced Laplace expansions: ‘undeformations’

Def: Rota-Stein Laplace pairing on H⊔ primitives:
(1) 〈1, 1〉Lp = 1,
(2) 〈mµ, mν〉Lp = 0 if ℓ(µ) 6= ℓ(ν),
(3) 〈m[k r ], m[l s ]〉Lp = δr ,s m[(k+l)r ] = δr ,sm(k+l ,...,k+l)

(4) 〈mµ ⊔ mν , mλ〉Lp = 〈mµ, mλ(1)
〉Lp ⊔ 〈mν , mλ(2)

〉Lp

(5) 〈mµ, mν ⊔ mλ〉Lp = 〈mµ(1)
, mν〉Lp ⊔ 〈mµ(2)

, mλ〉Lp,
and extend by linearity.

Def. [(modified) circle product]: Using the R-S Laplace pairing the
deformed product ◦ : H⊔ ⊗H⊔ → H⊔ is given by

mµ ◦ mν = 〈mµ(1)
, mν(1)

〉Lp ⊔ mµ(2)
⊔ mν(2)

circle

mµ�mν = 〈mµ(1)
, mν(1)

〉Lp ⊔ mµ(2)
⊔ [

1

2
](mν(2)

) modified

Prop: � is noncommutative and nonassociative.

Thm. [R-S]: (H⊔, ◦, ∆; S◦) ≃ Sym



Forced Laplace expansions: ‘undeformations’ cont.

Thm: (◦, �) forms a bi-modified Laplace expansion
(A⊔B)◦C = (A�C(1))⊔(B�C(2)) A◦(B⊔C ) = (A(1)

�B)⊔(A(2)
�C )

Proof: (⋄ ∼= 〈− | −〉Lp; no decoration ∼= ⊔)

∼
bc

ld

∼ ∼

ld

ldld

∼

ldld
∼

b

ldld

bb

∼
ldld

∼
bb

l l

∼
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