Random partitions and representation theory of finite Chevalley groups

Pierre-Loïc Méliot

IGM-LabInfo
Université Paris-Est Marne-La-Vallée

March 7, 2011

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$
V=\bigoplus_{\lambda \in \widehat{G}} m_{\lambda} V^{\lambda}, m_{\lambda} \geq 0 .
$$

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$
V=\bigoplus m_{\lambda} V^{\lambda}, m_{\lambda} \geq 0
$$

Definition

The spectral measure of V is the probability measure on \widehat{G} defined by:

$$
\mathbb{P}_{V}[\lambda]=\frac{m_{\lambda} \operatorname{dim} V^{\lambda}}{\operatorname{dim} V}
$$

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$
V=\bigoplus_{\lambda \in \widehat{G}} m_{\lambda} V^{\lambda}, \quad m_{\lambda} \geq 0
$$

Definition

The spectral measure of V is the probability measure on \widehat{G} defined by:

$$
\mathbb{P}_{V}[\lambda]=\frac{m_{\lambda} \operatorname{dim} V^{\lambda}}{\operatorname{dim} V}
$$

If χ^{V} (respectively χ^{λ}) is the normalized character of G associated to V (resp., to V^{λ}), then

$$
\chi^{V}=\sum_{\lambda \in \widehat{G}} \mathbb{P}_{V}[\lambda] \chi^{\lambda} .
$$

The most studied case is when $G=\mathfrak{S}_{n}$ and $V=\mathbb{C} \mathfrak{S}_{n}$. Then, \mathbb{P}_{n} is a probability measure on integer partitions of size n (the so-called Plancherel measure), and there is a law of large numbers and a central limit theorem for these spectral measures.

The most studied case is when $G=\mathfrak{S}_{n}$ and $V=\mathbb{C} \mathfrak{S}_{n}$. Then, \mathbb{P}_{n} is a probability measure on integer partitions of size n (the so-called Plancherel measure), and there is a law of large numbers and a central limit theorem for these spectral measures.

The most studied case is when $G=\mathfrak{S}_{n}$ and $V=\mathbb{C} \mathfrak{S}_{n}$. Then, \mathbb{P}_{n} is a probability measure on integer partitions of size n (the so-called Plancherel measure), and there is a law of large numbers and a central limit theorem for these spectral measures.

Questions

(1) Can we prove analog asymptotic results for representations of other classical finite groups? $\left(\operatorname{GL}\left(n, \mathbb{F}_{q}\right), \operatorname{Sp}\left(2 n, \mathbb{F}_{q}\right)\right.$, etc.)
(2) Do these new spectral measures have beautiful combinatorial interpretations?

The most studied case is when $G=\mathfrak{S}_{n}$ and $V=\mathbb{C} \mathfrak{S}_{n}$. Then, \mathbb{P}_{n} is a probability measure on integer partitions of size n (the so-called Plancherel measure), and there is a law of large numbers and a central limit theorem for these spectral measures.

Questions

(3) Can we prove analog asymptotic results for representations of other classical finite groups? $\left(\operatorname{GL}\left(n, \mathbb{F}_{q}\right), \operatorname{Sp}\left(2 n, \mathbb{F}_{q}\right)\right.$, etc.)
(2) Do these new spectral measures have beautiful combinatorial interpretations?
(1) Flag varieties, Hecke algebras and Iwahori duality
(2) q-Plancherel measures of type A
(3) q-Plancherel measures of type B

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $\mathrm{G}=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$), and a Borel subgroup $\mathrm{B} \subset \mathrm{G}$ (imagine: $\mathrm{B}=$ \{upper triangular matrices\}). The flag variety of G is the set of left cosets G / B, and G acts on this set, and therefore on the space $\mathbb{C}[G / B]$.

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $\mathrm{G}=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$), and a Borel subgroup $\mathrm{B} \subset \mathrm{G}$ (imagine: $\mathrm{B}=$ \{upper triangular matrices\}). The flag variety of G is the set of left cosets G / B, and G acts on this set, and therefore on the space $\mathbb{C}[G / B]$.

Definition

$$
\mathbb{P}_{\mathrm{G} / \mathrm{B}}=\text { spectral measure of the G-module } V=\mathbb{C}[\mathrm{G} / \mathrm{B}] .
$$

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $\mathrm{G}=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$), and a Borel subgroup $\mathrm{B} \subset \mathrm{G}$ (imagine: $\mathrm{B}=$ \{upper triangular matrices\}). The flag variety of G is the set of left cosets G / B, and G acts on this set, and therefore on the space $\mathbb{C}[G / B]$.

Definition

$$
\mathbb{P}_{\mathrm{G} / \mathrm{B}}=\text { spectral measure of the G-module } V=\mathbb{C}[\mathrm{G} / \mathrm{B}] .
$$

The commutant algebra of G in $\operatorname{End}(V)$ is also $\mathbb{C}[\mathrm{B} \backslash \mathrm{G} / \mathrm{B}]$, and because of the Bruhat decomposition

$$
\mathrm{G}=\bigsqcup_{w \in W} \mathrm{~B} w \mathrm{~B},
$$

this algebra has a basis $\left(T_{w}=\mathrm{B} w \mathrm{~B}\right)_{w \in W}$ labelled by elements of the Weyl group.

Hecke algebra of a Coxeter group and Iwahori duality

Given a Coxeter group $W=\left\langle s \in S \mid \forall s, t \in S,(s t)^{m_{s t}}=1\right\rangle$, its Hecke algebra (with one parameter) is the $\mathbb{C}(q)$-algebra $\mathscr{H}(W)=\left\langle T_{s}, s \in S\right\rangle$, with

$$
\begin{aligned}
& \forall s,\left(T_{s}-q\right)\left(T_{s}+1\right)=0 ; \\
& \forall s \neq t, T_{s} T_{t} T_{s} T_{t} \cdots{ }_{\left(m_{s t} \text { terms }\right)}=T_{t} T_{s} T_{t} T_{s} \cdots_{\left(m_{s t} \text { terms }\right)} .
\end{aligned}
$$

Hecke algebra of a Coxeter group and Iwahori duality

Given a Coxeter group $W=\left\langle s \in S \mid \forall s, t \in S,(s t)^{m_{s t}}=1\right\rangle$, its Hecke algebra (with one parameter) is the $\mathbb{C}(q)$-algebra $\mathscr{H}(W)=\left\langle T_{s}, s \in S\right\rangle$, with

$$
\begin{aligned}
& \forall s,\left(T_{s}-q\right)\left(T_{s}+1\right)=0 ; \\
& \forall s \neq t, T_{s} T_{t} T_{s} T_{t} \cdots_{\left(m_{s t} \text { terms }\right)}=T_{t} T_{s} T_{t} T_{s} \cdots_{\left(m_{s t} \text { terms }\right)} .
\end{aligned}
$$

Theorem (Iwahori, 1964)

In the previous setting, $\mathbb{C}[\mathrm{B} \backslash \mathrm{G} / \mathrm{B}]=\mathscr{H}_{q}(W)$.

Hence, as a $\left(\mathrm{G}, \mathscr{H}_{q}(W)\right)$-bimodule, one has the decomposition

$$
\mathrm{G} \curvearrowright \mathbb{C}[\mathrm{G} / \mathrm{B}]_{\curvearrowleft \mathscr{H}_{\boldsymbol{G}}(W)}=\bigoplus_{\lambda \in \widehat{W}}\left\{\mathrm{G} \curvearrowright U^{\lambda}\right\} \otimes \mathbb{C}\left\{V_{\curvearrowleft}^{\lambda} \mathscr{C}_{\boldsymbol{G}}(W)\right\} .
$$

Consequences for the spectral measure

So, $\mathbb{P}_{\mathrm{G} / \mathrm{B}}$ can be seen as a probability measure on \widehat{W} (instead of $\widehat{\mathrm{G}}$). Moreover, the normalized trace of the action of an element $T_{w}=\mathrm{B} w \mathrm{~B}$ on $\mathbb{C}[\mathrm{G} / \mathrm{B}]$ is:

$$
\tau\left(T_{w}\right)= \begin{cases}1 & \text { if } w=1 \\ 0 & \text { otherwise }\end{cases}
$$

Consequences for the spectral measure

So, $\mathbb{P}_{\mathrm{G} / \mathrm{B}}$ can be seen as a probability measure on \widehat{W} (instead of $\widehat{\mathrm{G}}$). Moreover, the normalized trace of the action of an element $T_{w}=\mathrm{B} w \mathrm{~B}$ on $\mathbb{C}[\mathrm{G} / \mathrm{B}]$ is:

$$
\tau\left(T_{w}\right)= \begin{cases}1 & \text { if } w=1 \\ 0 & \text { otherwise }\end{cases}
$$

Denote by χ_{q}^{λ} the normalized irreducible characters of the Hecke algebra $\mathscr{H}_{q}(W)$. The spectral measure $\mathbb{P}_{\mathrm{G} / \mathrm{B}}$ can now be seen as the spectral measure of the regular trace of $\mathscr{H}_{q}(W)$:

$$
\tau=\sum_{\lambda \in \widehat{W}} \mathbb{P}_{\mathrm{G} / \mathrm{B}}[\lambda] \chi_{q}^{\lambda} .
$$

What happens when $\mathrm{G}=\mathrm{GL}\left(n, \mathrm{~F}_{q}\right)$?

Suppose that $\mathrm{G}=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$. Then, $\mathrm{B}=\{$ upper triangular matrices $\}, W=\mathfrak{S}_{n}$ and $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ is the algebra generated by elements T_{1}, \ldots, T_{n-1} with

$$
\begin{aligned}
& \forall i \in \llbracket 1, n-1 \rrbracket,\left(T_{i}-q\right)\left(T_{i}+1\right)=0 ; \\
& \forall i \in \llbracket 1, n-2 \rrbracket, \quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} ; \\
& \forall i, j,|i-j| \geq 2 \Rightarrow T_{i} T_{j}=T_{j} T_{i} .
\end{aligned}
$$

What happens when $\mathrm{G}=\mathrm{GL}\left(n, \mathrm{~F}_{q}\right)$?

Suppose that $\mathrm{G}=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$. Then, $\mathrm{B}=\{$ upper triangular matrices $\}, W=\mathfrak{S}_{n}$ and $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ is the algebra generated by elements T_{1}, \ldots, T_{n-1} with

$$
\begin{aligned}
& \forall i \in \llbracket 1, n-1 \rrbracket,\left(T_{i}-q\right)\left(T_{i}+1\right)=0 ; \\
& \forall i \in \llbracket 1, n-2 \rrbracket, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} ; \\
& \forall i, j,|i-j| \geq 2 \Rightarrow T_{i} T_{j}=T_{j} T_{i} .
\end{aligned}
$$

The irreducible modules over $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ are labelled by partitions of size n. The values of the irreducible characters can be encoded in the algebra of symmetric functions:

Theorem (Ram, 1991)

$$
\forall \mu \in \mathfrak{Y}_{n}, q_{\mu}(X)=\frac{h_{\mu}(q X-X)}{(q-1)^{\ell(\mu)}}=\sum_{\lambda \in \mathfrak{Y}_{n}} \zeta_{q}^{\lambda}\left(T_{\mu}\right) s_{\lambda}(X) .
$$

q-Plancherel measures of type A

This provides an explicit formula for the \mathbf{q}-Plancherel measure of type \mathbf{A} :

$$
\mathbb{P}_{n, q}^{\mathrm{A}}[\lambda]=\mathbb{P}_{\mathrm{GL}\left(n, \mathbb{F}_{\boldsymbol{q}}\right) / \mathrm{B}\left(n, \mathbb{F}_{\boldsymbol{q}}\right)}[\lambda]=(\operatorname{dim} \lambda) s_{\lambda}\left(\frac{[1-q]}{1-[q]}\right)=\frac{n!q^{n(\lambda)}}{\prod_{\square \in \lambda} h(\square)\{h(\square)\}_{q}} .
$$

where $n(\lambda)=\sum_{i=1}^{\ell(\lambda)}(i-1) \lambda_{i}$, and $h(\square)$ is the hook length of a box \square in the Young diagram of λ. In particular, $\mathbb{P}_{n, q}^{\mathrm{A}}[\lambda]=\mathbb{P}_{n, q^{-1}}^{\mathrm{A}}\left[\lambda^{\prime}\right]$.

q－Plancherel measures of type A

This provides an explicit formula for the \mathbf{q}－Plancherel measure of type \mathbf{A} ：

$$
\mathbb{P}_{n, q}^{\mathrm{A}}[\lambda]=\mathbb{P}_{\mathrm{GL}\left(n, \mathbb{F}_{q}\right) / \mathrm{B}\left(n, \mathbb{F}_{q}\right)}[\lambda]=(\operatorname{dim} \lambda) s_{\lambda}\left(\frac{[1-q]}{1-[q]}\right)=\frac{n!q^{n(\lambda)}}{\prod_{\square \in \lambda} h(\square)\{h(\square)\}_{q}} .
$$

where $n(\lambda)=\sum_{i=1}^{\ell(\lambda)}(i-1) \lambda_{i}$ ，and $h(\square)$ is the hook length of a box \square in the Young diagram of λ ．In particular， $\mathbb{P}_{n, q}^{\mathrm{A}}[\lambda]=\mathbb{P}_{n, q^{-1}}^{\mathrm{A}}\left[\lambda^{\prime}\right]$ ．

毋 毋 毋 п

$$
n=200, q=1 / 2
$$

Asymptotic results (LLN and CLT)

Theorem (Féray-M., 2009)

As n goes to infinity, if λ is chosen randomly according to the q-Plancherel measure with $q \in] 0,1[$, then

$$
\frac{\lambda_{i}}{n} \rightarrow_{\mathbb{P}_{n, q}}(1-q) q^{i-1} .
$$

Asymptotic results (LLN and CLT)

Theorem (Féray-M., 2009)

As n goes to infinity, if λ is chosen randomly according to the q-Plancherel measure with $q \in] 0,1[$, then

$$
\frac{\lambda_{i}}{n} \rightarrow_{\mathbb{P}_{n, q}}(1-q) q^{i-1}
$$

Set $X_{i, n}=\sqrt{n}\left(\frac{\lambda_{i}}{n}-(1-q) q^{i-1}\right)$; these are the normalized deviations of the first rows.

Theorem (Féray-M., 2009)

Under q-Plancherel measures $\mathbb{P}_{n, q}^{\mathrm{A}}$ with $\left.q \in\right] 0,1\left[\right.$, the $X_{i, n}$'s converge in joint law towards centered gaussian variables $X_{i, \infty}$ with

$$
\operatorname{cov}\left(X_{i, \infty}, X_{j, \infty}\right)=\delta_{i j}(1-q) q^{i-1}-(1-q)^{2} q^{i+j-2}
$$

How the hell did we prove this?

When $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_{n} 's is often determined by looking at the moments $\mathbb{E}\left[\left(X_{n}\right)^{k}\right]$.

How the hell did we prove this?

When $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_{n} 's is often determined by looking at the moments $\mathbb{E}\left[\left(X_{n}\right)^{k}\right]$.

For sequences of random partitions $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$, the powers x^{k} are replaced by "polynomial functions" of the partitions. In particular, given a permutation $\sigma \in \mathfrak{S}_{k}$ and $n \geq k$, one can look at the expectations

$$
\mathbb{E}_{n, q}^{A}\left[\chi^{\lambda}(\sigma)\right] \quad \text { or } \quad \mathbb{E}_{n, q}^{\mathbb{A}}\left[\chi_{q}^{\lambda}\left(T_{\sigma}\right)\right] .
$$

How the hell did we prove this?

When $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_{n} 's is often determined by looking at the moments $\mathbb{E}\left[\left(X_{n}\right)^{k}\right]$.

For sequences of random partitions $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$, the powers x^{k} are replaced by "polynomial functions" of the partitions. In particular, given a permutation $\sigma \in \mathfrak{S}_{k}$ and $n \geq k$, one can look at the expectations

$$
\mathbb{E}_{n, q}^{A}\left[\chi^{\lambda}(\sigma)\right] \quad \text { or } \quad \mathbb{E}_{n, q}^{\mathbb{A}}\left[\chi_{q}^{\lambda}\left(T_{\sigma}\right)\right] .
$$

The second expectation is simply $\tau\left(T_{\sigma}\right)=\delta_{\sigma=\mathrm{id}}$. Then, if σ is of type μ, by using the combinatorics of symmetric functions, one can show that

$$
\mathbb{E}_{n, q}^{A}\left[\chi^{\lambda}(\sigma)\right]=\prod_{i=1}^{\ell(\mu)} \frac{(1-q)^{\mu_{i}}}{1-q^{\mu_{i}}} .
$$

Finally, one has to relate the values $\chi^{\lambda}(\sigma)$ to the geometry of λ.

A combinatorial interpretation with random permutations

If σ is a permutation of size n, its descents are the i 's in $\llbracket 1, n-1 \rrbracket$ such that $\sigma(i)>\sigma(i+1)$. The major index of σ is the sum of its descents. For instance, if $\sigma=25617384$, then $D(\sigma)=\{3,5,7\}, \operatorname{maj}(\sigma)=3+5+7=15$.

A combinatorial interpretation with random permutations

If σ is a permutation of size n, its descents are the i 's in $\llbracket 1, n-1 \rrbracket$ such that $\sigma(i)>\sigma(i+1)$. The major index of σ is the sum of its descents. For instance, if $\sigma=25617384$, then $D(\sigma)=\{3,5,7\}, \operatorname{maj}(\sigma)=3+5+7=15$.

For a permutation σ, we denote by $\Lambda(\sigma)$ the common shape of the standard tableaux associated to σ by the RSK algorithm; the parts of $\Lambda(\sigma)$ correspond to the lengths of the longest increasing subwords in σ.

A combinatorial interpretation with random permutations

If σ is a permutation of size n, its descents are the i 's in $\llbracket 1, n-1 \rrbracket$ such that $\sigma(i)>\sigma(i+1)$. The major index of σ is the sum of its descents. For instance, if $\sigma=25617384$, then $D(\sigma)=\{3,5,7\}, \operatorname{maj}(\sigma)=3+5+7=15$.

For a permutation σ, we denote by $\Lambda(\sigma)$ the common shape of the standard tableaux associated to σ by the RSK algorithm; the parts of $\Lambda(\sigma)$ correspond to the lengths of the longest increasing subwords in σ.

Proposition

If $\sigma \in \mathfrak{S}_{n}$, we set $\mathbb{Q}_{n, q}[\sigma]=\frac{q^{\operatorname{maj}(\sigma)}}{\{n!\}_{q}}$; this is a probability measure on \mathfrak{S}_{n}, and for any partition λ,

$$
\mathbb{P}_{n, q}^{\mathrm{A}}[\lambda]=\sum_{\sigma \mid \Lambda(\sigma)=\lambda} \mathbb{Q}_{n, q}[\sigma] .
$$

In particular, $\ell(\sigma) \simeq_{\mathbb{Q}_{n, Q}}(1-q) n+\sqrt{q(1-q)} n^{1 / 2} \mathcal{N}(0,1)+o\left(n^{1 / 2}\right)$.

What happens when $\mathrm{G}=\operatorname{Sp}\left(2 n, \mathrm{~F}_{q}\right)$?

Suppose that $\mathrm{G}=\operatorname{Sp}\left(2 n, \mathbb{F}_{q}\right)$. Then, $W=(\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}=\mathfrak{H}_{n}$ and $\mathscr{H}_{q}\left(\mathfrak{H}_{n}\right)$ is the algebra generated by elements $T_{0}, T_{1}, \ldots, T_{n-1}$ with

$$
\begin{aligned}
& \forall i \in \llbracket 0, n-1 \rrbracket,\left(T_{i}-q\right)\left(T_{i}+1\right)=0 ; \\
& \forall i \in \llbracket 1, n-2 \rrbracket, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \quad ; \quad T_{0} T_{1} T_{0} T_{1}=T_{1} T_{0} T_{1} T_{0} ; \\
& \forall i, j,|i-j| \geq 2 \Rightarrow T_{i} T_{j}=T_{j} T_{i} .
\end{aligned}
$$

What happens when $\mathrm{G}=\operatorname{Sp}\left(2 n, \mathrm{~F}_{q}\right)$?

Suppose that $\mathrm{G}=\operatorname{Sp}\left(2 n, \mathbb{F}_{q}\right)$. Then, $W=(\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}=\mathfrak{H}_{n}$ and $\mathscr{H}_{q}\left(\mathfrak{H}_{n}\right)$ is the algebra generated by elements $T_{0}, T_{1}, \ldots, T_{n-1}$ with

$$
\begin{aligned}
& \forall i \in \llbracket 0, n-1 \rrbracket,\left(T_{i}-q\right)\left(T_{i}+1\right)=0 ; \\
& \forall i \in \llbracket 1, n-2 \rrbracket, \quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \quad ; \quad T_{0} T_{1} T_{0} T_{1}=T_{1} T_{0} T_{1} T_{0} ; \\
& \forall i, j,|i-j| \geq 2 \Rightarrow T_{i} T_{j}=T_{j} T_{i} .
\end{aligned}
$$

The irreducible modules over $\mathscr{H}_{\boldsymbol{q}}\left(\mathfrak{H}_{n}\right)$ are labelled by pairs $\Lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right)$ of partitions such that $\left|\lambda^{(1)}\right|+\left|\lambda^{(2)}\right|=n$. There is an explicit hook length formula for the \mathbf{q}-Plancherel measure of type B

$$
\mathbb{P}_{n, \boldsymbol{q}}^{\mathrm{B}}=\mathbb{P}_{\mathrm{Sp}\left(2 n, \mathbb{F}_{\boldsymbol{q}}\right) / \operatorname{BSp}\left(2 n, \mathbb{F}_{\boldsymbol{q}}\right)} .
$$

Again, there is a symmetry: $\mathbb{P}_{n, q}^{\mathrm{B}}\left[\lambda^{(1)}, \lambda^{(2)}\right]=\mathbb{P}_{n, q^{-1}}^{\mathrm{B}}\left[\lambda^{(2)^{\prime}}, \lambda^{(1)^{\prime}}\right]$.

Asymptotic results for q-Plancherel measures of type B

Asymptotic results for q-Plancherel measures of type B

Theorem (M., 2010)

If $\Lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right)$ is chosen randomly according to $\mathbb{P}_{n, q}^{\mathrm{B}}$ and $\lambda=\lambda^{(1)} \sqcup \lambda^{(2)}$, then λ has the same asymptotics as in type A (LLN and CLT).

Asymptotic results for q-Plancherel measures of type B

$$
n=200, q=2 / 3
$$

Theorem (M., 2010)

If $\Lambda=\left(\lambda^{(1)}, \lambda^{(2)}\right)$ is chosen randomly according to $\mathbb{P}_{n, q}^{\mathrm{B}}$ and $\lambda=\lambda^{(1)} \sqcup \lambda^{(2)}$, then λ has the same asymptotics as in type A (LLN and CLT).

Conjecture (M., 2010)

As n goes to infinity, the $(2 k+1)$-th part of λ falls in $\lambda^{(1)}$ with probability

$$
c_{k, n} \rightarrow \frac{1}{2}\left(1+\frac{\left(q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \frac{\left(q ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{k}\right)
$$

For the $(2 k+2)$-th part, the probability converges to $1 / 2$.

This is only the beginning!

This is only the beginning!
(3) One can replace the regular trace of $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.

This is only the beginning!
(3) One can replace the regular trace of $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.
(2) In type A, one can do much better: for (almost) any irreducible trace of the infinite symmetric group or the infinite Hecke algebra, the spectral measures corresponding to the restrictions of the trace to \mathfrak{S}_{n} or $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ satisfy a LLN (Kerov-Vershik, 1981) and a CLT (M., 2011).

This is only the beginning!
(3) One can replace the regular trace of $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.
(2) In type A, one can do much better: for (almost) any irreducible trace of the infinite symmetric group or the infinite Hecke algebra, the spectral measures corresponding to the restrictions of the trace to \mathfrak{S}_{n} or $\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ satisfy a LLN (Kerov-Vershik, 1981) and a CLT (M., 2011).
© In the setting of finite Chevalley groups, one can look at spectral measures of modules $\mathrm{R}_{\mathrm{L}}^{\mathrm{G}}(\theta)$ obtained by parabolic induction from a cuspidal character of a Levi subgroup. There is an analog of Iwahori's duality in this setting, and the spectral measure charges in fact the set of irreducibles of a Coxeter group; most of the arguments can be reused.
q-Plancherel measure, $q \in] 0,1[$ regular trace of an Hecke algebra

