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The vector space of permutations

Let FQSymn be the Q-vector space based on permutations of {1, . . . , n}
and

FQSym :=
⊕
n≥0

FQSymn,

be the vector space of permutations.

Its elements can be handled through the fundamental basis {Fσ}σ∈S.

A product and a coproduct can be added to this structure to form the
Hopf algebra of Free quasi-symmetric functions, also known as the
Malvenuto-Reutenauer Hopf algebra.



A product in FQSym

FQSym is endowed by the shifted shuffle product:

Fσ · Fν :=
∑

π∈σ�ν

Fπ.

For example:

F12 · F21 =

F1243 + F1423 + F1432 + F4123 + F4132 + F4312.

I This product is associative and non-commutative;

I It admits Fε as unit;

I It is graded: · : FQSymn ⊗ FQSymm → FQSymn+m.

Hence, (FQSym, ·) is a graded unital associative algebra.
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Right permutohedron order
Let σ, ν ∈ Sn. σ is covered by ν if σ = uabv and ν = ubav where
a < b. This covering relation spans the right permutohedron.

Here is that of permutations of size 4:

1234

2134

2143

12431324

2314 3124 14231342

2341 3214 2413 3142 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

The elements Fπ appearing in a product Fσ · Fν form an interval of the
permutohedron.
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Standardization process

Let A := {a < b < c < . . .} be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation
σ from a word u ∈ A∗ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

c a b b d a a b d

1 2 3
4 5 6

7 8 9

7 1 4 5 8 2 3 6 9
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A coproduct in FQSym

FQSym is endowed by the deconcatenation coproduct:

∆ (Fσ) :=
∑
u.v=σ

Fstd(u) ⊗ Fstd(v).

For example:

∆ () =

Fε ⊗ F4123 + F1 ⊗ F123 + F21 ⊗ F12 + F312 ⊗ F1 + F4123 ⊗ Fε.

I This coproduct is coassociative;

I It is non-cocommutative;

I It is graded: ∆ : FQSymn →
⊕

i+j=n FQSymi ⊗ FQSymj .

Hence, (FQSym,∆) is a graded coassociative coalgebra.
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FQSym as a combinatorial Hopf algebra

These algebra and coalgebra structures are compatible, i.e., ∆ is an
algebra morphism:

∆ (Fσ · Fν) = ∆ (Fσ) ·∆ (Fν) .

Hence, FQSym is a bialgebra.

Since FQSym is graded and connected, it is a Hopf algebra.

We use the heuristic term of combinatorial Hopf algebra (CHA) for
graded and connected Hopf algebras based on combinatorial objects.
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Equivalence relations on words

We define equivalence relations on words of A∗ by taking the reflexive,
symmetric, and transitive closure of a rewriting rule � .

We are interested by equivalence relations on A∗ that are congruences:

Definition

The equivalence relation ≡ is a congruence if for all u, u′, v , v ′ ∈ A∗,

u ≡ v and u′ ≡ v ′ imply u.u′ ≡ v .v ′.

In this way, A∗/≡ is a quotient monoid of the free monoid.



An example: The plactic equivalence relation

For example, the rewriting rule

. . . acb . . . � . . . cab . . . if a ≤ b < c,

. . . bac . . . � . . . bca . . . if a < b ≤ c,

defines the well-known plactic equivalence relation ≡P . A∗/ ≡P
is the

plactic monoid.

Here is the plactic equivalence class of 31542:

31542

35142

35412 53142

53412
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Compatibility with the destandardization process

Denote by ev(u) the non-decreasing rearrangement of u. For example:

ev(babcaac) = aaabbcc.

Definition

Let ≡ be a congruence. The monoid A∗/≡ is compatible with the
destandardization process if for all u, v ∈ A∗,

u ≡ v iff std(u) ≡ std(v) and ev(u) = ev(v).



Compatibility with the restriction of alphabet intervals

Let S ⊆ A and u be a word. Denote by u|S the longest subword of u
made of letters of S . For example:

bcacca|{a,b} = baa.

Definition

Let ≡ be a congruence. The monoid A∗/≡ is compatible with the
restriction of alphabet intervals if for all interval L of A and u, v ∈ A∗,

u ≡ v implies u|L ≡ v |L.
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Construction of Hopf subalgebras of FQSym

Let ≡ be an equivalence relation. For all equivalence class C of S/≡, let
us define the following element of FQSym:

PC :=
∑
σ∈C

Fσ.

Theorem [Hivert, Nzeutchap, 2007]

If ≡ is a congruence and A∗/≡ is compatible with the destandardization
process and with the restriction of alphabet intervals, then, the family
{PC}C∈S/≡ spans a Hopf subalgebra of FQSym.



Some Hopf subalgebras of FQSym

FQSym

Permutations
1,1,2,6,24,120,720

FSym

Std. Young. tab.
1,1,2,4,10,26,76

Sym

Compositions
1,1,2,4,8,16,32

PBT
Binary trees

1,1,2,5,14,42,132

DSym(3)

–
1,1,2,6,18,54,162

DSym(4)

–
1,1,2,6,24,96,384

Bell
Set partitions

1,1,2,5,15,52,203
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Combinatorial structures and Hopf subalgebras

The construction of Hopf subalgebras of FQSym from an equivalence
relation often leads to the construction of new combinatorial structures:

CHA Objects Monoid Ins. Alg. Partial order

FQSym permutations A∗ trivial permutohedron
FSym std. Young tab. plactic R-S Reiner order
PBT binary trees sylvester bst∼ Tamari lattice
Sym compositions hypoplactic K-T hypercube
Bell set partitions Bell Bell Bell order

Aim of this work

Provide similar structures on Baxter permutations.
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Baxter permutations

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the
generalized permutation patterns

2− 41− 3

and
3− 14− 2.

For example:

I 561382479

is not a Baxter permutation;

I ε, 1, 1234, 2143

are Baxter permutations.
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Baxter objects

Theorem [Chung and al., 1978]

The number bn of Baxter permutations of size n is

bn =
n∑

k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)(
n+1

1

)(
n+1

2

) .

The sequence (bn)n≥0 begins as

1, 1, 2, 6, 22, 92, 422, 2074, 10754.

This enumerates also

I pairs of twin binary trees [Dulucq, Guibert, 1994];

I rectangular partitions [Yao and al., 2003];

I planar bipolar orientations [Bousquet-Mélou and al., 2010];

and many other objects.



Viennot’s canopy

The canopy of a binary tree T is the word on the alphabet {0, 1}
obtained by browsing the leaves of T from left to right except the first
and the last one, writing 0 if the considered leaf is right-oriented, 1
otherwise.

For example:

0
1 0

0 1 0 1

The canopy of this binary tree is

0100101.
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Viennot’s canopy

The canopy of a binary tree T is the word on the alphabet {0, 1}
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Pairs of twin binary trees

Definition

A pair (TL,TR) of binary trees is a pair of twin binary trees if the
canopies of TL and TR are complementary.

The six pairs of twin binary trees with 3 nodes are

, , ,

, , .

Theorem [Dulucq, Guibert, 1994]

The set of pairs of twin binary trees with n nodes is in bijection with the
set of Baxter permutations of size n.
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The Baxter monoid

Definition

The Baxter equivalence relation ≡B is defined from the Baxter rewriting
rule � where:

. . . c u ad v b . . . � . . . c u da v b . . . if a ≤ b < c ≤ d,

. . . b u da v c . . . � . . . b u ad v c . . . if a < b ≤ c < d.

On permutations, one has σ � ν iff

σ = u.ad.v and ν = u.da.v with u|[a,d] 6= ε 6= v|[a,d].

We call A∗/ ≡B
the Baxter monoid.



An example of Baxter equivalence class

The Baxter equivalence class of 3125647 is

3125647

3152647

3156247 3512647

3516247

3561247
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Structure properties of the Baxter monoid

Proposition

The Baxter monoid is compatible with the destandardization process.

Proposition

The Baxter monoid is compatible with the restriction of alphabet
intervals.



Link with the sylvester monoid

The Schützenberger involution #: S→ S is the composition of two
involutions: The mirror image ∼ and the complementation c .

For example:

I 123
∼−→ 321

c−→ 123, and hence (123)# = 123;

I 4312
∼−→ 2134

c−→ 3421, and hence (4312)# = 3421.

Let ≡S be the sylvester equivalence and ≡S# be the #-sylvester
equivalence.

Proposition

Let σ and ν be two permutations. Then,

σ ≡B ν iff σ ≡S ν and σ ≡S# ν.
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The P-symbol

Definition

The P-symbol of a permutation σ is the pair (bst(σ), bst (σ∼)).

This definition is based on the previous proposition and the following
theorem:

Theorem [Hivert, Novelli, Thibon, 2005]

bst(u∼) = bst(v∼) iff u ≡S v .

Let σ be a permutation. The left member of P(σ) encodes the
#-sylvester class of σ while the second member encodes its sylvester
class.



Insertion algorithm

P(σ) is constructed by iteratively inserting the letters of σ and by making
well-known leaf insertions and root insertions in binary search trees.

For example, for σ := 6317425 one has
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well-known leaf insertions and root insertions in binary search trees.

For example, for σ := 6317425 one has

⊥⊥ 6−→ 6 6
3−→

3

6 3

6

1−→
1

3

6 1

3

6

7−→
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The P-symbol

For all permutation σ, P(σ) is a pair of twin binary trees.

Theorem

P(σ) = P(ν) iff σ ≡B ν.

Hence, the application P : S/ ≡B
→ T BT is an injection.



The Q-symbol

Definition

Let σ be a permutation and (TL,TR) := P(σ). The Q-symbol of σ is the
pair of twin binary trees (SL,SR) where the nodes of SL (resp. SR) are
labeled by the moment of creation of the corresponding node of TL

(resp. TR).

For example, the Q-symbol of σ := 6317425 is

3
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6
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A Robinson-Schensted-like correspondence

Theorem

The map σ 7−→ (P(σ),Q(σ)) yields a bijection between Sn and the set
of pairs ((TL,TR), (SL,SR)) where:

1. (TL,TR) and (SL,SR) are pairs of twin binary trees with same shape;

2. SL (resp. SR) is an increasing (resp. decreasing) binary trees;

3. SL and SR have the same infix reading.

Theorem

There is a bijection between Sn/ ≡B
and the set of pairs of twin binary

trees with n nodes.

One can encode equivalence classes of Sn/ ≡B
through pairs of twin

binary trees.
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The Baxter lattice

Proposition

The Baxter equivalence relation is a lattice congruence of the
permutohedron.

Here is the Baxter lattice of order 4:

1234

2134 12431324

2314 21433124 14231342

2341 3214 2413 3142 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321



The Baxter lattice

Covering relations are rotations in binary trees. Here is an interval of the
lattice of the pairs of twin binary trees of order 5:
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Construction of Baxter

For all pair of twin binary trees J, let us define the element PJ of
FQSym by:

PJ :=
∑
σ∈S
P(σ)=J

Fσ.

For example:

P = F12,

P = F2143 + F2413,

P = F542163 + F542613 + F546213.



Construction of Baxter

Theorem

The vector space spanned by the family {PJ}J∈T BT is a Hopf subalgebra
of FQSym.

This is the CHA Baxter. Its product and its coproduct are well-defined
since

I ≡B is a congruence,

I A∗/ ≡B
is compatible with the destandardization process,

I A∗/ ≡B
is compatible with the restriction of alphabet intervals.

Moreover, the elements PJ that appear in a product PJ0 · PJ1 form an
interval of the Baxter lattice.



Multiplicative bases of Baxter

Let the following elements of Baxter:

EJ :=
∑
J≤BJ′

PJ′ and HJ :=
∑
J′≤BJ

PJ′ .

By triangularity, the families {EJ}J∈T BT and {HJ}J∈T BT are bases of
Baxter.

Proposition

The families {EJ}J∈T BT and {HJ}J∈T BT are multiplicative bases of
Baxter. In particular:

EJ0 · EJ1 = EJ0�J1 and HJ0 ·HJ1 = HJ0�J1
.



Multiplicative bases of Baxter

For example:

E · E =

E ,

H ·H =

H .
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Multiplicative bases of Baxter

For example:

E · E = E ,

H ·H = H .



Algebraic structure of Baxter

Multiplicative bases of Baxter and freeness of FQSym imply

Proposition

Baxter is free as an algebra.

The results of Foissy [Foissy, 2005] on the bidendriform structure of
FQSym imply

Proposition

The primitive Lie algebra of Baxter is free.

Proposition

Baxter is self-dual.

Nevertheless, no isomorphism between Baxter and Baxter? is known.
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