Poset fiber theorem and some applications

Martina Kubitzke

Fakultät für Mathematik

Joint work with Myrto Kallipoliti

66th Séminaire Lotharingien de Combinatoire, Ellwangen

March 7, 2011

Outline

- The original problem: noncrossing partitions and injective words
- 2 Tools: poset fiber theorems a classical and a new one
- 3 Applications

Outline

The original problem: noncrossing partitions and injective words

- 2) Tools: poset fiber theorems a classical and a new one
- 3 Applications

W finite Coxeter group

NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

What else can be said about topological properties of $\operatorname{NC}(W)$?

W finite Coxeter group NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

What else can be said about topological properties of $\operatorname{NC}(W)$?

W finite Coxeter group

NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

W finite Coxeter group

NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

W finite Coxeter group

NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

W finite Coxeter group

NC(W) poset of *noncrossing partitions*

- NC(W) is a graded, (locally) self-dual lattice (Bessis, Brady, Watt, 2003).
- $NC(S_n)$ is EL-shellable (Björner, Edelmann, 1980).
- $NC(B_n)$ is EL-shellable (Reiner, 2002).
- case-free proof of EL-shellability of NC(W) (Athanasiadis, Brady, Watt, 2007).

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

- I_n poset of *injective words* on $[n] = \{1, \ldots, n\}$
- Γ_n Boolean cell complex with face poset I_n
 - Γ_n is homotopy equivalent to a wedge of spheres (Farmer, 1978).
 - Γ_n is CL-shellable (Björner, Wachs, 1983).
 - homology of Γ_n as an S_n -module (Reiner, Webb, 2004)
 - Hodge type decomposition of the homology of Γ_n (Hanlon, Hersh, 2004)
 - complexes of injective words and refinements (Jonsson, Welker, 2009)

Question

Outline

The original problem: noncrossing partitions and injective words

2 Tools: poset fiber theorems – a classical and a new one

3 Applications

 $\Delta \text{ simplicial complex}$ For $F \in \Delta$: $lk_{\Delta}(F) = \{G \in \Delta : G \cap F = \emptyset; G \cup F \in \Delta\}$ link of F

 Δ homotopy Cohen-Macaulay (HCM) \Leftrightarrow $lk_{\Delta}(F)$ is $(dim(lk_{\Delta}(F)) - 1)$ -connected for all $F \in \Delta$.

 Δ doubly homotopy Cohen-Macaulay \Leftrightarrow

For all $v \in \Delta$ the deletion $\Delta - \{v\} = \{F \in \Delta : v \notin F\}$ is HCM of the same dimension as Δ .

Hierarchy:

shellable \Rightarrow constructible \Rightarrow homotopy Cohen-Macaulay \Rightarrow Cohen-Macaulay

A poset P is called shellable/HCM, . . . if $\Delta(P)$ has this property.

 $\Delta \text{ simplicial complex}$ For $F \in \Delta$: $lk_{\Delta}(F) = \{G \in \Delta : G \cap F = \emptyset; G \cup F \in \Delta\}$ link of F

 Δ homotopy Cohen-Macaulay (HCM) \Leftrightarrow $lk_{\Delta}(F)$ is $(dim(lk_{\Delta}(F)) - 1)$ -connected for all $F \in \Delta$.

 Δ doubly homotopy Cohen-Macaulay \Leftrightarrow

For all $v \in \Delta$ the deletion $\Delta - \{v\} = \{F \in \Delta : v \notin F\}$ is HCM of the same dimension as Δ .

Hierarchy:

shellable \Rightarrow constructible \Rightarrow homotopy Cohen-Macaulay \Rightarrow Cohen-Macaulay

A poset P is called shellable/HCM, . . . if $\Delta(P)$ has this property.

 Δ simplicial complex For $F \in \Delta$: $lk_{\Delta}(F) = \{G \in \Delta : G \cap F = \emptyset; G \cup F \in \Delta\}$ link of F

 Δ homotopy Cohen-Macaulay (HCM) \Leftrightarrow $lk_{\Delta}(F)$ is $(dim(lk_{\Delta}(F)) - 1)$ -connected for all $F \in \Delta$.

 Δ doubly homotopy Cohen-Macaulay \Leftrightarrow

For all $v \in \Delta$ the deletion $\Delta - \{v\} = \{F \in \Delta : v \notin F\}$ is HCM of the same dimension as Δ .

Hierarchy:

shellable \Rightarrow constructible \Rightarrow homotopy Cohen-Macaulay \Rightarrow Cohen-Macaulay

A poset P is called shellable/HCM, . . . if $\Delta(P)$ has this property.

 Δ simplicial complex For $F \in \Delta$: $lk_{\Delta}(F) = \{G \in \Delta : G \cap F = \emptyset; G \cup F \in \Delta\}$ link of F

 Δ homotopy Cohen-Macaulay (HCM) \Leftrightarrow $lk_{\Delta}(F)$ is $(dim(lk_{\Delta}(F)) - 1)$ -connected for all $F \in \Delta$.

 Δ doubly homotopy Cohen-Macaulay \Leftrightarrow

For all $v \in \Delta$ the deletion $\Delta - \{v\} = \{F \in \Delta : v \notin F\}$ is HCM of the same dimension as Δ .

Hierarchy:

shellable \Rightarrow constructible \Rightarrow homotopy Cohen-Macaulay \Rightarrow Cohen-Macaulay

A poset P is called shellable/HCM, ... if $\Delta(P)$ has this property.

 Δ simplicial complex For $F \in \Delta$: $lk_{\Delta}(F) = \{G \in \Delta : G \cap F = \emptyset; G \cup F \in \Delta\}$ link of F

 Δ homotopy Cohen-Macaulay (HCM) \Leftrightarrow $lk_{\Delta}(F)$ is $(dim(lk_{\Delta}(F)) - 1)$ -connected for all $F \in \Delta$.

 Δ doubly homotopy Cohen-Macaulay \Leftrightarrow

For all $v \in \Delta$ the deletion $\Delta - \{v\} = \{F \in \Delta : v \notin F\}$ is HCM of the same dimension as Δ .

Hierarchy:

shellable \Rightarrow constructible \Rightarrow homotopy Cohen-Macaulay \Rightarrow Cohen-Macaulay

A poset *P* is called shellable/HCM, ... if $\Delta(P)$ has this property.

P, Q graded posets

 $f: P \to Q$ poset map if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

 $f: P \to Q$ is *rank-preserving* if rank(p) = rankf(p) for all $p \in P$.

For $p \in P$: $\langle p \rangle = \{ u \in p : u \leq_P p \}.$

Theorem (Quillen)

Let *P* be a graded and *Q* be a HCM poset. Let $f : P \to Q$ be a surjective rank-preserving poset map. Assume that for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle) = \{f^{-1}(u) : u \leq q\}$ is HCM. Then *P* is HCM.

P, Q graded posets

 $f: P \rightarrow Q$ poset map if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

 $f: P \rightarrow Q$ is *rank-preserving* if $\operatorname{rank}(p) = \operatorname{rank} f(p)$ for all $p \in P$.

For $p \in P$: $\langle p \rangle = \{ u \in p : u \leq_P p \}.$

Theorem (Quillen)

Let *P* be a graded and *Q* be a HCM poset. Let $f : P \to Q$ be a surjective rank-preserving poset map. Assume that for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle) = \{f^{-1}(u) : u \leq q\}$ is HCM. Then *P* is HCM.

P, Q graded posets

 $f: P \to Q$ poset map if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

 $f: P \rightarrow Q$ is *rank-preserving* if $\operatorname{rank}(p) = \operatorname{rank} f(p)$ for all $p \in P$.

For $p \in P$: $\langle p \rangle = \{ u \in p : u \leq_P p \}$.

Theorem (Quillen)

Let P be a graded and Q be a HCM poset.

Let $f: P \rightarrow Q$ be a surjective rank-preserving poset map.

Assume that for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle) = \{f^{-1}(u) : u \leq q\}$ is HCM. Then P is HCM.

P, Q graded posets

 $f: P \rightarrow Q$ poset map if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

 $f: P \rightarrow Q$ is *rank-preserving* if $\operatorname{rank}(p) = \operatorname{rank} f(p)$ for all $p \in P$.

For $p \in P$: $\langle p \rangle = \{ u \in p : u \leq_P p \}$.

Theorem (Quillen)

Let *P* be a graded and *Q* be a HCM poset. Let $f : P \to Q$ be a surjective rank-preserving poset map. Assume that for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle) = \{f^{-1}(u) : u \leq q\}$ is HCM. Then *P* is HCM.

P, Q graded posets

 $f: P \to Q$ poset map if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$.

 $f: P \rightarrow Q$ is *rank-preserving* if $\operatorname{rank}(p) = \operatorname{rank} f(p)$ for all $p \in P$.

For $p \in P$: $\langle p \rangle = \{ u \in p : u \leq_P p \}$.

Theorem (Quillen)

Let P be a graded and Q be a HCM poset.

Let $f: P \rightarrow Q$ be a surjective rank-preserving poset map.

Assume that for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle) = \{f^{-1}(u) : u \leq q\}$ is HCM. Then P is HCM.

Theorem

Let P be a graded and Q be a HCM poset. Let $x \in P$

Let $f : P \to Q$ be a surjective rank-preserving poset map.

Assume that

- (i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.
- (ii) there exists $q_0 \in Q$ such that
 - $f^{-1}(q_0) = \{x\}$ and $Q \{q_0\}$ is HCM.
 - for every q > q₀ and p ∈ f⁻¹(q) the poset
 ⟨p⟩ {x} is HCM.

Then $P - \{x\}$ is HCM.

Theorem (Quillen)

```
Let P be a graded and Q be a HCM poset. Let f:P \to Q be a surjective rark-preserving poset map. Assume that  = \text{for every } q \in Q \text{ the fiber}
```

```
Then P is HCM
```

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f: P \rightarrow Q$ be a surjective rank-preserving poset map.

Assume that

(i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.

(ii) there exists $q_0 \in Q$ such that

• $f^{-1}(q_0) = \{x\}$ and $Q - \{q_0\}$ is HCM.

 for every *q* > *q*₀ and *p* ∈ *f*⁻¹(*q*) the poset ⟨*p*⟩ − {*x*} is HCM.

Then $P - \{x\}$ is HCM.

Theorem (Quillen)

```
Let P be a graded and Q be a HCM poset. Let f:P \to Q be a surjective rank-preserving poset map. Assume that
```

```
    for every q ∈ Q the fiber
f<sup>-1</sup> (⟨q⟩) is HCM.
```

```
Then P is HCN
```

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f: P \rightarrow Q$ be a surjective rank-preserving poset map.

Assume that

(i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.

(ii) there exists $q_0 \in Q$ such that

• $f^{-1}(q_0) = \{x\}$ and $Q - \{q_0\}$ is HCM.

 for every *q* > *q*₀ and *p* ∈ *f*⁻¹(*q*) the poset ⟨*p*⟩ − {*x*} is HCM.

Then $P - \{x\}$ is HCM.

Theorem (Quillen)

Let P be a graded and Q be a HCM poset. Let $f:P \to Q$ be a surjective rank-preserving poset map. Assume that

Then P is HCM.

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM.

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f : P \to Q$ be a surjective rank-preserving poset map.

Assume that

(i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.

(ii) there exists $q_0 \in Q$ such that

•
$$f^{-1}(q_0) = \{x\}$$
 and $Q - \{q_0\}$ is HCM.

 for every *q* > *q*₀ and *p* ∈ *f*⁻¹(*q*) the poset ⟨*p*⟩ - {*x*} is HCM.

Then $P - \{x\}$ is HCM.

Theorem (Quillen)

```
Let P be a graded and Q be a HCM poset. Let f:P \to Q be a surjective rank-preserving poset map. Assume that
```

Then P is HCM.

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM.

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f : P \to Q$ be a surjective rank-preserving poset map.

Assume that

- (i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.
- (ii) there exists $q_0 \in Q$ such that
 - $f^{-1}(q_0) = \{x\}$ and $Q \{q_0\}$ is HCM.
 - for every $q > q_0$ and $p \in f^{-1}(q)$ the poset $\langle p \rangle \{x\}$ is HCM.

Then $P - \{x\}$ is HCM.


```
Let P be a graded and Q be a HCM poset. Let f:P \to Q be a surjective rank-preserving poset map. Assume that
```

Then P is HCM.

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f : P \to Q$ be a surjective rank-preserving poset map.

Assume that

- (i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.
- (ii) there exists $q_0 \in Q$ such that

•
$$f^{-1}(q_0) = \{x\}$$
 and $Q - \{q_0\}$ is HCM.

• for every $q > q_0$ and $p \in f^{-1}(q)$ the poset $\langle p \rangle - \{x\}$ is HCM.

Then $P - \{x\}$ is HCM.

Theorem (Quillen)

```
Let P be a graded and Q be a HCM poset. Let f:P \to Q be a surjective rank-preserving poset map. Assume that
```

Then P is HCM.

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM.

Theorem

Let *P* be a graded and *Q* be a HCM poset. Let $x \in P$ and $P - \{x\}$ be a graded poset.

Let $f : P \to Q$ be a surjective rank-preserving poset map.

Assume that

- (i) for every $q \in Q$ the fiber $f^{-1}(\langle q \rangle)$ is HCM.
- (ii) there exists $q_0 \in Q$ such that

•
$$f^{-1}(q_0) = \{x\}$$
 and $Q - \{q_0\}$ is HCM.

• for every $q > q_0$ and $p \in f^{-1}(q)$ the poset $\langle p \rangle - \{x\}$ is HCM.

Then $P - \{x\}$ is HCM.

An "interval"-version shows that intervals $[u, v] - \{x\}$ of $P - \{x\}$ are HCM.

Theorem (Quillen)

Assume that

Then P is HCM.

Let P be a graded and Q be a HCM poset. Let $f : P \rightarrow Q$ be a

surjective rank-preserving poset map.

 for every q ∈ Q the fiber f⁻¹ (⟨q⟩) is HCM.

Outline

The original problem: noncrossing partitions and injective words

2) Tools: poset fiber theorems – a classical and a new one

3 Applications

- Noncrossing partitions: type A and B
- Injective words
- Complexes of injective words

Noncrossing partitions

W finite Coxeter group with set of reflections $T \leq_T$ absolute order, *c* Coxeter element

$$NC(W, c) = [e, c] = \{ w \in W : e \leq_T w \leq_T c \}$$

poset of noncrossing partitions

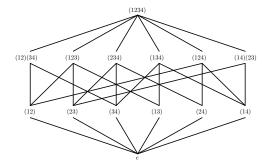
- independent (up to isomorphism) of a
- NC(S_n) is isomorphic to the poset of classical noncrossing partitions (Kreweras).

W finite Coxeter group with set of reflections $T \leq_T$ absolute order, *c* Coxeter element

$$NC(W, c) = [e, c] = \{ w \in W : e \leq_T w \leq_T c \}$$

poset of noncrossing partitions

- independent (up to isomorphism) of *c*
- NC(*S_n*) is isomorphic to the poset of classical noncrossing partitions (Kreweras).

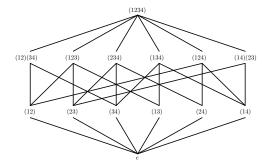


W finite Coxeter group with set of reflections $T \leq_T$ absolute order, *c* Coxeter element

$$NC(W, c) = [e, c] = \{ w \in W : e \leq_T w \leq_T c \}$$

poset of noncrossing partitions

- independent (up to isomorphism) of c
- NC(*S_n*) is isomorphic to the poset of classical noncrossing partitions (Kreweras).

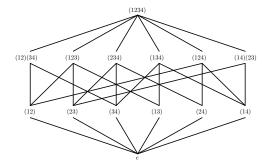


W finite Coxeter group with set of reflections $T \leq_T$ absolute order, *c* Coxeter element

$$NC(W, c) = [e, c] = \{ w \in W : e \leq_T w \leq_T c \}$$

poset of noncrossing partitions

- independent (up to isomorphism) of c
- NC(S_n) is isomorphic to the poset of classical noncrossing partitions (Kreweras).



The map for $NC(S_n)$

Let $w \in S_n$.

Let $\pi(w)$ be obtained from w by deleting n from its cycle decomposition.

• For n = 7 and w = (146)(275)(3) we have $\pi(w) = (146)(25)(3)$.

$$\begin{aligned} f: \ \mathrm{Abs}(S_n) &\to \mathrm{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n \\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n \end{cases} \end{aligned}$$

• For w = (146)(275)(3) we get $f(w) = ((146)(25)(3), \hat{1})$.

• For w = (14)(23)(56)(7) we get $f(w) = ((14)(23)(56), \hat{0})$.

The map for $NC(S_n)$

Let $w \in S_n$.

Let $\pi(w)$ be obtained from w by deleting n from its cycle decomposition.

• For n = 7 and w = (146)(275)(3) we have $\pi(w) = (146)(25)(3)$.

Let

$$\begin{split} f: \ \mathrm{Abs}(S_n) &\to \mathrm{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } w(n) = n \\ (\pi(w), \hat{1}), & \text{ if } w(n) \neq n \end{cases} \end{split}$$

• For w = (146)(275)(3) we get $f(w) = ((146)(25)(3), \hat{1})$.

• For w = (14)(23)(56)(7) we get $f(w) = ((14)(23)(56), \hat{0})$.

The map for $NC(S_n)$

Let $w \in S_n$.

Let $\pi(w)$ be obtained from w by deleting n from its cycle decomposition.

• For n = 7 and w = (146)(275)(3) we have $\pi(w) = (146)(25)(3)$.

Let

$$\begin{split} f: \ \mathrm{Abs}(S_n) &\to \mathrm{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } w(n) = n \\ (\pi(w), \hat{1}), & \text{ if } w(n) \neq n \end{cases} \end{split}$$

• For w = (146)(275)(3) we get $f(w) = ((146)(25)(3), \hat{1})$.

• For w = (14)(23)(56)(7) we get $f(w) = ((14)(23)(56), \hat{0})$.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let $x(n) = n \Rightarrow f(x) = (x, \hat{0}).$

First idea: Consider the restriction

 $f: \operatorname{NC}(S_n) - \{x\} \to (\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$

By induction:

 $(NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let $x(n) = n \Rightarrow f(x) = (x, \hat{0}).$

First idea: Consider the restriction

 $f: \operatorname{NC}(S_n) - \{x\} \to (\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$

By induction:

 $(NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let $x(n) = n \Rightarrow f(x) = (x, \hat{0}).$

First idea: Consider the restriction

 $f: \operatorname{NC}(S_n) - \{x\} \to (\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$

By induction:

 $(NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let $x(n) = n \Rightarrow f(x) = (x, \hat{0}).$

First idea: Consider the restriction

$$f: \operatorname{NC}(S_n) - \{x\} \to (\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $(NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let $x(n) = n \Rightarrow f(x) = (x, \hat{0}).$

First idea: Consider the restriction

$$f: \operatorname{NC}(S_n) - \{x\} \to (\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $(NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let
$$x(n) = n \Rightarrow f(x) = (x, \hat{0}).$$

First idea: Consider the restriction

$$f: \operatorname{NC}(S_n) - \{x\} \rightarrow \left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}.$$
By induction:

$$\left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\} \text{ is HCM.}$$
But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

$$\Rightarrow \text{ We cannot apply Quillen.}$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(12)$$

$$(13)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(12)$$

$$(14)$$

$$(12)$$

$$(14)$$

$$(14)$$

$$(12)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(15)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

$$(14)$$

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let
$$x(n) = n \Rightarrow f(x) = (x, \hat{0}).$$

First idea: Consider the restriction

$$\begin{aligned} f: \operatorname{NC}(S_n) - \{x\} &\to \left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}. \end{aligned} \tag{12)} \\ \text{By induction:} \\ \left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\} \text{ is HCM.} \end{aligned}$$

Let $x \in NC(S_n)$.

Goal: Show that $NC(S_n) - \{x\}$ is HCM.

Key observation: By self-duality of $NC(S_n)$ assume that x has a fixed point.

Let
$$x(n) = n \Rightarrow f(x) = (x, \hat{0}).$$

First idea: Consider the restriction

$$\begin{split} f: \operatorname{NC}(S_n) - \{x\} &\to \left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}. \end{split} \tag{12)}$$
By induction:

$$\left(\operatorname{NC}(S_{n-1}) \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\} \text{ is HCM.}$$

$$\overset{(14)}{\underset{(14)}{\overset{(24)}{\overset{(24)}{\overset{(24)}{\overset{(34)}{\overset$$

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

$$f: \operatorname{Abs}(S_n) \to \operatorname{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\}$$
$$w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n\\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n. \end{cases}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

$$f: \operatorname{Abs}(S_n) \to \operatorname{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\}$$
$$w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n\\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n. \end{cases}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

$$f: \operatorname{Abs}(S_n) \to \operatorname{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\}$$
$$w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n\\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n. \end{cases}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

$$f: \operatorname{Abs}(S_n) \to \operatorname{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\}$$
$$w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n\\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n. \end{cases}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.

Let $x \in NC(S_n)$ with x(n) = n and set $q_0 = (x, \hat{0})$.

Consider

$$f: \operatorname{Abs}(S_n) \to \operatorname{Abs}(S_{n-1}) \times \{\hat{0}, \hat{1}\}$$
$$w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if } w(n) = n\\ (\pi(w), \hat{1}), & \text{if } w(n) \neq n. \end{cases}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM and $f^{-1}(q_0) = \{x\}$.
- $f(NC(S_n) \{x\}) = (NC(S_{n-1}) \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q) \cap \operatorname{NC}(S_n)$ the ideal $\langle p \rangle \{x\}$ is HCM.
- ⇒ The "interval"-version of our poset fiber theorem applies: $NC(S_n)$ is doubly HCM.

The result: noncrossing partitions

Theorem

Let W be a Coxeter group of type A or type B. Then: NC(W) is doubly HCM.

For type B:

- Reduce to elements with a fixed point (self-duality + Kreweras complement).
- The same proof as in type A works.

The result: noncrossing partitions

Theorem

Let W be a Coxeter group of type A or type B. Then: NC(W) is doubly HCM.

For type *B*:

 Reduce to elements with a fixed point (self-duality + Kreweras complement).

• The same proof as in type A works.

The result: noncrossing partitions

Theorem

Let W be a Coxeter group of type A or type B. Then: NC(W) is doubly HCM.

For type *B*:

- Reduce to elements with a fixed point (self-duality + Kreweras complement).
- The same proof as in type A works.

Outline

The original problem: noncrossing partitions and injective words

2) Tools: poset fiber theorems – a classical and a new one

Applications

- Noncrossing partitions: type A and B
- Injective words
- Complexes of injective words

A finite alphabet, $w = w_1 \cdots w_s$ word over A

w is *injective* if no letter appears more than once.

Order words via subword containment: $v_1 \cdots v_r \preceq w_1 \cdots w_s$ \Leftrightarrow There exist $1 \leq j_1 \leq \cdots \leq j_r$ such that $w_{j_1} \cdots w_{j_r} = v_1 \cdots v_r$.

E.g.: 5137 **∠** 5413276

A finite alphabet, $w = w_1 \cdots w_s$ word over A

w is *injective* if no letter appears more than once.

Order words via subword containment: $v_1 \cdots v_r \preceq w_1 \cdots w_s$ \Leftrightarrow There exist $1 \leq j_1 \leq \cdots \leq j_r$ such that $w_{j_1} \cdots w_{j_r} = v_1 \cdots v_r$.

E.g.: 5137 \leq 5413276

A finite alphabet, $w = w_1 \cdots w_s$ word over A

w is *injective* if no letter appears more than once.

Order words via subword containment: $v_1 \cdots v_r \preceq w_1 \cdots w_s$ \Leftrightarrow There exist $1 \leq j_1 \leq \cdots \leq j_r$ such that $w_{j_1} \cdots w_{j_r} = v_1 \cdots v_r$.

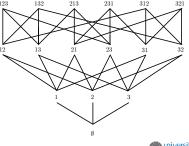
E.g.: 5137 **≤** 5413276

A finite alphabet, $w = w_1 \cdots w_s$ word over A

w is *injective* if no letter appears more than once.

Order words via subword containment: $v_1 \cdots v_r \preceq w_1 \cdots w_s$ \Leftrightarrow There exist $1 \leq j_1 \leq \cdots \leq j_r$ such that $w_{j_1} \cdots w_{j_r} = v_1 \cdots v_r$.

E.g.: 5137 **≤** 5413276



The map for I_n

Let $w \in I_n$.

Let $\pi(w)$ be the word obtained from w by deleting the letter n.

• For n = 7 we have $\pi(146275) = 14625$ and $\pi(264) = 264$.

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\leq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

- $f(146275) = (14625, \hat{1})$
- $f(264) = (264, \hat{0})$

The map for I_n

Let $w \in I_n$.

Let $\pi(w)$ be the word obtained from w by deleting the letter n.

• For n = 7 we have $\pi(146275) = 14625$ and $\pi(264) = 264$.

Let

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{ \hat{0}, \hat{1} \} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

• $f(146275) = (14625, \hat{1})$

• $f(264) = (264, \hat{0})$

The map for I_n

Let $w \in I_n$.

Let $\pi(w)$ be the word obtained from w by deleting the letter n.

• For n = 7 we have $\pi(146275) = 14625$ and $\pi(264) = 264$.

Let

$$\begin{split} ^{r}: \ \mathbf{I}_{n} \rightarrow \mathbf{I}_{n-1} \times \{ \hat{0}, \hat{1} \} \\ w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

• $f(146275) = (14625, \hat{1})$

f

• $f(264) = (264, \hat{0})$

Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

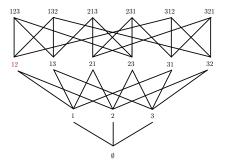
First idea: Consider the restriction $f: I_n - \{x\} \rightarrow (I_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$

By induction:

 $(I_{n-1} \times {\hat{0}}, \hat{1}) - {(x, \hat{0})}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

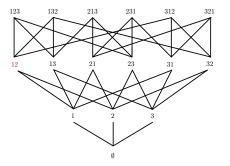
First idea: Consider the restriction $f: I_n - \{x\} \rightarrow (I_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$

By induction:

 $(I_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

First idea: Consider the restriction

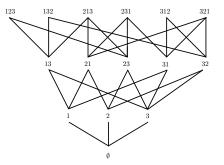
$$f: \mathbf{I}_n - \{x\} \to (\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $(I_{n-1} \times {\hat{0}}, \hat{1}) - {(x, \hat{0})}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



universität

Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

First idea: Consider the restriction

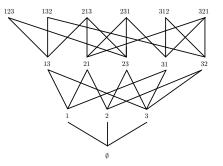
$$f: \mathbf{I}_n - \{x\} \to (\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $\left(\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

First idea: Consider the restriction

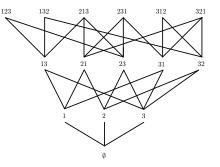
$$f: \mathbf{I}_n - \{x\} \to (\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $\left(\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



niversität

Injective words

Let $x \in I_n$.

Goal: show that $I_n - \{x\}$ is HCM.

We first consider maximal elements.

Otherwise, let $x = 1 \cdots k$ for a certain $1 \le k \le n-1 \Rightarrow f(x) = (x, \hat{0})$.

First idea: Consider the restriction

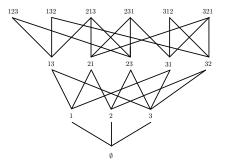
$$f: \mathbf{I}_n - \{x\} \to (\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}.$$

By induction:

 $\left(\mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\}\right) - \{(x, \hat{0})\}$ is HCM.

But: Some fibers $f^{-1}(\langle q \rangle)$ are not.

 \Rightarrow We cannot apply the poset fiber theorem by Quillen.



Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n \to \mathbf{I}_{n-1} \times \{ \hat{0}, \hat{1} \} \\ w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{if} \quad n \not\preceq w \\ (\pi(w), \hat{1}), & \text{if} \quad n \preceq w \end{cases} \end{split}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM.
- $f^{-1}(q_0) = \{x\}$ and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For q > q₀ and p ∈ f⁻¹(q) the ideal ⟨p⟩ is isomorphic to a Boolean algebra. Therefore, ⟨p⟩ {x} is HCM.

Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n \to \mathbf{I}_{n-1} \times \{ \hat{0}, \hat{1} \} \\ w \mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not \preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

• The fibers $f^{-1}(\langle q \rangle)$ are HCM.

÷

- $f^{-1}(q_0) = \{x\}$ and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For q > q₀ and p ∈ f⁻¹(q) the ideal ⟨p⟩ is isomorphic to a Boolean algebra. Therefore, ⟨p⟩ {x} is HCM.

Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM.
- $f^{-1}(q_0) = \{x\}$ and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.
- For $q > q_0$ and $p \in f^{-1}(q)$ the ideal $\langle p \rangle$ is isomorphic to a Boolean algebra. Therefore, $\langle p \rangle \{x\}$ is HCM.

Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

- The fibers $f^{-1}(\langle q \rangle)$ are HCM.
- $f^{-1}(q_0) = \{x\}$ and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) \{(x, \hat{0})\}$ is HCM.

• For $q > q_0$ and $p \in f^{-1}(q)$ the ideal $\langle p \rangle$ is isomorphic to a Boolean algebra. Therefore, $\langle p \rangle - \{x\}$ is HCM.

Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{\hat{0}, \hat{1}\} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

• The fibers $f^{-1}\left(\langle q
ight
angle$ are HCM.

•
$$f^{-1}(q_0) = \{x\}$$
 and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

• For $q > q_0$ and $p \in f^{-1}(q)$ the ideal $\langle p \rangle$ is isomorphic to a Boolean algebra. Therefore, $\langle p \rangle - \{x\}$ is HCM.

Let $x = 1 \cdots k$ for a certain $1 \le k \le n-1$ and set $q_0 = (x, \hat{0})$. Consider

$$\begin{split} f: \ \mathbf{I}_n &\to \mathbf{I}_{n-1} \times \{ \hat{0}, \hat{1} \} \\ w &\mapsto \begin{cases} (\pi(w), \hat{0}), & \text{ if } n \not\preceq w \\ (\pi(w), \hat{1}), & \text{ if } n \preceq w \end{cases} \end{split}$$

• The fibers $f^{-1}(\langle q \rangle)$ are HCM.

•
$$f^{-1}(q_0) = \{x\}$$
 and $(I_{n-1} \times \{\hat{0}, \hat{1}\}) - \{(x, \hat{0})\}$ is HCM.

- For q > q₀ and p ∈ f⁻¹(q) the ideal ⟨p⟩ is isomorphic to a Boolean algebra. Therefore, ⟨p⟩ {x} is HCM.
- $\Rightarrow\,$ The new poset fiber theorem applies: ${\rm I}_n$ is doubly HCM.

Outline

The original problem: noncrossing partitions and injective words

2) Tools: poset fiber theorems – a classical and a new one

Applications

- Noncrossing partitions: type A and B
- Injective words
- Complexes of injective words

 I_n poset of injective words on [n]

 Γ_n Boolean cell complex whose face poset is I_n

 (P, \leq_P) poset on [n]

 Δ simplicial complex on vertex set [n]

 $\Gamma(\Delta, P) = \{ w = w_1 \cdots w_s \in \mathbf{I}_n \ : \ \{ w_1, \dots, w_s \} \in \Delta \text{ and } w_i <_P w_j \Rightarrow i < j \}$

Example

- (i) If *P* is a total order, then $\Gamma(\Delta, P) \cong \Delta$.
- (ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}$

- I_n poset of injective words on [n]
- Γ_n Boolean cell complex whose face poset is I_n
- (P, \leq_P) poset on [n]
- Δ simplicial complex on vertex set [n]

Example

- (i) If *P* is a total order, then $\Gamma(\Delta, P) \cong \Delta$.
- (ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}$

- I_n poset of injective words on [n]
- Γ_n Boolean cell complex whose face poset is I_n
- (P, \leq_P) poset on [n]
- Δ simplicial complex on vertex set [n]

Example

- (i) If *P* is a total order, then $\Gamma(\Delta, P) \cong \Delta$.
- (ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}$

- I_n poset of injective words on [n]
- Γ_n Boolean cell complex whose face poset is I_n
- (P, \leq_P) poset on [n]
- Δ simplicial complex on vertex set [n]

Example

```
(i) If P is a total order, then \Gamma(\Delta, P) \cong \Delta.
```

(ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}$

(iii) Let P be the poset on [3] with 1 < 3 and 2 < 3
 Let Δ = 2^[3] be the 2-simplex. Then
 Γ(Δ, P) = {123, 213, 12, 21, 13, 23, 1, 2, 3, 0}.

- I_n poset of injective words on [n]
- Γ_n Boolean cell complex whose face poset is I_n
- (P, \leq_P) poset on [n]
- Δ simplicial complex on vertex set [n]

Example

- (i) If *P* is a total order, then $\Gamma(\Delta, P) \cong \Delta$.
- (ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}.$

(iii) Let P be the poset on [3] with 1 < 3 and 2 < 3.
 Let Δ = 2^[3] be the 2-simplex. Then
 Γ(Δ, P) = {123, 213, 12, 21, 13, 23, 1, 2, 3, Ø}.

- I_n poset of injective words on [n]
- Γ_n Boolean cell complex whose face poset is I_n
- (P, \leq_P) poset on [n]
- Δ simplicial complex on vertex set [n]

Example

- (i) If *P* is a total order, then $\Gamma(\Delta, P) \cong \Delta$.
- (ii) If P is an antichain, then $\Gamma(\Delta, P) = \{w_1 \cdots w_s \in I_n : \{w_1, \dots, w_s\} \in \Delta\}.$

What is known

Theorem (Jonsson, Welker)

Let P be a poset on [n] and Δ be a HCM simplicial complex. Then $\Gamma(\Delta,P)$ is HCM.

Sketch of the proof: Consider the map

$$\begin{array}{rccc} f: \Gamma(\Delta, P) & \to & \Delta \\ & w_1 \cdots w_s & \mapsto & \{w_1, \dots, w_s\}. \end{array}$$

It is shown that this map satisfies the assumption of the poset fiber theorem by Quillen.

What is known

Theorem (Jonsson, Welker)

Let P be a poset on [n] and Δ be a HCM simplicial complex. Then $\Gamma(\Delta,P)$ is HCM.

Sketch of the proof: Consider the map

$$\begin{array}{rccc} f: \Gamma(\Delta, P) & \to & \Delta \\ w_1 \cdots w_s & \mapsto & \{w_1, \dots, w_s\}. \end{array}$$

It is shown that this map satisfies the assumption of the poset fiber theorem by Quillen.

What is known

Theorem (Jonsson, Welker)

Let P be a poset on [n] and Δ be a HCM simplicial complex. Then $\Gamma(\Delta, P)$ is HCM.

Sketch of the proof: Consider the map

$$\begin{array}{rccc} f: \Gamma(\Delta, P) & \to & \Delta \\ w_1 \cdots w_s & \mapsto & \{w_1, \dots, w_s\}. \end{array}$$

It is shown that this map satisfies the assumption of the poset fiber theorem by Quillen.

What is new

Theorem

Let P be a poset on [n] and Δ be a doubly HCM simplicial complex. Then $\Gamma(\Delta, P)$ is doubly HCM.

Proof:

Apply the new poset fiber theorem to the map used by Jonsson and Welker

Remark

The same method can be used to show that the complex $\Gamma/G(\Delta)$ is doubly HCM if Δ is.

What is new

Theorem

Let P be a poset on [n] and Δ be a doubly HCM simplicial complex. Then $\Gamma(\Delta, P)$ is doubly HCM.

Proof:

Apply the new poset fiber theorem to the map used by Jonsson and Welker

Remark

The same method can be used to show that the complex $\Gamma/G(\Delta)$ is doubly HCM if Δ is.

What is new

Theorem

Let P be a poset on [n] and Δ be a doubly HCM simplicial complex. Then $\Gamma(\Delta, P)$ is doubly HCM.

Proof:

Apply the new poset fiber theorem to the map used by Jonsson and Welker

Remark

The same method can be used to show that the complex $\Gamma/G\left(\Delta\right)$ is doubly HCM if Δ is.

Thank you for your attention!

Any questions or remarks?

Thank you for your attention!

Any questions or remarks?

