Algebraic and combinatorial structures on Baxter permutations

Samuele Giraudo

Université de Marne-la-Vallée

66th Séminaire Lotharingien de Combinatoire March 8, 2011

Contents

Hopf algebra of permutations and construction of subalgebras The Hopf algebra of permutations Equivalence relations and quotients of the free monoid More structure on quotient monoids From quotient monoids to Hopf subalgebras

Algebraic constructions on Baxter permutations

The Baxter combinatorial family The Baxter monoid A Robinson-Schensted-like correspondence The Baxter lattice The Baxter Hopf algebra

Contents

Hopf algebra of permutations and construction of subalgebras The Hopf algebra of permutations

Equivalence relations and quotients of the free monoid More structure on quotient monoids From quotient monoids to Hopf subalgebras

The vector space of permutations

Let \mathbf{FQSym}_n be the \mathbb{Q} -vector space based on permutations of $\{1, \ldots, n\}$ and

$$\mathsf{FQSym} := \bigoplus_{n \ge 0} \mathsf{FQSym}_n,$$

be the vector space of permutations.

Its elements can be handled through the fundamental basis $\{F_{\sigma}\}_{\sigma \in \mathfrak{S}}$.

A product and a coproduct can be added to this structure to form the Hopf algebra of Free quasi-symmetric functions, also known as the Malvenuto-Reutenauer Hopf algebra.

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \, \square \nu} \mathbf{F}_{\pi}.$$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \, \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} =$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \, \overline{\square} \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} = \textbf{F}_{\bullet \bullet \bullet \bullet} + \textbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \, \overline{\square} \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{12 \bullet \bullet} + \mathbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{12 \bullet \bullet} + \mathbf{F}_{1 \bullet 2 \bullet} + \mathbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{12 \bullet \bullet} + \mathbf{F}_{1 \bullet 2 \bullet} + \mathbf{F}_{1 \bullet \bullet 2} + \mathbf{F}_{\bullet \bullet \bullet \bullet} + \mathbf{F}_{\bullet \bullet \bullet \bullet} + \mathbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} = \textbf{F}_{12 \bullet \bullet} + \textbf{F}_{1 \bullet 2 \bullet} + \textbf{F}_{1 \bullet \bullet 2} + \textbf{F}_{\bullet 12 \bullet} + \textbf{F}_{\bullet \bullet \bullet \bullet} + \textbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} = \textbf{F}_{12 \bullet \bullet} + \textbf{F}_{1 \bullet 2 \bullet} + \textbf{F}_{1 \bullet \bullet 2} + \textbf{F}_{\bullet 12 \bullet} + \textbf{F}_{\bullet 1 \bullet 2} + \textbf{F}_{\bullet \bullet \bullet \bullet}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{12 \bullet \bullet} + \mathbf{F}_{1 \bullet 2 \bullet} + \mathbf{F}_{1 \bullet 2} + \mathbf{F}_{\bullet 12 \bullet} + \mathbf{F}_{\bullet 1 \bullet 2} + \mathbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} = \textbf{F}_{1243} + \textbf{F}_{1 \bullet 2 \bullet} + \textbf{F}_{1 \bullet \bullet 2} + \textbf{F}_{\bullet 12 \bullet} + \textbf{F}_{\bullet 1 \bullet 2} + \textbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{1243} + \mathbf{F}_{1423} + \mathbf{F}_{1 \bullet \bullet 2} + \mathbf{F}_{\bullet 12 \bullet} + \mathbf{F}_{\bullet 1 \bullet 2} + \mathbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{1243} + \mathbf{F}_{1423} + \mathbf{F}_{1432} + \mathbf{F}_{\bullet 12\bullet} + \mathbf{F}_{\bullet 1\bullet 2} + \mathbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{1243} + \mathbf{F}_{1423} + \mathbf{F}_{1432} + \mathbf{F}_{4123} + \mathbf{F}_{\bullet 1 \bullet 2} + \mathbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{1243} + \mathbf{F}_{1423} + \mathbf{F}_{1432} + \mathbf{F}_{4123} + \mathbf{F}_{4132} + \mathbf{F}_{\bullet \bullet 12}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

 $\textbf{F}_{12} \cdot \textbf{F}_{21} = \textbf{F}_{1243} + \textbf{F}_{1423} + \textbf{F}_{1432} + \textbf{F}_{4123} + \textbf{F}_{4132} + \textbf{F}_{4312}.$

FQSym is endowed by the shifted shuffle product:

$$\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu} := \sum_{\pi \in \sigma \square \nu} \mathbf{F}_{\pi}.$$

For example:

$$\mathbf{F}_{12} \cdot \mathbf{F}_{21} = \mathbf{F}_{1243} + \mathbf{F}_{1423} + \mathbf{F}_{1432} + \mathbf{F}_{4123} + \mathbf{F}_{4132} + \mathbf{F}_{4312}.$$

This product is associative and non-commutative;

- It admits F_e as unit;
- ▶ It is graded: \cdot : FQSym_n \otimes FQSym_m \rightarrow FQSym_{n+m}.

Hence, $(FQSym, \cdot)$ is a graded unital associative algebra.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Here is that of permutations of size 4:

1234

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Here is that of permutations of size 4:

1234

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Let $\sigma, \nu \in \mathfrak{S}_n$. σ is covered by ν if $\sigma = uabv$ and $\nu = ubav$ where a < b. This covering relation spans the right permutohedron.

Here is that of permutations of size 4:

The elements \mathbf{F}_{π} appearing in a product $\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\nu}$ form an interval of the permutohedron.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

For example, the computation of std(cabbdaabd) gives:

c a b b d a a b d

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.
Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

Let $A := \{a < b < c < ...\}$ be a totally ordered infinite alphabet.

The standardization process std is an algorithm computing a permutation σ from a word $u \in A^*$ such that σ has the same inversions than u.

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

 $\Delta\left(\textbf{F}_{4123}\right) =$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

 $\Delta\left(\mathbf{F}_{|4123}\right) = \mathbf{F}_{\epsilon} \otimes \mathbf{F}_{4123}$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

$$\Delta\left(\mathsf{F}_{4|123}\right) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{4123} + \mathsf{F}_{1} \otimes \mathsf{F}_{123}$$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

$$\Delta\left(\mathsf{F}_{41|23}\right) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{4123} + \mathsf{F}_{1} \otimes \mathsf{F}_{123} + \mathsf{F}_{21} \otimes \mathsf{F}_{12}$$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

$$\Delta\left(\mathsf{F}_{412|3}\right) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{4123} + \mathsf{F}_{1} \otimes \mathsf{F}_{123} + \mathsf{F}_{21} \otimes \mathsf{F}_{12} + \mathsf{F}_{312} \otimes \mathsf{F}_{1}$$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

 $\Delta\left(\mathbf{F}_{4123|}\right) = \mathbf{F}_{\epsilon} \otimes \mathbf{F}_{4123} + \mathbf{F}_{1} \otimes \mathbf{F}_{123} + \mathbf{F}_{21} \otimes \mathbf{F}_{12} + \mathbf{F}_{312} \otimes \mathbf{F}_{1} + \mathbf{F}_{4123} \otimes \mathbf{F}_{\epsilon}.$

FQSym is endowed by the deconcatenation coproduct:

$$\Delta(\mathsf{F}_{\sigma}) := \sum_{u.v=\sigma} \mathsf{F}_{\mathsf{std}(u)} \otimes \mathsf{F}_{\mathsf{std}(v)}.$$

For example:

 $\Delta(\mathsf{F}_{4123}) = \mathsf{F}_{\epsilon} \otimes \mathsf{F}_{4123} + \mathsf{F}_{1} \otimes \mathsf{F}_{123} + \mathsf{F}_{21} \otimes \mathsf{F}_{12} + \mathsf{F}_{312} \otimes \mathsf{F}_{1} + \mathsf{F}_{4123} \otimes \mathsf{F}_{\epsilon}.$

- This coproduct is coassociative;
- It is non-cocommutative;
- ▶ It is graded: Δ : FQSym_n → $\bigoplus_{i+j=n}$ FQSym_i ⊗ FQSym_j.

Hence, $(FQSym, \Delta)$ is a graded coassociative coalgebra.

FQSym as a combinatorial Hopf algebra

These algebra and coalgebra structures are compatible, *i.e.*, Δ is an algebra morphism:

$$\Delta\left(\mathbf{F}_{\sigma}\cdot\mathbf{F}_{\nu}\right)=\Delta\left(\mathbf{F}_{\sigma}\right)\cdot\Delta\left(\mathbf{F}_{\nu}\right).$$

Hence, **FQSym** is a bialgebra.

Since **FQSym** is graded and connected, it is a Hopf algebra.

We use the heuristic term of combinatorial Hopf algebra (CHA) for graded and connected Hopf algebras based on combinatorial objects.

Contents

Hopf algebra of permutations and construction of subalgebras The Hopf algebra of permutations Equivalence relations and quotients of the free monoid More structure on quotient monoids From quotient monoids to Hopf subalgebras

Equivalence relations on words

We define equivalence relations on words of A^* by taking the reflexive, symmetric, and transitive closure of a rewriting rule \rightleftharpoons .

We are interested by equivalence relations on A^* that are congruences:

Definition

The equivalence relation \equiv is a congruence if for all $u, u', v, v' \in A^*$,

 $u \equiv v$ and $u' \equiv v'$ imply $u.u' \equiv v.v'$.

In this way, $A^*/_{\equiv}$ is a quotient monoid of the free monoid.

For example, the rewriting rule

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

For example, the rewriting rule

 $\label{eq:acb} \begin{array}{ll} \ldots \mbox{ acb } \ldots \mbox{ } \rightleftarrows \mbox{ } \ldots \mbox{ } \mbo$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:

31542

For example, the rewriting rule

 $\label{eq:acb} \begin{array}{ll} \ldots \mbox{ acb } \ldots \mbox{ } \rightleftarrows \mbox{ } \ldots \mbox{ } \mbo$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

Here is the plactic equivalence class of 31542:

<mark>315</mark>42

For example, the rewriting rule

 $\label{eq:acb} \begin{array}{ll} \ldots \mbox{ acb } \ldots \mbox{ } \rightleftarrows \mbox{ } \ldots \mbox{ } \mbo$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

```
31542
|
35142
```

For example, the rewriting rule

 $\label{eq:acb} \begin{array}{ll} \ldots \mbox{ acb } \ldots \mbox{ } \rightleftarrows \mbox{ } \ldots \mbox{ } \mbo$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

```
31542
|
35142
```

For example, the rewriting rule

 $\label{eq:acb} \dots \rightleftarrows \dots \rightleftarrows \dots \ cab \dots \qquad \text{if } a \leq b < c, \\ \dots bac \dots \rightleftarrows \dots bca \dots \qquad \text{if } a < b \leq c, \\ \end{array}$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

For example, the rewriting rule

 $\label{eq:acb} \begin{array}{ll} \ldots acb \ldots \rightleftarrows \ldots cab \ldots & \mbox{if } a \leq b < c, \\ \ldots bac \ldots \rightleftarrows \ldots bca \ldots & \mbox{if } a < b \leq c, \end{array}$

defines the well-known plactic equivalence relation \equiv_P . $A^*/_{\equiv_P}$ is the plactic monoid.

Contents

Hopf algebra of permutations and construction of subalgebras

The Hopf algebra of permutations Equivalence relations and quotients of the free monoid More structure on quotient monoids

Compatibility with the destandardization process

Denote by ev(u) the non-decreasing rearrangement of u. For example:

ev(babcaac) = aaabbcc.

Definition

Let \equiv be a congruence. The monoid $A^*/_{\equiv}$ is compatible with the destandardization process if for all $u, v \in A^*$,

 $u \equiv v$ iff $std(u) \equiv std(v)$ and ev(u) = ev(v).

Compatibility with the restriction of alphabet intervals

Let $S \subseteq A$ and u be a word. Denote by $u_{|S}$ the longest subword of u made of letters of S. For example:

 $bcacca_{|\{a,b\}} = baa.$

Definition

Let \equiv be a congruence. The monoid $A^*/_{\equiv}$ is compatible with the restriction of alphabet intervals if for all interval *L* of *A* and *u*, *v* \in A^* ,

 $u \equiv v$ implies $u_{|L} \equiv v_{|L}$.

Contents

Hopf algebra of permutations and construction of subalgebras

The Hopf algebra of permutations Equivalence relations and quotients of the free monoid More structure on quotient monoids

From quotient monoids to Hopf subalgebras

Construction of Hopf subalgebras of FQSym

Let \equiv be an equivalence relation. For all equivalence class C of $\mathfrak{S}/_{\equiv}$, let us define the following element of **FQSym**:

$$\mathsf{P}_{\mathsf{C}} := \sum_{\sigma \in \mathsf{C}} \mathsf{F}_{\sigma}.$$

Theorem [Hivert, Nzeutchap, 2007]

If \equiv is a congruence and $A^*/_{\equiv}$ is compatible with the destandardization process and with the restriction of alphabet intervals, then, the family $\{\mathbf{P}_C\}_{C\in\mathfrak{S}/_{\equiv}}$ spans a Hopf subalgebra of **FQSym**.

FQSym Permutations 1,1,2,6,24,120,720

Combinatorial structures and Hopf subalgebras

The construction of Hopf subalgebras of **FQSym** from an equivalence relation often leads to the construction of new combinatorial structures:

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A*	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst^\sim	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order

Aim of this work

Provide similar structures on Baxter permutations.

Contents

Algebraic constructions on Baxter permutations The Baxter combinatorial family

The Baxter monoid A Robinson-Schensted-like correspondence The Baxter lattice The Baxter Hopf algebra
Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

2 - 41 - 3

and

3 - 14 - 2.

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

2 - 41 - 3

and

$$3 - 14 - 2$$
.

- 561382479
- ▶ *ϵ*, 1, 1234, 2143

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

2 - 41 - 3

and

$$3 - 14 - 2$$
.

- 561382479 is not a Baxter permutation;
- ▶ *ϵ*, 1, 1234, 2143

Definition

The permutation σ is a Baxter permutation [Baxter, 1964] if it avoids the generalized permutation patterns

2 - 41 - 3

and

$$3 - 14 - 2$$
.

- 561382479 is not a Baxter permutation;
- ϵ , 1, 1234, 2143 are Baxter permutations.

Baxter objects

Theorem [Chung and al., 1978]

The number b_n of Baxter permutations of size n is

$$b_n = \sum_{k=1}^n \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}}$$

The sequence $(b_n)_{n\geq 0}$ begins as

1, 1, 2, 6, 22, 92, 422, 2074, 10754.

This enumerates also

- pairs of twin binary trees [Dulucq, Guibert, 1994];
- rectangular partitions [Yao and al., 2003];

 planar bipolar orientations [Bousquet-Mélou and al., 2010]; and many other objects.

The canopy of a binary tree T is the word on the alphabet $\{0, 1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of a binary tree T is the word on the alphabet $\{0,1\}$ obtained by browsing the leaves of T from left to right except the first and the last one, writing 0 if the considered leaf is right-oriented, 1 otherwise.

For example:

The canopy of this binary tree is 0100101.

Pairs of twin binary trees

Definition

A pair (T_L, T_R) of binary trees is a pair of twin binary trees if the canopies of T_L and T_R are complementary.

The six pairs of twin binary trees with 3 nodes are

Theorem [Dulucq, Guibert, 1994]

The set of pairs of twin binary trees with n nodes is in bijection with the set of Baxter permutations of size n.

Contents

Algebraic constructions on Baxter permutations

The Baxter combinatorial family

The Baxter monoid

A Robinson-Schensted-like correspondence The Baxter lattice The Baxter Hopf algebra

The Baxter monoid

Definition

The Baxter equivalence relation \equiv_B is defined from the Baxter rewriting rule \rightleftharpoons where:

... c u ad v b... \rightleftharpoons ... c u da v b... if $a \le b < c \le d$, ... b u da v c... \rightleftharpoons ... b u ad v c... if $a < b \le c < d$.

On permutations, one has $\sigma \rightleftharpoons \nu$ iff

 $\sigma = u.ad.v$ and $\nu = u.da.v$ with $u_{|[a,d]} \neq \epsilon \neq v_{|[a,d]}$.

We call $A^*/_{\equiv_B}$ the Baxter monoid.

The Baxter equivalence class of 3125647 is

The Baxter equivalence class of 3125647 is

Structure properties of the Baxter monoid

Proposition

The Baxter monoid is compatible with the destandardization process.

Proposition

The Baxter monoid is compatible with the restriction of alphabet intervals.

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation *c*.

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation *c*.

▶ 123
$$\xrightarrow{\sim}$$

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

▶ 123
$$\xrightarrow{\sim}$$
 321 \xrightarrow{c}

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

For example:

▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123,

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation *c*.

For example:

▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

- ▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;
- ▶ 4312 $\xrightarrow{\sim}$

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

- ▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;
- ▶ 4312 $\xrightarrow{\sim}$ 2134 \xrightarrow{c}

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation c.

- ▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;
- ▶ $4312 \xrightarrow{\sim} 2134 \xrightarrow{c} 3421$,

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation *c*.

- ▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;
- ▶ 4312 $\xrightarrow{\sim}$ 2134 \xrightarrow{c} 3421, and hence (4312)[#] = 3421.

The Schützenberger involution $\#: \mathfrak{S} \to \mathfrak{S}$ is the composition of two involutions: The mirror image \sim and the complementation *c*. For example:

- ▶ 123 $\xrightarrow{\sim}$ 321 \xrightarrow{c} 123, and hence (123)[#] = 123;
- ▶ $4312 \xrightarrow{\sim} 2134 \xrightarrow{c} 3421$, and hence $(4312)^{\#} = 3421$.

Let \equiv_S be the sylvester equivalence and $\equiv_{S^{\#}}$ be the $\#\mbox{-sylvester}$ equivalence.

Proposition

Let σ and ν be two permutations. Then,

$$\sigma \equiv_{\mathsf{B}} \nu$$
 iff $\sigma \equiv_{\mathsf{S}} \nu$ and $\sigma \equiv_{\mathsf{S}^{\#}} \nu$.

Contents

Algebraic constructions on Baxter permutations

- The Baxter combinatorial family
- The Baxter monoid

A Robinson-Schensted-like correspondence

The Baxter lattice The Baxter Hopf algebra

The \mathbb{P} -symbol

Definition

The \mathbb{P} -symbol of a permutation σ is the pair $(bst(\sigma), bst(\sigma^{\sim}))$.

This definition is based on the previous proposition and the following theorem:

Theorem [Hivert, Novelli, Thibon, 2005]

$$bst(u^{\sim}) = bst(v^{\sim})$$
 iff $u \equiv_{S} v$.

Let σ be a permutation. The left member of $\mathbb{P}(\sigma)$ encodes the #-sylvester class of σ while the second member encodes its sylvester class.
$\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

For example, for $\sigma := 6317425$ one has

$\perp \perp$

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

For example, for $\sigma:=6317425$ one has

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

For example, for $\sigma := 6317425$ one has

$$\perp \perp \xrightarrow{6} 66 \xrightarrow{3} 363$$

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

 \frown

For example, for $\sigma:=6317425$ one has

$$\perp \perp \xrightarrow{6} 6 6 \xrightarrow{3} 3 \xrightarrow{6} 3 \xrightarrow{6} 1 \xrightarrow{3} 3 \xrightarrow{6} 3 \xrightarrow{6} 1 \xrightarrow{3} 3 \xrightarrow{6} 3 \xrightarrow{6} 1 \xrightarrow{3} 3 \xrightarrow{6} 3 \xrightarrow{7} 3 3 \xrightarrow{7} 3 3 3 \xrightarrow{7} 3 3 3 3 3 3 3 3 3$$

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees.

00

For example, for $\sigma := 6317425$ one has

$$\perp \xrightarrow{6} 66 \xrightarrow{3} 3^{6} \xrightarrow{6} 3 \xrightarrow{6} 3^{6} \xrightarrow{1} 3^{9} \xrightarrow{1} 3^{6} \xrightarrow{7}$$

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees. For example, for $\sigma := 6317425$ one has

 $\perp \bot \xrightarrow{6} 66 \xrightarrow{3} 3 \xrightarrow{6} 3 \xrightarrow{6} 3 \xrightarrow{6} 1 \xrightarrow{7} 3 \xrightarrow{6} 3 \xrightarrow{7} 3 \xrightarrow{6} 3 \xrightarrow{7} 3 3 \xrightarrow{7} 3 3 \xrightarrow{7} 3 3 \xrightarrow{7} 3 3 3$

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees. For example, for $\sigma := 6317425$ one has

 $\mathbb{P}(\sigma)$ is constructed by iteratively inserting the letters of σ and by making well-known leaf insertions and root insertions in binary search trees. For example, for $\sigma := 6317425$ one has

For all permutation σ , $\mathbb{P}(\sigma)$ is a pair of twin binary trees.

Theorem

$$\mathbb{P}(\sigma) = \mathbb{P}(\nu)$$
 iff $\sigma \equiv_{\mathsf{B}} \nu$.

Hence, the application $\mathbb{P}: \mathfrak{S}/_{\equiv_{\mathsf{B}}} \to \mathcal{TBT}$ is an injection.

The \mathbb{Q} -symbol

Definition

Let σ be a permutation and $(T_L, T_R) := \mathbb{P}(\sigma)$. The Q-symbol of σ is the pair of twin binary trees (S_L, S_R) where the nodes of S_L (resp. S_R) are labeled by the moment of creation of the corresponding node of T_L (resp. T_R).

For example, the $\mathbb Q\text{-symbol}$ of $\sigma:=6317425$ is

A Robinson-Schensted-like correspondence

Theorem

The map $\sigma \mapsto (\mathbb{P}(\sigma), \mathbb{Q}(\sigma))$ yields a bijection between \mathfrak{S}_n and the set of pairs $((T_L, T_R), (S_L, S_R))$ where:

- 1. (T_L, T_R) and (S_L, S_R) are pairs of twin binary trees with same shape;
- 2. S_L (resp. S_R) is an increasing (resp. decreasing) binary trees;
- 3. S_L and S_R have the same infix reading.

Theorem

There is a bijection between $\mathfrak{S}_n/_{\equiv_{\mathrm{B}}}$ and the set of pairs of twin binary trees with *n* nodes.

One can encode equivalence classes of $\mathfrak{S}_n/_{\equiv_{\rm B}}$ through pairs of twin binary trees.

Contents

Algebraic constructions on Baxter permutations

The Baxter combinatorial family The Baxter monoid A Robinson-Schensted-like correspondence **The Baxter lattice**

The Baxter lattice

Proposition

The Baxter equivalence relation is a lattice congruence of the permutohedron.

Here is the Baxter lattice of order 4:

The Baxter lattice

Covering relations are rotations in binary trees. Here is an interval of the lattice of the pairs of twin binary trees of order 5:

Contents

Algebraic constructions on Baxter permutations

The Baxter combinatorial family The Baxter monoid A Robinson-Schensted-like correspondence The Baxter lattice

The Baxter Hopf algebra

Construction of **Baxter**

For all pair of twin binary trees J, let us define the element P_J of **FQSym** by:

$$\mathsf{P}_J := \sum_{\substack{\sigma \in \mathfrak{S} \\ \mathbb{P}(\sigma) = J}} \mathsf{F}_{\sigma}.$$

$$P_{0,00} = F_{12},$$

$$P_{0,000} = F_{2143} + F_{2413},$$

$$P_{0,000} = F_{542163} + F_{542613} + F_{546213}.$$

Construction of **Baxter**

Theorem

The vector space spanned by the family $\{\mathbf{P}_J\}_{J \in \mathcal{TBT}}$ is a Hopf subalgebra of **FQSym**.

This is the CHA **Baxter**. Its product and its coproduct are well-defined since

- $\blacktriangleright \equiv_{\mathsf{B}}$ is a congruence,
- $A^*/_{\equiv_B}$ is compatible with the destandardization process,
- $A^*/_{\equiv_B}$ is compatible with the restriction of alphabet intervals.

Moreover, the elements \mathbf{P}_J that appear in a product $\mathbf{P}_{J_0} \cdot \mathbf{P}_{J_1}$ form an interval of the Baxter lattice.

Let the following elements of **Baxter**:

$$\mathbf{E}_J := \sum_{J \leq_{\mathbb{B}} J'} \mathbf{P}_{J'}$$
 and $\mathbf{H}_J := \sum_{J' \leq_{\mathbb{B}} J} \mathbf{P}_{J'}$.

By triangularity, the families $\{E_J\}_{J \in TBT}$ and $\{H_J\}_{J \in TBT}$ are bases of **Baxter**.

Proposition

The families $\{E_J\}_{J \in TBT}$ and $\{H_J\}_{J \in TBT}$ are multiplicative bases of **Baxter**. In particular:

$$\mathbf{E}_{J_0} \cdot \mathbf{E}_{J_1} = \mathbf{E}_{J_0 \nearrow J_1} \quad \text{and} \quad \mathbf{H}_{J_0} \cdot \mathbf{H}_{J_1} = \mathbf{H}_{J_0 \searrow J_1}.$$

Algebraic structure of **Baxter**

Multiplicative bases of Baxter and freeness of FQSym imply

Proposition

Baxter is free as an algebra.

The results of Foissy $[\ensuremath{\textit{Foissy}}, 2005]$ on the bidendriform structure of $\ensuremath{\textit{FQSym}}$ imply

Proposition

The primitive Lie algebra of **Baxter** is free.

Proposition

Baxter is self-dual.

Nevertheless, no isomorphism between **Baxter** and **Baxter**^{*} is known.

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A^*	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst^\sim	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order

CHA	Objects	Monoid	Ins. Alg.	Partial order
FQSym	permutations	A^*	trivial	permutohedron
FSym	std. Young tab.	plactic	R-S	Reiner order
PBT	binary trees	sylvester	bst^\sim	Tamari lattice
Sym	compositions	hypoplactic	K-T	hypercube
Bell	set partitions	Bell	Bell	Bell order
Baxter	pairs of twin b. t.	Baxter	$bst + bst^{\sim}$	Baxter lattice