Random partitions and representation theory of finite Chevalley groups

Pierre-Loïc Méliot

IGM-LabInfo Université Paris-Est Marne-La-Vallée

March 7, 2011

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$V=igoplus_{\lambda\in \widehat{G}}m_{\lambda}~V^{\lambda},~~m_{\lambda}\geq 0.$$

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$V=igoplus_{\lambda\in\widehat{G}}m_{\lambda}~V^{\lambda},~~m_{\lambda}\geq 0.$$

Definition

The **spectral measure** of V is the probability measure on \widehat{G} defined by:

$$\mathbb{P}_{V}[\lambda] = \frac{m_{\lambda} \dim V^{\lambda}}{\dim V}.$$

We consider a finite group G, and a (complex) linear representation V of G. It has a unique decomposition as a direct sum of irreducible G-modules:

$$V=igoplus_{\lambda\in\widehat{G}}m_{\lambda}~V^{\lambda},~~m_{\lambda}\geq 0.$$

Definition

The **spectral measure** of V is the probability measure on \widehat{G} defined by:

$$\mathbb{P}_{V}[\lambda] = \frac{m_{\lambda} \dim V^{\lambda}}{\dim V}.$$

If χ^V (respectively χ^{λ}) is the normalized character of G associated to V (resp., to V^{λ}), then

$$\chi^{\boldsymbol{V}} = \sum_{\lambda \in \widehat{\boldsymbol{G}}} \mathbb{P}_{\boldsymbol{V}}[\lambda] \ \chi^{\lambda}.$$

Questions

- Or Can we prove analog asymptotic results for representations of other classical finite groups? (GL(n, 𝔽_q), Sp(2n, 𝔽_q), etc.)
- O these new spectral measures have beautiful combinatorial interpretations?

Questions

- Or Can we prove analog asymptotic results for representations of other classical finite groups? (GL(n, 𝔽_q), Sp(2n, 𝔽_q), etc.)
- O these new spectral measures have beautiful combinatorial interpretations?

- Flag varieties, Hecke algebras and Iwahori duality
- 2 q-Plancherel measures of type A
- 9 q-Plancherel measures of type B

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $G = GL(n, \mathbb{F}_q)$), and a Borel subgroup $B \subset G$ (imagine: $B = \{$ upper triangular matrices $\}$). The **flag variety** of G is the set of left cosets G/B, and G acts on this set, and therefore on the space $\mathbb{C}[G/B]$.

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $G = GL(n, \mathbb{F}_q)$), and a Borel subgroup $B \subset G$ (imagine: $B = \{$ upper triangular matrices $\}$). The **flag variety** of G is the set of left cosets G/B, and G acts on this set, and therefore on the space $\mathbb{C}[G/B]$.

Definition

 $\mathbb{P}_{G/B}$ = spectral measure of the G-module $V = \mathbb{C}[G/B]$.

Spectral measure associated to a finite flag variety

We consider a finite (non-twisted) Chevalley group G (imagine: $G = GL(n, \mathbb{F}_q)$), and a Borel subgroup $B \subset G$ (imagine: $B = \{$ upper triangular matrices $\}$). The **flag variety** of G is the set of left cosets G/B, and G acts on this set, and therefore on the space $\mathbb{C}[G/B]$.

Definition

 $\mathbb{P}_{G/B}$ = spectral measure of the G-module $V = \mathbb{C}[G/B]$.

The commutant algebra of G in End(V) is also $\mathbb{C}[B\backslash G/B]$, and because of the Bruhat decomposition

$$\mathbf{G} = \bigsqcup_{\mathbf{w} \in \mathbf{W}} \mathbf{B}\mathbf{w}\mathbf{B},$$

this algebra has a basis $(T_w = BwB)_{w \in W}$ labelled by elements of the Weyl group.

Hecke algebra of a Coxeter group and Iwahori duality

Given a Coxeter group $W = \langle s \in S \mid \forall s, t \in S, (st)^{m_{st}} = 1 \rangle$, its **Hecke algebra** (with one parameter) is the $\mathbb{C}(q)$ -algebra $\mathscr{H}(W) = \langle T_s, s \in S \rangle$, with

$$\begin{aligned} \forall s, \ (T_s - q)(T_s + 1) &= 0; \\ \forall s \neq t, \ T_s T_t T_s T_t \cdots_{(m_{st} \text{ terms})} &= T_t T_s T_t T_s \cdots_{(m_{st} \text{ terms})}. \end{aligned}$$

Hecke algebra of a Coxeter group and Iwahori duality

Given a Coxeter group $W = \langle s \in S \mid \forall s, t \in S, (st)^{m_{st}} = 1 \rangle$, its **Hecke algebra** (with one parameter) is the $\mathbb{C}(q)$ -algebra $\mathscr{H}(W) = \langle T_s, s \in S \rangle$, with

$$\begin{aligned} \forall s, \ (T_s - q)(T_s + 1) &= 0; \\ \forall s \neq t, \ T_s T_t T_s T_t \cdots_{(m_{st} \text{ terms})} &= T_t T_s T_t T_s \cdots_{(m_{st} \text{ terms})}. \end{aligned}$$

Theorem (Iwahori, 1964)

In the previous setting, $\mathbb{C}[B\backslash G/B] = \mathscr{H}_q(W)$.

Hence, as a $(G, \mathcal{H}_q(W))$ -bimodule, one has the decomposition

$${}_{\mathrm{G}\sim}\mathbb{C}[\mathrm{G}/\mathrm{B}]_{\sim \mathscr{H}_{\mathbf{q}}(W)} = \bigoplus_{\lambda \in \widehat{W}} \left\{ {}_{\mathrm{G}\sim}U^{\lambda} \right\} \otimes_{\mathbb{C}} \left\{ V^{\lambda}_{\sim \mathscr{H}_{\mathbf{q}}(W)} \right\}.$$

Consequences for the spectral measure

So, $\mathbb{P}_{G/B}$ can be seen as a probability measure on \widehat{W} (instead of \widehat{G}). Moreover, the normalized trace of the action of an element $T_w = BwB$ on $\mathbb{C}[G/B]$ is:

$$au(au_w) = egin{cases} 1 & ext{if } w = 1, \ 0 & ext{otherwise.} \end{cases}$$

Consequences for the spectral measure

So, $\mathbb{P}_{G/B}$ can be seen as a probability measure on \widehat{W} (instead of \widehat{G}). Moreover, the normalized trace of the action of an element $T_w = BwB$ on $\mathbb{C}[G/B]$ is:

$$au(T_w) = egin{cases} 1 & ext{if } w = 1, \ 0 & ext{otherwise.} \end{cases}$$

Denote by χ_q^{λ} the normalized irreducible characters of the Hecke algebra $\mathscr{H}_q(W)$. The spectral measure $\mathbb{P}_{G/B}$ can now be seen as the spectral measure of the regular trace of $\mathscr{H}_q(W)$:

$$\tau = \sum_{\lambda \in \widehat{W}} \mathbb{P}_{\mathrm{G/B}}[\lambda] \ \chi_{q}^{\lambda}.$$

What happens when $G = GL(n, F_q)$?

Suppose that $G = GL(n, \mathbb{F}_q)$. Then, $B = \{$ upper triangular matrices $\}$, $W = \mathfrak{S}_n$ and $\mathscr{H}_q(\mathfrak{S}_n)$ is the algebra generated by elements T_1, \ldots, T_{n-1} with

$$\begin{aligned} \forall i \in [\![1, n-1]\!], \ (T_i - q)(T_i + 1) &= 0; \\ \forall i \in [\![1, n-2]\!], \ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1}; \\ \forall i, j, \ |i-j| &\geq 2 \Rightarrow T_i T_j = T_j T_i. \end{aligned}$$

What happens when $G = GL(n, \mathbb{F}_q)$?

Suppose that $G = GL(n, \mathbb{F}_q)$. Then, $B = \{$ upper triangular matrices $\}$, $W = \mathfrak{S}_n$ and $\mathscr{H}_q(\mathfrak{S}_n)$ is the algebra generated by elements T_1, \ldots, T_{n-1} with

$$\begin{aligned} \forall i \in [\![1, n-1]\!], \ (T_i - q)(T_i + 1) &= 0; \\ \forall i \in [\![1, n-2]\!], \ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1}; \\ \forall i, j, \ |i-j| &\geq 2 \Rightarrow T_i T_j = T_j T_i. \end{aligned}$$

The irreducible modules over $\mathscr{H}_q(\mathfrak{S}_n)$ are labelled by partitions of size *n*. The values of the irreducible characters can be encoded in the algebra of symmetric functions:

Theorem (Ram, 1991) $\forall \mu \in \mathfrak{Y}_n, \ q_\mu(X) = \frac{h_\mu(qX - X)}{(q-1)^{\ell(\mu)}} = \sum_{\lambda \in \mathfrak{Y}_n} \zeta_q^\lambda(T_\mu) s_\lambda(X).$

q-Plancherel measures of type A

This provides an explicit formula for the q-Plancherel measure of type A:

$$\mathbb{P}_{n,q}^{\mathrm{A}}[\lambda] = \mathbb{P}_{\mathrm{GL}(n,\mathbb{F}_q)/\mathrm{B}(n,\mathbb{F}_q)}[\lambda] = (\dim \lambda) \ s_{\lambda}\left(\frac{[1-q]}{1-[q]}\right) = \frac{n! \ q^{n(\lambda)}}{\prod_{\Box \in \lambda} h(\Box) \left\{h(\Box)\right\}_q}$$

where $n(\lambda) = \sum_{i=1}^{\ell(\lambda)} (i-1)\lambda_i$, and $h(\Box)$ is the hook length of a box \Box in the Young diagram of λ . In particular, $\mathbb{P}_{n,q}^{A}[\lambda] = \mathbb{P}_{n,q-1}^{A}[\lambda']$.

q-Plancherel measures of type A

This provides an explicit formula for the q-Plancherel measure of type A:

$$\mathbb{P}_{n,q}^{\mathrm{A}}[\lambda] = \mathbb{P}_{\mathrm{GL}(n,\mathbb{F}_q)/\mathrm{B}(n,\mathbb{F}_q)}[\lambda] = (\dim \lambda) \ s_{\lambda}\left(\frac{[1-q]}{1-[q]}\right) = \frac{n! \ q^{n(\lambda)}}{\prod_{\Box \in \lambda} h(\Box) \left\{h(\Box)\right\}_q}$$

where $n(\lambda) = \sum_{i=1}^{\ell(\lambda)} (i-1)\lambda_i$, and $h(\Box)$ is the hook length of a box \Box in the Young diagram of λ . In particular, $\mathbb{P}_{n,q}^{A}[\lambda] = \mathbb{P}_{n,q^{-1}}^{A}[\lambda']$.

Asymptotic results (LLN and CLT)

Theorem (Féray-M., 2009)

As n goes to infinity, if λ is chosen randomly according to the q-Plancherel measure with $q \in]0, 1[$, then

$$rac{\lambda_i}{n}
ightarrow_{\mathbb{P}^{\mathrm{A}}_{m{n},m{q}}} (1-q)q^{i-1}$$

Asymptotic results (LLN and CLT)

Theorem (Féray-M., 2009)

As n goes to infinity, if λ is chosen randomly according to the q-Plancherel measure with $q \in]0, 1[$, then

$$rac{\lambda_i}{n}
ightarrow_{\mathbb{P}^A_{n,q}} (1-q)q^{i-1}$$

Set $X_{i,n} = \sqrt{n} \left(\frac{\lambda_i}{n} - (1-q)q^{i-1} \right)$; these are the normalized deviations of the first rows.

Theorem (Féray-M., 2009)

Under q-Plancherel measures $\mathbb{P}_{n,q}^{A}$ with $q \in]0,1[$, the $X_{i,n}$'s converge in joint law towards centered gaussian variables $X_{i,\infty}$ with

$$\operatorname{cov}(X_{i,\infty}, X_{j,\infty}) = \delta_{ij}(1-q)q^{i-1} - (1-q)^2q^{i+j-2}.$$

How the hell did we prove this?

When $(X_n)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_n 's is often determined by looking at the **moments** $\mathbb{E}[(X_n)^k]$.

How the hell did we prove this?

When $(X_n)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_n 's is often determined by looking at the **moments** $\mathbb{E}[(X_n)^k]$.

For sequences of random partitions $(\lambda_n)_{n \in \mathbb{N}}$, the powers x^k are replaced by "polynomial functions" of the partitions. In particular, given a permutation $\sigma \in \mathfrak{S}_k$ and $n \ge k$, one can look at the expectations

$$\mathbb{E}^{\mathbb{A}}_{n,q}[\chi^{\lambda}(\sigma)]$$
 or $\mathbb{E}^{\mathbb{A}}_{n,q}[\chi^{\lambda}_{q}(T_{\sigma})].$

How the hell did we prove this?

When $(X_n)_{n \in \mathbb{N}}$ is a sequence of real or complex random variables, the limiting distribution of the X_n 's is often determined by looking at the **moments** $\mathbb{E}[(X_n)^k]$.

For sequences of random partitions $(\lambda_n)_{n \in \mathbb{N}}$, the powers x^k are replaced by "polynomial functions" of the partitions. In particular, given a permutation $\sigma \in \mathfrak{S}_k$ and $n \ge k$, one can look at the expectations

$$\mathbb{E}^{\mathbb{A}}_{n,q}[\chi^{\lambda}(\sigma)]$$
 or $\mathbb{E}^{\mathbb{A}}_{n,q}[\chi^{\lambda}_{q}(\mathcal{T}_{\sigma})].$

The second expectation is simply $\tau(T_{\sigma}) = \delta_{\sigma=id}$. Then, if σ is of type μ , by using the combinatorics of symmetric functions, one can show that

$$\mathbb{E}^{\mathbb{A}}_{n,q}[\chi^{\lambda}(\sigma)] = \prod_{i=1}^{\ell(\mu)} rac{(1-q)^{\mu_i}}{1-q^{\mu_i}}.$$

Finally, one has to relate the values $\chi^{\lambda}(\sigma)$ to the geometry of λ .

A combinatorial interpretation with random permutations

If σ is a permutation of size *n*, its **descents** are the *i*'s in $[\![1, n-1]\!]$ such that $\sigma(i) > \sigma(i+1)$. The **major index** of σ is the sum of its descents. For instance, if $\sigma = 25617384$, then $D(\sigma) = \{3, 5, 7\}$, maj $(\sigma) = 3 + 5 + 7 = 15$.

A combinatorial interpretation with random permutations

If σ is a permutation of size *n*, its **descents** are the *i*'s in $[\![1, n-1]\!]$ such that $\sigma(i) > \sigma(i+1)$. The **major index** of σ is the sum of its descents. For instance, if $\sigma = 25617384$, then $D(\sigma) = \{3, 5, 7\}$, maj $(\sigma) = 3 + 5 + 7 = 15$.

For a permutation σ , we denote by $\Lambda(\sigma)$ the common shape of the standard tableaux associated to σ by the RSK algorithm; the parts of $\Lambda(\sigma)$ correspond to the lengths of the longest increasing subwords in σ .

A combinatorial interpretation with random permutations

If σ is a permutation of size *n*, its **descents** are the *i*'s in $[\![1, n-1]\!]$ such that $\sigma(i) > \sigma(i+1)$. The **major index** of σ is the sum of its descents. For instance, if $\sigma = 25617384$, then $D(\sigma) = \{3, 5, 7\}$, $maj(\sigma) = 3 + 5 + 7 = 15$.

For a permutation σ , we denote by $\Lambda(\sigma)$ the common shape of the standard tableaux associated to σ by the RSK algorithm; the parts of $\Lambda(\sigma)$ correspond to the lengths of the longest increasing subwords in σ .

Proposition

If $\sigma \in \mathfrak{S}_n$, we set $\mathbb{Q}_{n,q}[\sigma] = \frac{q^{\max(\sigma)}}{\{n\}_q}$; this is a probability measure on \mathfrak{S}_n , and for any partition λ ,

$$\mathbb{P}^{\mathcal{A}}_{n,q}[\lambda] = \sum_{\sigma \mid \Lambda(\sigma) = \lambda} \mathbb{Q}_{n,q}[\sigma].$$

In particular, $\ell(\sigma)\simeq_{\mathbb{Q}_{n,q}}(1-q)n+\sqrt{q(1-q)}\,n^{1/2}\,\mathcal{N}(0,1)+o(n^{1/2}).$

What happens when $G = Sp(2n, \mathbb{F}_q)$?

Suppose that $G = \operatorname{Sp}(2n, \mathbb{F}_q)$. Then, $W = (\mathbb{Z}/2\mathbb{Z}) \wr \mathfrak{S}_n = \mathfrak{H}_n$ and $\mathscr{H}_q(\mathfrak{H}_n)$ is the algebra generated by elements $T_0, T_1, \ldots, T_{n-1}$ with

$$\begin{aligned} \forall i \in \llbracket 0, n-1 \rrbracket, \ (T_i - q)(T_i + 1) &= 0; \\ \forall i \in \llbracket 1, n-2 \rrbracket, \ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} ; \quad T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0; \\ \forall i, j, \ |i-j| &\geq 2 \Rightarrow \ T_i T_j = T_j T_i. \end{aligned}$$

What happens when $G = Sp(2n, F_q)$?

Suppose that $G = \operatorname{Sp}(2n, \mathbb{F}_q)$. Then, $W = (\mathbb{Z}/2\mathbb{Z}) \wr \mathfrak{S}_n = \mathfrak{H}_n$ and $\mathscr{H}_q(\mathfrak{H}_n)$ is the algebra generated by elements $T_0, T_1, \ldots, T_{n-1}$ with

$$\begin{aligned} \forall i \in \llbracket 0, n-1 \rrbracket, \ (T_i - q)(T_i + 1) &= 0; \\ \forall i \in \llbracket 1, n-2 \rrbracket, \ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} ; \quad T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0; \\ \forall i, j, \ |i-j| &\geq 2 \Rightarrow T_i T_j = T_j T_i. \end{aligned}$$

The irreducible modules over $\mathscr{H}_q(\mathfrak{H}_n)$ are labelled by pairs $\Lambda = (\lambda^{(1)}, \lambda^{(2)})$ of partitions such that $|\lambda^{(1)}| + |\lambda^{(2)}| = n$. There is an explicit hook length formula for the **q-Plancherel measure of type B**

$$\mathbb{P}^{\mathrm{B}}_{n,q} = \mathbb{P}_{\mathrm{Sp}(2n,\mathbb{F}_q)/\mathrm{BSp}(2n,\mathbb{F}_q)}.$$

Again, there is a symmetry: $\mathbb{P}_{n,q}^{\mathrm{B}}[\lambda^{(1)},\lambda^{(2)}] = \mathbb{P}_{n,q^{-1}}^{\mathrm{B}}[\lambda^{(2)'},\lambda^{(1)'}].$

Asymptotic results for q-Plancherel measures of type B

Asymptotic results for q-Plancherel measures of type B

Theorem (M., 2010)

If $\Lambda = (\lambda^{(1)}, \lambda^{(2)})$ is chosen randomly according to $\mathbb{P}^{\mathrm{B}}_{n,q}$ and $\lambda = \lambda^{(1)} \sqcup \lambda^{(2)}$, then λ has the same asymptotics as in type Λ (LLN and CLT).

Asymptotic results for q-Plancherel measures of type B

Theorem (M., 2010)

If $\Lambda = (\lambda^{(1)}, \lambda^{(2)})$ is chosen randomly according to $\mathbb{P}^{\mathrm{B}}_{n,q}$ and $\lambda = \lambda^{(1)} \sqcup \lambda^{(2)}$, then λ has the same asymptotics as in type Λ (LLN and CLT).

Conjecture (M., 2010)

As n goes to infinity, the (2k + 1)-th part of λ falls in $\lambda^{(1)}$ with probability

$$c_{k,n}
ightarrow rac{1}{2} \left(1 + rac{(q;q^2)_\infty}{(q^2;q^2)_\infty} rac{(q;q^2)_k}{(q^2;q^2)_k} \, q^k
ight)$$

For the (2k + 2)-th part, the probability converges to 1/2.

One can replace the regular trace of *H*_q(*S*_n) by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.

- One can replace the regular trace of *H*_q(S_n) by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.
- In type A, one can do much better: for (almost) any irreducible trace of the infinite symmetric group or the infinite Hecke algebra, the spectral measures corresponding to the restrictions of the trace to 𝔅_n or ℋ_q(𝔅_n) satisfy a LLN (Kerov-Vershik, 1981) and a CLT (M., 2011).

- One can replace the regular trace of *H*_q(S_n) by a more general trace, for instance a Jones-Ocneanu trace. One obtains a (q, t)-deformation of the usual Plancherel measure, with a LLN and a CLT. More generally, one can do this for a Markov trace of an Ariki-Koike algebra.
- In type A, one can do much better: for (almost) any irreducible trace of the infinite symmetric group or the infinite Hecke algebra, the spectral measures corresponding to the restrictions of the trace to 𝔅_n or ℋ_q(𝔅_n) satisfy a LLN (Kerov-Vershik, 1981) and a CLT (M., 2011).
- In the setting of finite Chevalley groups, one can look at spectral measures of modules $R_L^G(\theta)$ obtained by parabolic induction from a cuspidal character of a Levi subgroup. There is an analog of Iwahori's duality in this setting, and the spectral measure charges in fact the set of irreducibles of a Coxeter group; most of the arguments can be reused.

