Loop operators and convolutions in the symmetric function Hopf algebra

Bertfried Fauser
b.fauser@cs.bham.ac.uk
$66^{\text {eme }}$ Séminaire Lotharingien de Combinatoire

Ellwangen - March 6-9, 2011
joint work with: Peter D. Jarvis \& Ronald C. King

Plan of the talk

In $\operatorname{Sym}[X]$ and $\mathcal{H}_{\sqcup}[X]$ (commutative Hopf algebras)

- Notational preliminaries (we use informally graphical calculus)
- What are a loop operator?
- [inner|outer] loop operators
- alternative forms and inverse loop operators
- some relations between loop operators
- Hirota-Miwa change of variables (used for vertex operators)
- Forced Laplace pairings|expansions
- the associative case
- the 'inverse' case
- 'undeformations' i.e. generalized straightenings (of Rota-Stein plethystic type Hopf algebras)

Sym $[X]$ definitions and graphical calculus

$\operatorname{Sym}[X]$ Hopf algebra (self dual w.r.t. $(-\mid-)$)
Bases: $\left\{e_{\mu}\right\}_{\mu},\left\{h_{\mu}\right\}_{\mu},\left\{p_{\mu}\right\}_{\mu}$ multiplicative, $\left\{m_{\mu}\right\}_{\mu},\left\{s_{\mu}\right\}_{\mu}$ General elements: $A, B, \ldots ; \lambda, \mu, \nu, \ldots$ integer partitions [outer|inner|products|coproducts]:

$$
m: \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \operatorname{Sym}:: m\left(s_{\mu} \otimes s_{\nu}\right)=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

$$
\Delta: \operatorname{Sym} \rightarrow \operatorname{Sym} \otimes \operatorname{Sym}:: \Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu} \otimes s_{\nu}=s_{\lambda_{(1)}} \otimes s_{\lambda_{(2)}}
$$

$c_{\mu, \nu}^{\lambda}$ Littlewood-Richardson coefficients

$$
\begin{aligned}
& \star: \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \operatorname{Sym}:: \star\left(s_{\mu} \otimes s_{\nu}\right)=\sum_{\lambda} g_{\mu, \nu}^{\lambda} s_{\lambda} \\
& \delta: \operatorname{Sym} \rightarrow \operatorname{Sym} \otimes \operatorname{Sym}:: \delta\left(s_{\lambda}\right)=\sum_{\mu, \nu} g_{\mu, \nu}^{\lambda} s_{\mu} \otimes s_{\nu}=s_{\lambda_{[1]}} \otimes s_{\lambda_{[2]}}
\end{aligned}
$$

$g_{\mu, \nu}^{\lambda}$ Kronecker coefficients

Sym $[X]$ definitions and graphical calculus, cont.

(co/)Plethysm: ($p_{\mu, \nu}^{\lambda}$ plethysm coeff. non-neg. integers)

$$
\begin{gathered}
\triangleleft: \operatorname{Sym} \otimes \operatorname{Sym} \rightarrow \operatorname{Sym}:: \triangleleft\left(s_{\mu} \otimes s_{\nu}\right)=\left(s_{\mu}\left[s_{\nu}\right]\right)=\sum_{\lambda} p_{\mu, \nu}^{\lambda} s_{\lambda} \\
\left(\triangleright: \operatorname{Sym}^{+} \rightarrow \operatorname{Sym}^{+} \otimes \operatorname{Sym}^{+}:: \triangleright\left(s_{\lambda}\right)=\sum_{\mu, \nu} p_{\mu, \nu}^{\lambda} s_{\mu} \otimes s_{\nu}\right) \\
\text { Sym }^{+}={\operatorname{ker} \epsilon^{0}}^{\text {augmentation ideal }: \operatorname{Sym}=\mathbb{Z} \cdot 1+\operatorname{Sym}^{+}}
\end{gathered}
$$

Graphical notation: (downward/pessimistic and left-handed oriented)

Graphical manipulations "moves"

Loop operators (convolution)

Def: loop operators:

$$
\begin{aligned}
\bigcirc_{\circ o}(A) & :=(m \circ \Delta)(A)=m \circ(\mathrm{Id} \otimes \mathrm{Id}) \circ \Delta(A) \\
\bigcirc_{i o}(A) & :=(m \circ \delta)(A)=m \circ(\mathrm{Id} \otimes \mathrm{Id}) \circ \delta(A) \\
\bigcirc_{\circ i}(A) & :=(\star \circ \Delta)(A)=\star \circ(\mathrm{Id} \otimes \mathrm{Id}) \circ \Delta(A) \\
\bigcirc_{i i}(A) & :=(\star \circ \delta)(A)=\star \circ(\mathrm{Id} \otimes \mathrm{Id}) \circ \delta(A)
\end{aligned}
$$

Graphical notation: (these are convolutions of identity operators)

Alternative forms and inverses of loop operators:

'outer-outer’ loop operator:
t-Specialization: $\quad(t \in \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \ldots)$
Def: $\epsilon^{t}\left(s_{\mu}[X]\right):=s_{\mu}\left[1^{t}\right]=: \operatorname{dim}_{s_{\mu}}(t) \quad\left(\epsilon^{0}\right.$ counit of outer coproduct $)$
(Note: $\epsilon^{-t}\left(s_{\mu}[X]\right)=\epsilon^{t}\left(s_{\mu}[-X]\right)=\epsilon^{t}\left(S\left(s_{\mu}\right)[X]\right): S(A)$ antipode in Sym)
Thm: (alternative forms for outer-outer loop operator)

$$
\begin{aligned}
{[2](A)[X] } & :=\bigcirc_{o o}(A)[X]=(m \circ \Delta)(A)[X]=\left(A_{(1)} A_{(2)}\right)[X] \\
& =A[X+X]=A[2 \cdot X]=A\left[2 \cdot s_{(1)}\right][X] \\
& =\operatorname{dim}_{A_{[1]}}(2) A_{[2]}
\end{aligned}
$$

(on power sums: [2] $\left(p_{\mu}\right)=2^{\ell(\mu)} p_{\mu}$; relates to zonal sym. functions)
Plethysm allows to introduce the inverse outer-outer loop operator

$$
\left[\frac{1}{2}\right](A):=\operatorname{dim}_{A_{[1]}}\left(\frac{1}{2}\right) A_{[2]} \quad \Leftrightarrow \quad\left[\frac{1}{2}\right][2](A)=A=[2]\left[\frac{1}{2}\right](A)
$$

Graphical forms and inverses of loop operators:

in a suitable ring extension $\mathbb{Q}, \mathbb{Q}[q]$ etc.

Alternative forms and inverses of loop operators:

'inner-inner' loop operator:
For power sums: $\left(\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)=\left[1^{r_{1}} 2^{r_{2}} \ldots\right] ; z_{\mu}=\prod_{i} i^{r_{i} r_{i}!}\right)$

$$
\delta\left(p_{\mu}\right)=p_{\mu} \otimes p_{\mu} \text { and } \star\left(p_{\mu} \otimes p_{\nu}\right)=z_{\mu} \delta_{\mu, \nu} p_{\mu}
$$

Def: For power sums inner-inner loop operator and its inverse are:

$$
\left.\begin{array}{l}
\widehat{z}: \operatorname{Sym} \rightarrow \operatorname{Sym}:: p_{\mu} \mapsto z_{\mu} p_{\mu} \\
\widehat{\bar{z}}: \operatorname{Sym} \rightarrow \operatorname{Sym}:: p_{\mu} \mapsto \frac{1}{z_{\mu}} p_{\mu}
\end{array}\right\} \quad \text { scaling by } z_{\mu} ; z_{\mu}^{-1}
$$

Def: zee-specialization

$$
\mathfrak{z}, \overline{\mathfrak{z}}: \operatorname{Sym} \rightarrow \mathbb{Q}:: \begin{cases}\mathfrak{z}: p_{\mu} \mapsto z_{\mu} ; & \mathfrak{z}: s_{\mu} \mapsto \sum_{\tau} \chi^{\mu}(\tau) \\ \overline{\mathfrak{z}}: p_{\mu} \mapsto \frac{1}{z_{\mu}} ; & \overline{\mathfrak{z}}: s_{\mu} \mapsto \sum_{\tau} \frac{\chi^{\mu}(\tau)}{z_{\tau}^{2}}\end{cases}
$$

Prop: \mathfrak{z} and $\overline{\mathfrak{z}}$ are convolutive inverse 1 -chains w.r.t. the inner convolution ($\widehat{\operatorname{Sym}} \ni M(z)=\sum_{n} h_{n} z^{z}, \epsilon^{1}: \operatorname{Sym} \rightarrow \mathbb{Q}$):

$$
\cdot \mathbb{Q} \circ(\mathfrak{z} \otimes \overline{\mathfrak{z}}) \circ \delta(A)=\epsilon^{1}(A) \quad\left(=(M(1), A)=: \epsilon^{1}(A)\right)
$$

Graphical forms and inverses of loop operators:

in a suitable ring extension $\mathbb{Q}, \mathbb{Q}[q]$ etc.

Thm: The inner-inner loop operator $\bigcirc_{i i}$ and its inverse have the following alternative forms:

$$
\begin{aligned}
& \widehat{\mathrm{z}}(A)=\bigcirc_{i i}(A)=(\star \circ \delta)(A)=\mathfrak{z}\left(A_{[1]}\right) A_{[2]} \\
& \widehat{\bar{z}}(A)=\overline{\mathfrak{z}}\left(A_{[1]}\right) A_{[2]}
\end{aligned}
$$

p-multiplicativity \& Hirota-Miwa change of var.

Def: μ is relatively prime to $\nu(\mu \nmid \nu)$ iff $\operatorname{gcd}(\mu, \nu)=(0)$
Prop: \mathfrak{z} (and $\overline{\mathfrak{z}}$) is p-multiplicative and not a homomorphism (hom $=$ complete multiplicative in the sense of number theory)
$\mathfrak{z}\left(p_{\mu} p_{\nu}\right)=\mathfrak{z}\left(p_{\mu}\right) \mathfrak{z}\left(p_{\nu}\right)\binom{\mu \cup \nu}{\mu, \nu} ; \mathfrak{w}\left(p_{\mu}, p_{\nu}\right):=\binom{\mu \cup \nu}{\mu, \nu}=1$ iff $\mu \nless \nu$
(That is: $\mathfrak{z}: \operatorname{Sym} \rightarrow \mathbb{Q}$ is not a 1 -cocycle, $\mathfrak{w}=\partial \mathfrak{z}$ is a non-trivial 2 -cocycle)
Hirota-Miwa change of variables [Miw82]
Let $\left\{\mathfrak{p}_{\mu}^{*}\right\}_{\mu}$ basis of $\operatorname{Hom}(\mathbb{Q} S y m, \mathbb{Q})$ (gr. dual), s.t. $\mathfrak{p}_{\mu}^{*}\left(p_{\nu}\right)=\delta_{\mu, \nu}$
Def: $\gamma:$ Sym \rightarrow Sym $:: p_{n} \mapsto \frac{1}{n} p_{n}\left(\right.$ our $\left.p_{\mu} \mapsto \overline{\mathfrak{z}}\left(p_{\mu}\right) p_{\mu}=(\overline{\mathfrak{z}} \otimes \mathrm{Id}) \circ \delta\left(p_{\mu}\right)\right)$
We get two identifications $\mathbb{Q} S y m \rightarrow{ }_{\mathbb{Q}}$ Sym * related by $\widehat{\bar{z}}, \widehat{z}$:

$$
(A \mid B)_{\hat{\mathbf{z}}}:=\epsilon^{1} \circ \star \circ(\hat{\overline{\mathbf{z}}} \otimes 1)(A \otimes B)=(\hat{\bar{z}}(A) \mid B)=\operatorname{ev}\left(A^{*} \otimes B\right)
$$

Some relations between loop operators. . .
Thm: The n-fold outer-outer loop operator $[n]=m^{n-1} \circ \Delta^{n-1}$ acts group like; The iterated n-fold outer-outer loop operator behaves multiplicative; The outer-outer loop operator maps left/right on inner products; $\bigcirc_{o o}$ and $\bigcirc_{i i}$ commute:

Some relations between loop operators. . . cont.

Thm: An outer-outer loop operator inside an inner-inner loop operator is equivalent to their composition; An inner-inner loop operator inside and outer-outer loop operator is equivalent to the linear form (as outer convolution of 1-chains: $\mathfrak{w}:=\cdot \mathbb{Q} \circ\left(\epsilon^{1} \otimes \mathfrak{z}\right) \circ \Delta$)
$\mathfrak{w}: \operatorname{Sym} \rightarrow \mathbb{Z}:: p_{\lambda} \mapsto \sum_{\mu \cup \nu=\lambda}\binom{\lambda}{\mu, \nu} z_{\nu}=\sum_{\mu \cup \nu=\lambda} \prod_{i}\left(\left(r_{i}+s_{i}\right) \uparrow\left(1^{s_{i}}\right)\right) i^{s_{i}}$

Forced Laplace expansions

In Hopf algebra deformation theory we encounter the following two Laplace expansion laws (straightenings)
i)

$$
\begin{aligned}
& (A B) \star C=\left(A \star C_{(1)}\right)\left(B \star C_{(2)}\right) \\
& A \star(B C)=\left(A_{(1)} \star B\right)\left(A_{(2)} \star C\right)
\end{aligned}
$$

ii)

Left Laplace expansion

Right Laplace expansion

Questions:
i) Can we have a Laplace expansion for m or \star with itself?
ii) Can we have a Laplace expansion with m and \star interchanged?
an easy check shows NO and NO! But...

Forced Laplace expansions: the associative case

Thm: The outer and inner products obtain a modified Laplace expansion by introducing the resp. inverse loop operators $\left[\frac{1}{2}\right], \widehat{\bar{z}}$

$$
\begin{aligned}
(A B) C & =\left(A\left(\left[\frac{1}{2}\right](C)\right)_{(1)}\right)\left(B\left(\left[\frac{1}{2}\right](C)\right)_{(2)}\right) \\
A(B C) & =\left(\left(\left[\frac{1}{2}\right](A)\right)_{(1)} B\right)\left(\left(\left[\frac{1}{2}\right](A)\right)_{(2)} C\right) \\
(A \star B) \star C & =\left(A \star(\hat{\overline{\mathrm{z}}}(C))_{(1)}\right) \star\left(B \star(\hat{\overline{\mathrm{z}}}(C))_{(2)}\right) \\
A \star(B \star C) & =\left((\hat{\mathrm{z}}(A))_{(1)} \star B\right) \star\left((\hat{\overline{\mathrm{z}}}(A))_{(2)} \star C\right)
\end{aligned}
$$

Proof: (undecorated \cong any assoc. com. prod.; • \cong resp. inverse loop)

Forced Laplace expansions: the inverse case

Thm: The inverse Laplace expansion between inner and outer product is given by

$$
\begin{aligned}
& (A * B) C=\widehat{\mathrm{z}}\left(\left(\widehat{\mathrm{z}}(A) C_{[1]}\right) *\left(B C_{[2]}\right)\right)=\widehat{\mathrm{z}}\left(\left(A C_{[1]}\right) *\left(\widehat{\mathrm{z}}(B) C_{[2]}\right)\right) \\
& A(B * C)=\widehat{\mathrm{z}}\left(\left(A_{[1]} B\right) *\left(A_{[2]} \widehat{\mathrm{z}}(C)\right)\right)=\widehat{\mathrm{z}}\left(\left(A_{[1]} \widehat{\mathrm{z}}(B)\right) *\left(A_{[2]} C\right)\right)
\end{aligned}
$$

Application to Rota-Stein's plethystic Hopf algebras Idea [Rota-Stein'94]: Recover Sym from \mathcal{H}_{\sqcup}
Def: \mathcal{H}_{\sqcup} is the cofree cogenerated Hopf algebra on the module spanned by the monomial sym. fun. $\left\{m_{\mu}\right\}_{\mu}$ with structure maps

$$
\begin{aligned}
m_{\mu} \sqcup m_{\nu} & =\binom{\mu \cup \nu}{\mu, \nu} m_{\mu \cup \nu} & \Delta_{\sqcup}\left(m_{\lambda}\right)=m_{\lambda_{(1)}} \otimes m_{\lambda_{(2)}}\left(\Delta_{\sqcup} \equiv \Delta\right) \\
\mathrm{S}_{\sqcup}\left(m_{\mu}\right) & =(-1)^{\ell(\mu)} m_{\mu} & \text { shows } m_{n}^{\prime} \text { 's are primitive }
\end{aligned}
$$

Forced Laplace expansions: 'undeformations'

Def: Rota-Stein Laplace pairing on \mathcal{H}_{\sqcup} primitives:
(1) $\langle 1,1\rangle_{\llcorner p}=1$,
(2) $\left\langle m_{\mu}, m_{\nu}\right\rangle_{L_{p}}=0$ if $\ell(\mu) \neq \ell(\nu)$,
(3) $\left\langle m_{\left[k^{r}\right]}, m_{\left[l^{s}\right]}\right\rangle L_{L p}=\delta_{r, s} m_{\left[(k+l)^{r}\right]}=\delta_{r, s} m_{(k+l, \ldots, k+l)}$
(4) $\left\langle m_{\mu} \sqcup m_{\nu}, m_{\lambda}\right\rangle_{\llcorner p}=\left\langle m_{\mu}, m_{\lambda_{(1)}}\right\rangle_{L p} \sqcup\left\langle m_{\nu}, m_{\lambda_{(2)}}\right\rangle_{L p}$
(5) $\left\langle m_{\mu}, m_{\nu} \sqcup m_{\lambda}\right\rangle_{L p}=\left\langle m_{\mu_{(1)}}, m_{\nu}\right\rangle_{L p} \sqcup\left\langle m_{\mu_{(2)}}, m_{\lambda}\right\rangle_{L p}$,
and extend by linearity.
Def. [(modified) circle product]: Using the R-S Laplace pairing the deformed product $\circ: \mathcal{H}_{\sqcup} \otimes \mathcal{H}_{\sqcup} \rightarrow \mathcal{H}_{\sqcup}$ is given by

$$
\begin{aligned}
m_{\mu} \circ m_{\nu} & =\left\langle m_{\mu_{(1)}}, m_{\nu_{(1)}}\right\rangle_{\llcorner p} \sqcup m_{\mu_{(2)}} \sqcup m_{\nu_{(2)}} & & \text { circle } \\
m_{\mu} \diamond m_{\nu} & =\left\langle m_{\mu_{(1)}}, m_{\nu_{(1)}}\right\rangle_{\llcorner p} \sqcup m_{\mu_{(2)}} \sqcup\left[\frac{1}{2}\right]\left(m_{\nu_{(2)}}\right) & & \text { modified }
\end{aligned}
$$

Prop: is noncommutative and nonassociative.
Thm. [R-S]: $\left(\mathcal{H}_{\sqcup}, \circ, \Delta ; S_{\circ}\right) \simeq$ Sym

Forced Laplace expansions: ‘undeformations’ cont.

Thm: (,\bullet) forms a bi-modified Laplace expansion
$(A \sqcup B) \circ C=\left(A \bullet C_{(1)}\right) \sqcup\left(B \bullet C_{(2)}\right) \quad A \circ(B \sqcup C)=\left(A_{(1)} \bullet B\right) \sqcup\left(A_{(2)} \bullet C\right)$
Proof: $\left(\diamond \cong\langle-\mid-\rangle_{L p} ;\right.$ no decoration $\left.\cong \sqcup\right)$

Literature

B B. Fauser, P.D. Jarvis, The Dirichlet Hopf algebra of arithmetics, J. of Knot Theor. and its Ramifications, 16(4):1-60, 2006

- B. Fauser, P.D. Jarvis, R.C. King, Plethysms as a source of replicated Schur functions and series, with applications to vertex operators, J. Phys. A. Math. Theor. 405202, 43:30pp, 2010
B Fauser, P.D. Jarvis, R.C. King, B.G. Wybourne, New branching rules induced by plethysm, J. Phys. A. Math. Gen, 39:2611-2655, 2006
- L. Geissinger, Hopf algebras of symmetric functions and class functions, pages 168-181, 1997, Springer-Verlag, LNM 579
T. Miwa, On Hirota's difference equations, Proc. Japan Acad., 58:9-12, 1982
- G.-C. Rota, J.A. Stein, Plethystic Hopf algebras, Proc. Natl. Acad. Sci. USA, 91:13057-13061, 1994
J.-Y. Thibon, Hopf algebras of symmetric functions and tensor products of symmetric group representations, Int. J. of Alg.. and Comp. 1(2):2007-2221, 1991
- A.V. Zelevinsky, Representations of finite classical groups: A Hopf algebra approach, Springer-Verlag, 1981, LNM 869

