Algebraic and combinatorial structures on Baxter permutations

Samuele Giraudo
Université de Marne-la-Vallée
66th Séminaire Lotharingien de Combinatoire March 8, 2011

Contents

Hopf algebra of permutations and construction of subalgebras
The Hopf algebra of permutations
Equivalence relations and quotients of the free monoid More structure on quotient monoids
From quotient monoids to Hopf subalgebras

Algebraic constructions on Baxter permutations
The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

Contents

Hopf algebra of permutations and construction of subalgebras
The Hopf algebra of permutations
Equivalence relations and quotients of the free monoid
More structure on quotient monoids
From quotient monoids to Hopf subalgebras

The vector space of permutations

Let FQSym $_{n}$ be the \mathbb{Q}-vector space based on permutations of $\{1, \ldots, n\}$ and

$$
\text { FQSym }:=\bigoplus_{n \geq 0} \text { FQSym }_{n}
$$

be the vector space of permutations.
Its elements can be handled through the fundamental basis $\left\{\mathrm{F}_{\sigma}\right\}_{\sigma \in \mathfrak{G}}$.
A product and a coproduct can be added to this structure to form the Hopf algebra of Free quasi-symmetric functions, also known as the Malvenuto-Reutenauer Hopf algebra.

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathrm{F}_{\sigma} \cdot \mathrm{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathrm{F}_{\pi} .
$$

For example:

$$
F_{12} \cdot F_{21}=
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{1 \bullet 2 \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{1 \bullet 2 \bullet}+F_{1 \bullet \bullet 2}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{1 \bullet 2 \bullet}+F_{1 \bullet \bullet 2}+F_{\bullet 12 \bullet}+F_{\bullet \bullet \bullet \bullet}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{1 \bullet 2 \bullet}+F_{1 \bullet \bullet 2}+F_{\bullet 12 \bullet}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet \bullet \bullet}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{12 \bullet \bullet}+F_{1 \bullet 2 \bullet}+F_{1 \bullet \bullet 2}+F_{\bullet 12 \bullet}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1 \bullet 2 \bullet}+F_{1 \bullet \bullet 2}+F_{\bullet 12 \bullet}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1 \bullet \bullet 2}+F_{\bullet 12 \bullet}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{\bullet 12 \bullet}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\amalg} \nu} \mathbf{F}_{\pi}
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{4123}+F_{\bullet 1 \bullet 2}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathrm{F}_{\sigma} \cdot \mathrm{F}_{\nu}:=\sum_{\pi \in \sigma \bar{山} \nu} \mathbf{F}_{\pi} .
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{4123}+F_{4132}+F_{\bullet \bullet 12}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathrm{F}_{\sigma} \cdot \mathrm{F}_{\nu}:=\sum_{\pi \in \sigma \bar{\varpi} \nu} \mathrm{F}_{\pi} .
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{4123}+F_{4132}+F_{4312}
$$

A product in FQSym

FQSym is endowed by the shifted shuffle product:

$$
\mathrm{F}_{\sigma} \cdot \mathrm{F}_{\nu}:=\sum_{\pi \in \sigma \bar{山} \nu} \mathrm{~F}_{\pi} .
$$

For example:

$$
F_{12} \cdot F_{21}=F_{1243}+F_{1423}+F_{1432}+F_{4123}+F_{4132}+F_{4312}
$$

- This product is associative and non-commutative;
- It admits F_{ϵ} as unit;
- It is graded: • : FQSym $_{n} \otimes$ FQSym $_{m} \rightarrow$ FQSym $_{n+m}$.

Hence, (FQSym, \cdot) is a graded unital associative algebra.

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron.

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u$ abv and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron.
Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron.
Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron. Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron. Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron. Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u$ bav where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron. Here is that of permutations of size 4:

Right permutohedron order

Let $\sigma, \nu \in \mathfrak{S}_{n} . \sigma$ is covered by ν if $\sigma=u \mathrm{ab} v$ and $\nu=u \mathrm{bav}$ where $\mathrm{a}<\mathrm{b}$. This covering relation spans the right permutohedron.
Here is that of permutations of size 4 :

The elements F_{π} appearing in a product $F_{\sigma} \cdot F_{\nu}$ form an interval of the permutohedron.

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

$$
c \quad a \quad b \quad b \quad d \quad a \quad a \quad b \quad d
$$

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:
c a b b d a a b d

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

| c | a | b | b | d | a | a | b | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | 2 | 3 | | | |

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

7

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of $\operatorname{std}(c a b b d a a b d)$ gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

Standardization process

Let $A:=\{\mathrm{a}<\mathrm{b}<\mathrm{c}<\ldots\}$ be a totally ordered infinite alphabet.
The standardization process std is an algorithm computing a permutation σ from a word $u \in A^{*}$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

c	a	b	b	d	a	a	b	d
	1				2	3		
		4	5				6	
7				8				9
7	1	4	5	8	2	3	6	9

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:
$\Delta\left(F_{4123}\right)=$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:

$$
\Delta\left(F_{\mid 4123}\right)=F_{\epsilon} \otimes F_{4123}
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:

$$
\Delta\left(F_{4 \mid 123}\right)=F_{\epsilon} \otimes F_{4123}+F_{1} \otimes F_{123}
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:

$$
\Delta\left(F_{41 \mid 23}\right)=F_{\epsilon} \otimes F_{4123}+F_{1} \otimes F_{123}+F_{21} \otimes F_{12}
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:

$$
\Delta\left(F_{412 \mid 3}\right)=F_{\epsilon} \otimes F_{4123}+F_{1} \otimes F_{123}+F_{21} \otimes F_{12}+F_{312} \otimes F_{1}
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(\mathbf{F}_{\sigma}\right):=\sum_{u \cdot v=\sigma} \mathbf{F}_{\mathrm{std}(u)} \otimes \mathbf{F}_{\mathrm{std}(v)}
$$

For example:

$$
\Delta\left(F_{4123 \mid}\right)=F_{\epsilon} \otimes F_{4123}+F_{1} \otimes F_{123}+F_{21} \otimes F_{12}+F_{312} \otimes F_{1}+F_{4123} \otimes F_{\epsilon} .
$$

A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

$$
\Delta\left(F_{\sigma}\right):=\sum_{u . v=\sigma} F_{\operatorname{std}(u)} \otimes F_{\operatorname{std}(v)} .
$$

For example:
$\Delta\left(F_{4123}\right)=F_{\epsilon} \otimes F_{4123}+F_{1} \otimes F_{123}+F_{21} \otimes F_{12}+F_{312} \otimes F_{1}+F_{4123} \otimes F_{\epsilon}$.

- This coproduct is coassociative;
- It is non-cocommutative;
- It is graded: $\Delta:$ FQSym $_{n} \rightarrow \bigoplus_{i+j=n}$ FQSym $_{i} \otimes$ FQSym $_{j}$.

Hence, (FQSym, Δ) is a graded coassociative coalgebra.

FQSym as a combinatorial Hopf algebra

These algebra and coalgebra structures are compatible, i.e., Δ is an algebra morphism:

$$
\Delta\left(F_{\sigma} \cdot F_{\nu}\right)=\Delta\left(F_{\sigma}\right) \cdot \Delta\left(F_{\nu}\right) .
$$

Hence, FQSym is a bialgebra.
Since FQSym is graded and connected, it is a Hopf algebra.
We use the heuristic term of combinatorial Hopf algebra (CHA) for graded and connected Hopf algebras based on combinatorial objects.

Contents

Hopf algebra of permutations and construction of subalgebras The Hopf algebra of permutations
Equivalence relations and quotients of the free monoid More structure on quotient monoids From quotient monoids to Hopf subalgebras

Equivalence relations on words

We define equivalence relations on words of A^{*} by taking the reflexive, symmetric, and transitive closure of a rewriting rule \rightleftarrows.

We are interested by equivalence relations on A^{*} that are congruences:

Definition

The equivalence relation \equiv is a congruence if for all $u, u^{\prime}, v, v^{\prime} \in A^{*}$,

$$
u \equiv v \quad \text { and } \quad u^{\prime} \equiv v^{\prime} \quad \text { imply } \quad u \cdot u^{\prime} \equiv v \cdot v^{\prime} .
$$

In this way, A^{*} / \equiv is a quotient monoid of the free monoid.

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text { ab } \ldots & \text { if } a \leq b<c, \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c,
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv \mathrm{p}$ is the plactic monoid.

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text {. } \ldots \text { ab } \ldots & \text { if } \leq b<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c,
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv \mathrm{p}$ is the plactic monoid.

Here is the plactic equivalence class of 31542 :
31542

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text {. } \ldots \text { ab } \ldots & \text { if } \leq b<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c,
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv \mathrm{p}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text {. } \ldots \text { ab } \ldots & \text { if } \leq<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv_{\mathrm{p}}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:
31542

35142

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text {. } \ldots \text { ab } \ldots & \text { if } \leq<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv_{\mathrm{p}}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:
31542

35142

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text { if } \ldots \ldots b<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv_{\mathrm{p}}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:

35412

An example: The plactic equivalence relation

For example, the rewriting rule

$$
\begin{array}{ll}
\ldots \text { acb } \ldots \rightleftarrows \ldots \text { if } a \leq b<c \\
\ldots \text { bac } \ldots \rightleftarrows \ldots \text { bca } \ldots & \text { if } a<b \leq c,
\end{array}
$$

defines the well-known plactic equivalence relation $\equiv \mathrm{p} . A^{*} / \equiv_{\mathrm{p}}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:

Contents

Hopf algebra of permutations and construction of subalgebras The Hopf algebra of permutations
Equivalence relations and quotients of the free monoid
More structure on quotient monoids
From quotient monoids to Hopf subalgebras

Compatibility with the destandardization process

Denote by $\operatorname{ev}(u)$ the non-decreasing rearrangement of u. For example:

$$
\mathrm{ev}(\mathrm{babcaac})=\mathrm{aaabbcc}
$$

Definition

Let \equiv be a congruence. The monoid A^{*} / \equiv is compatible with the destandardization process if for all $u, v \in A^{*}$,

$$
u \equiv v \quad \text { iff } \quad \operatorname{std}(u) \equiv \operatorname{std}(v) \quad \text { and } \quad \operatorname{ev}(u)=\operatorname{ev}(v)
$$

Compatibility with the restriction of alphabet intervals

Let $S \subseteq A$ and u be a word. Denote by $u_{\mid S}$ the longest subword of u made of letters of S. For example:

$$
\operatorname{bbcacca}_{\mid\{\mathrm{a}, \mathrm{~b}\}}=\mathrm{baa} .
$$

Definition

Let \equiv be a congruence. The monoid A^{*} / \equiv is compatible with the restriction of alphabet intervals if for all interval L of A and $u, v \in A^{*}$,

$$
u \equiv v \quad \text { implies } \quad u_{\mid L} \equiv v_{\mid L} .
$$

Contents

Hopf algebra of permutations and construction of subalgebras
The Hopf algebra of permutations
Equivalence relations and quotients of the free monoid
More structure on quotient monoids
From quotient monoids to Hopf subalgebras

Construction of Hopf subalgebras of FQSym

Let \equiv be an equivalence relation. For all equivalence class C of \mathfrak{S} / \equiv, let us define the following element of FQSym:

$$
\mathbf{P}_{C}:=\sum_{\sigma \in C} \mathbf{F}_{\sigma} .
$$

Theorem [Hivert, Nzeutchap, 2007]

If \equiv is a congruence and A^{*} / \equiv is compatible with the destandardization process and with the restriction of alphabet intervals, then, the family $\left\{\mathbf{P}_{C}\right\}_{C \in \mathfrak{S} / \equiv}$ spans a Hopf subalgebra of FQSym.

Some Hopf subalgebras of FQSym

FQSym
Permutations
$1,1,2,6,24,120,720$

Some Hopf subalgebras of FQSym

Combinatorial structures and Hopf subalgebras

The construction of Hopf subalgebras of FQSym from an equivalence relation often leads to the construction of new combinatorial structures:

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A^{*}	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order

Aim of this work

Provide similar structures on Baxter permutations.

Contents

Algebraic constructions on Baxter permutations
The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

Baxter permutations

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

$$
2-41-3
$$

and

$$
3-14-2
$$

Baxter permutations

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

$$
2-41-3
$$

and

$$
3-14-2
$$

For example:

- 561382479
- $\epsilon, 1,1234,2143$

Baxter permutations

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

$$
2-41-3
$$

and

$$
3-14-2
$$

For example:

- 561382479 is not a Baxter permutation;
- $\epsilon, 1,1234,2143$

Baxter permutations

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

$$
2-41-3
$$

and

$$
3-14-2
$$

For example:

- 561382479 is not a Baxter permutation;
- $\epsilon, 1,1234,2143$ are Baxter permutations.

Baxter objects

Theorem [Chung and al., 1978]

The number b_{n} of Baxter permutations of size n is

$$
b_{n}=\sum_{k=1}^{n} \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}} .
$$

The sequence $\left(b_{n}\right)_{n \geq 0}$ begins as

$$
1,1,2,6,22,92,422,2074,10754 .
$$

This enumerates also

- pairs of twin binary trees [Dulucq, Guibert, 1994];
- rectangular partitions [Yao and al., 2003];
- planar bipolar orientations [Bousquet-Mélou and al., 2010]; and many other objects.

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 0

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 01

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 010

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 0100

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 01001

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 010010

Viennot's canopy

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 0100101.

Pairs of twin binary trees

Definition

A pair (T_{L}, T_{R}) of binary trees is a pair of twin binary trees if the canopies of T_{L} and T_{R} are complementary.

The six pairs of twin binary trees with 3 nodes are

Theorem [Dulucq, Guibert, 1994]
The set of pairs of twin binary trees with n nodes is in bijection with the set of Baxter permutations of size n.

Contents

Algebraic constructions on Baxter permutations The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

The Baxter monoid

Definition

The Baxter equivalence relation \equiv_{B} is defined from the Baxter rewriting rule \rightleftarrows where:
$\ldots c u$ ad v b... $\rightleftarrows \ldots$ c u da v b...
if $\mathrm{a} \leq \mathrm{b}<\mathrm{c} \leq \mathrm{d}$,
$\ldots \mathrm{f} u$ da $v c \ldots \rightleftarrows \ldots \mathrm{~b} u$ ad $v c \ldots$
if $\mathrm{a}<\mathrm{b} \leq \mathrm{c}<\mathrm{d}$.

On permutations, one has $\sigma \rightleftarrows \nu$ iff

$$
\sigma=u . \text { ad. } v \quad \text { and } \quad \nu=u . \text { da. } v \quad \text { with } \quad u_{[[\mathrm{a}, \mathrm{~d}]} \neq \epsilon \neq v_{[[\mathrm{a}, \mathrm{~d}]} .
$$

We call $A^{*} / \equiv_{\mathrm{B}}$ the Baxter monoid.

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

3125647

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

3125647

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

Structure properties of the Baxter monoid

Proposition

The Baxter monoid is compatible with the destandardization process.

Proposition

The Baxter monoid is compatible with the restriction of alphabet intervals.

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim}$

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c}$

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$,

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence $(123) \#=123$;

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence (123)\# $=123$;
- $4312 \xrightarrow{\sim}$

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence (123)\# $=123$;
- $4312 \xrightarrow{\sim} 2134 \xrightarrow{c}$

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence (123)\# $=123$;
- $4312 \xrightarrow{\sim} 2134 \xrightarrow{c} 3421$,

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence (123)\# $=123$;
- $4312 \xrightarrow{\sim} 2134 \xrightarrow{c} 3421$, and hence (4312) ${ }^{\#}=3421$.

Link with the sylvester monoid

The Schützenberger involution \#: $\mathfrak{S} \rightarrow \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.
For example:

- $123 \xrightarrow{\sim} 321 \xrightarrow{c} 123$, and hence (123)\# $=123$;
- $4312 \xrightarrow{\sim} 2134 \xrightarrow{c} 3421$, and hence (4312) ${ }^{\#}=3421$.

Let $\equiv \mathrm{s}$ be the sylvester equivalence and $\equiv_{\mathrm{s} \#}$ be the \#-sylvester equivalence.

Proposition

Let σ and ν be two permutations. Then,

$$
\sigma \equiv_{\mathrm{B}} \nu \quad \text { iff } \quad \sigma \equiv_{\mathrm{s}} \nu \quad \text { and } \quad \sigma \equiv_{\mathrm{s} \#} \nu .
$$

Contents

Algebraic constructions on Baxter permutations The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

The \mathbb{P}-symbol

Definition

The \mathbb{P}-symbol of a permutation σ is the pair $\left(\operatorname{bst}(\sigma)\right.$, $\left.\operatorname{bst}\left(\sigma^{\sim}\right)\right)$.

This definition is based on the previous proposition and the following theorem:

Theorem [Hivert, Novelli, Thibon, 2005]

$$
\operatorname{bst}\left(u^{\sim}\right)=\operatorname{bst}\left(v^{\sim}\right) \quad \text { iff } \quad u \equiv s v .
$$

Let σ be a permutation. The left member of $\mathbb{P}(\sigma)$ encodes the \#-sylvester class of σ while the second member encodes its sylvester class.

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has
$\perp \perp$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has

$$
\perp \perp \quad \xrightarrow{6} \quad \text { (6) (6) }
$$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has

$$
\perp \perp \quad \xrightarrow{6} \quad \text { (6) (6) } \quad \xrightarrow{3} \quad \text { (3) }^{6(3)} \text { (6) }
$$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has
$\perp \perp \quad \xrightarrow{6} \quad$ (6) (6) $\xrightarrow{3}$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has
$\perp \perp \xrightarrow{6} \quad$ (6) (6) $\xrightarrow{3}$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has

$\xrightarrow{2}$

Insertion algorithm

$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.
For example, for $\sigma:=6317425$ one has
$\perp \perp \quad \xrightarrow{6} \quad$ (6) (6) $\quad 3$

 $\xrightarrow{2}$

(1)

The \mathbb{P}-symbol

For all permutation $\sigma, \mathbb{P}(\sigma)$ is a pair of twin binary trees.

Theorem

$$
\mathbb{P}(\sigma)=\mathbb{P}(\nu) \quad \text { iff } \quad \sigma \equiv_{\mathrm{B}} \nu
$$

Hence, the application $\mathbb{P}: \mathfrak{S} / \equiv_{\mathrm{B}} \rightarrow \mathcal{T B}$ T is an injection.

The \mathbb{Q}-symbol

Definition

Let σ be a permutation and $\left(T_{L}, T_{R}\right):=\mathbb{P}(\sigma)$. The \mathbb{Q}-symbol of σ is the pair of twin binary trees $\left(S_{L}, S_{R}\right)$ where the nodes of S_{L} (resp. $\left.S_{R}\right)$ are labeled by the moment of creation of the corresponding node of T_{L} (resp. T_{R}).

For example, the \mathbb{Q}-symbol of $\sigma:=6317425$ is

A Robinson-Schensted-like correspondence

Theorem

The map $\sigma \longmapsto(\mathbb{P}(\sigma), \mathbb{Q}(\sigma))$ yields a bijection between \mathfrak{S}_{n} and the set of pairs $\left(\left(T_{L}, T_{R}\right),\left(S_{L}, S_{R}\right)\right)$ where:

1. ($\left.T_{L}, T_{R}\right)$ and $\left(S_{L}, S_{R}\right)$ are pairs of twin binary trees with same shape;
2. S_{L} (resp. S_{R}) is an increasing (resp. decreasing) binary trees;
3. S_{L} and S_{R} have the same infix reading.

Theorem

There is a bijection between $\mathfrak{S}_{n} / \equiv_{\mathrm{B}}$ and the set of pairs of twin binary trees with n nodes.

One can encode equivalence classes of $\mathfrak{S}_{n} / \equiv_{B}$ through pairs of twin binary trees.

Contents

Algebraic constructions on Baxter permutations
The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

The Baxter lattice

Proposition

The Baxter equivalence relation is a lattice congruence of the permutohedron.

Here is the Baxter lattice of order 4:

The Baxter lattice

Covering relations are rotations in binary trees. Here is an interval of the lattice of the pairs of twin binary trees of order 5:

Contents

Algebraic constructions on Baxter permutations
The Baxter combinatorial family
The Baxter monoid
A Robinson-Schensted-like correspondence
The Baxter lattice
The Baxter Hopf algebra

Construction of Baxter

For all pair of twin binary trees J, let us define the element P_{J} of FQSym by:

$$
\mathbf{P}_{J}:=\sum_{\substack{\sigma \in \mathfrak{S} \\ \mathbb{P}(\sigma)=J}} \mathbf{F}_{\sigma} .
$$

For example:

$$
\begin{aligned}
P & =F_{12}, \\
P & =F_{2143}+F_{2413}, \\
P & F_{542163}+F_{542613}+F_{546213} .
\end{aligned}
$$

Construction of Baxter

Theorem

The vector space spanned by the family $\left\{\mathbf{P}_{J}\right\}_{J \in \mathcal{T B} \mathcal{T}}$ is a Hopf subalgebra of FQSym.

This is the CHA Baxter. Its product and its coproduct are well-defined since

- \equiv_{B} is a congruence,
- $A^{*} / \equiv_{\mathrm{B}}$ is compatible with the destandardization process,
- $A^{*} / \equiv_{\mathrm{B}}$ is compatible with the restriction of alphabet intervals.

Moreover, the elements $\mathbf{P}_{\boldsymbol{J}}$ that appear in a product $\mathbf{P}_{J_{0}} \cdot \mathbf{P}_{J_{1}}$ form an interval of the Baxter lattice.

Multiplicative bases of Baxter

Let the following elements of Baxter:

$$
\mathbf{E}_{J}:=\sum_{J \leq \mathrm{B} J^{\prime}} \mathbf{P}_{J^{\prime}} \quad \text { and } \quad \mathbf{H}_{J}:=\sum_{J^{\prime} \leq \mathrm{B} J} \mathbf{P}_{J^{\prime}} .
$$

By triangularity, the families $\left\{\mathrm{E}_{J}\right\}_{J \in \mathcal{T B} \mathcal{T}}$ and $\left\{\mathrm{H}_{J}\right\}_{J \in \mathcal{T B} \mathcal{T}}$ are bases of Baxter.

Proposition

The families $\left\{\mathrm{E}_{J}\right\}_{J \in \mathcal{T B} \mathcal{T}}$ and $\left\{\mathbf{H}_{J}\right\}_{J \in \mathcal{T B} \mathcal{T}}$ are multiplicative bases of Baxter. In particular:

$$
\mathbf{E}_{J_{0}} \cdot \mathbf{E}_{J_{1}}=\mathbf{E}_{J_{0} / J_{1}} \quad \text { and } \quad \mathbf{H}_{J_{0}} \cdot \mathbf{H}_{J_{1}}=\mathbf{H}_{J_{0} \backslash J_{1}} .
$$

Multiplicative bases of Baxter

For example:

$$
\mathrm{H}_{0} \operatorname{oos}_{0}^{\mathrm{o}} \cdot \mathrm{H}, 0,0=
$$

Multiplicative bases of Baxter

For example:

Multiplicative bases of Baxter

For example:

Multiplicative bases of Baxter

For example:

$$
\mathrm{H}_{0} \operatorname{oos}_{0} \cdot \mathrm{H}_{0}, 0.0
$$

Multiplicative bases of Baxter

For example:

Multiplicative bases of Baxter

For example:

Multiplicative bases of Baxter

For example:

Algebraic structure of Baxter

Multiplicative bases of Baxter and freeness of FQSym imply

Proposition

Baxter is free as an algebra.

The results of Foissy [Foissy, 2005] on the bidendriform structure of FQSym imply

Proposition

The primitive Lie algebra of Baxter is free.

Proposition

Baxter is self-dual.
Nevertheless, no isomorphism between Baxter and Baxter ${ }^{\star}$ is known.

Conclusion

Conclusion

Conclusion

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A^{*}	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst $^{\sim}$	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order

Conclusion

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A^{*}	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst $^{\sim}$	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order
Baxter	pairs of twin b. t.	Baxter	bst + bst $^{\sim}$	Baxter lattice

