Automorphisms in Spaces of Functions and Shifts of Coefficients in Infinite Series

M. Deneufchâtel, G.H.E. Duchamp,
Hoang Ngoc Minh, A.I. Solomon Equipe CALIN, LIPN - UMR 7030 CNRS.

$66^{\text {th }}$ Séminaire Lotharingien de Combinatoire, 6-9 Mars 2011.

Summary

1. Introduction,
2. Nonlinear Dynamical Systems,
3. Polylogarithms, multiple harmonic sums and polyzêtas,
4. Nonlinear Fuchsian differential equations.

INTRODUCTION

Linear Fuchsian differential equations (LFDE)

$$
\dot{q}(z)=\left[M_{0} u_{0}(z)+M_{1} u_{1}(z)\right] q(z), \quad y(z)=\lambda q(z), \quad q\left(z_{0}\right)=\eta,
$$

where $M_{0}, M_{1} \in \mathcal{M}_{n, n}(\mathbb{C}), \lambda \in \mathcal{M}_{1, n}(\mathbb{C}), \eta \in \mathcal{M}_{n, 1}(\mathbb{C})$, $u_{0}(z), u_{1}(z) \in \mathcal{C}$.
Example (hypergeometric equation)

$$
z(1-z) \ddot{y}(z)+\left[t_{2}-\left(t_{0}+t_{1}+1\right) z\right] \dot{y}(z)-t_{0} t_{1} y(z)=0 .
$$

Let $q_{1}(z)=y(z)$ and $q_{2}(z)=z(1-z) \dot{y}(z)$. One has

$$
\begin{aligned}
& \binom{\dot{q}_{1}}{\dot{q}_{2}}=\left[\left(\begin{array}{cc}
0 & 0 \\
-t_{0} t_{1} & -t_{2}
\end{array}\right) \frac{1}{z}-\left(\begin{array}{ll}
0 & 1 \\
0 & t_{2}-t_{0}-t_{1}
\end{array}\right) \frac{1}{1-z}\right]\binom{q_{1}}{q_{2}} . \\
& \lambda=\left(\begin{array}{ll}
1 & 0
\end{array}\right), M_{0}=-\left(\begin{array}{cc}
0 & 0 \\
t_{0} t_{1} & t_{2}
\end{array}\right), M_{1}=\left(\begin{array}{cc}
0 & 1 \\
0 & t_{0}+t_{1}-t_{2}
\end{array}\right), \eta=\binom{q_{1}\left(z_{0}\right)}{q_{2}\left(z_{0}\right)} .
\end{aligned}
$$

For (LFDE), one can base one self on the R. Jungen thesis "Sur les séries de Taylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence" (1931).
But for nonlinear Fuchsian differential equations ?

NONLINEAR DYNAMICAL SYSTEMS

State Representation of Nonlinear Dynamical Systems

Let (\mathcal{D}, d) be a k-commutative associative differential algebra with unit $(\operatorname{ch}(k)=0)$ and \mathcal{C} be a differential subfield of \mathcal{D}.
$y(z)=\sum_{n \geq 0} y_{n} z^{n}$ is the output of :
$(N L S) \quad \begin{cases}y(z) & =f(q(z)), \\ \dot{q}(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\ q\left(z_{0}\right) & =q_{0},\end{cases}$
where:

- $u_{0}(z), u_{1}(z) \in \mathcal{C}$,
- the state $q=\left(q_{1}, \ldots, q_{N}\right)$ belongs the complex analytic manifold Q of dimension N and q_{0} is the initial state,
- the observation $f \in \mathcal{O}$, with \mathcal{O} is the ring of holomorphic functions over Q,
- For $i=0 . .1, A_{i}=\sum_{j=1}^{N} A_{i}^{j}(q) \frac{\partial}{\partial q_{j}}$ is an analytic vector field ${ }^{1}$ over Q, with $A_{j}^{j}(q) \in \mathcal{O}$, for $j=1, \ldots, N$.
${ }^{1}$ A vector field A_{i} is said to be linear if the $A_{i}^{j}(q), j=1 . . N$, are constants.

Examples of Nonlinear Dynamical Systems

Example (harmonic oscillator)

$$
\dot{y}(z)+k_{1} y(z)+k_{2} y^{2}(z)=u_{1}(t) .
$$

$$
\begin{aligned}
\dot{q}(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z) \quad \text { with } u_{0}(z) \equiv 1 \\
A_{0} & =-\left(k_{1} q+k_{2} q^{2}\right) \frac{\partial}{\partial q}, \\
A_{1} & =\frac{\partial}{\partial q} \\
y(z) & =q(z) .
\end{aligned}
$$

Example (Duffing's equation)

$$
\begin{aligned}
& \ddot{y}(z)+a \dot{y}(z)+b y(z)+c y^{3}(z)=u_{1}(z) . \\
& \dot{q}(z)=A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z) \quad \text { with } u_{0}(z) \equiv 1, \\
& A_{0}=-\left(a q_{2}+b q_{1}^{2}+c q_{1}^{3}\right) \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}}, \\
& A_{1}=\frac{\partial}{\partial q_{2}}, \\
& y(z)=q_{1}(z) .
\end{aligned}
$$

Our works

Let $X=\left\{x_{0}, x_{1}\right\}$ with $x_{0}<x_{1}$. For any $w=x_{i_{1}} \cdots x_{i_{k}} \in X^{*}$, let $\mathcal{A}\left(1_{X_{*}}\right)=\mathrm{Id}, \quad \mathcal{A}(w)=A_{i_{1}} \circ \ldots \circ A_{i_{k}}$,
$\alpha_{z_{0}}^{z}\left(1_{X *}\right)=1, \quad \alpha_{z_{0}}^{z}(w)=\int_{z_{0}}^{z} \int_{z_{0}}^{z_{1}} \cdots \int_{z_{0}}^{z_{k-1}} u_{i_{1}}\left(z_{1}\right) d z_{1} \cdots u_{i_{k}}\left(z_{k}\right) d z_{k}$.
Theorem (Deneufchâtel,Duchamp,HNM, Solomon, 2010)
Let $S=\sum_{w \in X^{*}} \alpha_{z_{0}}^{z}(w) w \in \mathcal{D}\langle\langle X\rangle\rangle$. The conditions are equivalent :
i) The family $\left(\alpha_{z_{0}}^{z}(w)\right)_{w \in X^{*}}$ of coefficients of S is free over \mathcal{C}.
ii) The family of coefficients $\left(\alpha_{z_{0}}^{z}(x)\right)_{x \in X \cup\left\{1_{x^{*}}\right\}}$ is free over \mathcal{C}.
iii) The family $\left(u_{x}\right)_{x \in X}$ is such that, for $f \in \mathcal{C}$ and $\alpha_{x} \in k$,

$$
d(f)=\sum_{x \in X} \alpha_{x} u_{x} \Longrightarrow(\forall x \in X)\left(\alpha_{x}=0\right)
$$

iv) The family $\left(u_{x}\right)_{x \in X}$ is free over k and $d(\mathcal{C}) \cap \operatorname{span}_{k}\left(\left(u_{x}\right)_{x \in X}\right)=\{0\}$.

Therefore, by successive Picard iterations, one get

$$
y(z)=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\mid q_{0}} \alpha_{z_{0}}^{z}(w)
$$

Chen-Fliess generating series

- Chen series

$$
S_{z_{0} \rightsquigarrow z}=\sum_{w \in X^{*}} \alpha_{z_{0}}^{z}(w) w .
$$

Any Chen generating series $S_{z_{0} \rightsquigarrow z}$ is group-like, for $\Delta_{ш}$, and it depends only on the homotopy class of $z_{0} \rightsquigarrow z$ (Ree).
The product of two Chen generating series $S_{z_{1} \rightsquigarrow z_{2}}$ and $S_{z_{0} \rightsquigarrow z_{1}}$ is the Chen generating series $S_{z_{0} \rightsquigarrow z_{2}}=S_{z_{1} \rightsquigarrow z_{2}} S_{z_{0} \rightsquigarrow z_{1}}$ (Chen).

- The generating series of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation $f \in \mathcal{O}$ at q is given by

$$
\sigma f_{\mid q}:=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\mid q} w \quad \in \mathbb{C}\langle\langle X\rangle\rangle .
$$

For any $f, g \in \mathcal{O}$ anf for any $\lambda, \mu \in \mathbb{C}$, one has (Fliess)

$$
\sigma(\nu f+\mu g)_{\mid q}=\sigma(\nu f)_{\mid q}+\sigma(\mu g)_{\mid q} \quad \text { and } \quad \sigma(f g)_{\mid q}=\sigma f_{\mid q} \amalg \sigma g_{\mid q} .
$$

POLYLOGARITHM-HARMONIC SUM-POLYZETA

Chen series and generating series of polylogarithms
Let $u_{0}(z)=\frac{1}{z}, u_{1}(z)=\frac{1}{1-z}$ and $\omega_{0}(z)=u_{0}(z) d z, \omega_{1}(z)=u_{1}(z) d z$.

$$
\begin{aligned}
\forall w \in X^{*} x_{1}, \quad & \alpha_{0}^{z}(w) \\
& =\operatorname{Li}_{w}(z) \\
& \mathrm{P}_{w}(z):=(1-z)^{-1} \operatorname{Li}_{w}(z)=\sum_{n \geq 1} \mathrm{H}_{w}(n) z^{n}
\end{aligned}
$$

$$
\operatorname{Li}_{x_{0}}(z):=\log z
$$

$$
\mathrm{L}(z):=\sum_{w \in X^{*}} \operatorname{Li}_{w}(z) w
$$

$$
\mathrm{P}(z):=(1-z)^{-1} \mathrm{~L}(z)
$$

Let

$$
(D E) \quad d G(z)=\left[x_{0} \omega_{0}(z)+x_{1} \omega_{1}(z)\right] G(z)
$$

Proposition

- $S_{z_{0} \rightsquigarrow z}$ satisfies $(D E)$ with $S_{z_{0} \rightsquigarrow z_{0}}=1$,
- $\mathrm{L}(z)$ satisfies $(D E)$ with $\mathrm{L}(z)_{z \rightarrow 0} \exp \left(x_{0} \log z\right)$.

Hence, $S_{z_{0} \rightsquigarrow z}=\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}$, or equivalently, $\mathrm{L}(z)=S_{z_{0} \rightsquigarrow z} \mathrm{~L}\left(z_{0}\right)$.

Noncommutative generating series of convergent polyzêtas

Let $X=\left\{x_{0}, x_{1}\right\}$ (resp. $Y=\left\{y_{i}\right\}_{i \geq 1}$) with $x_{0}<x_{1}\left(\right.$ resp. $y_{1}>y_{2}>\ldots$). Let $\mathcal{L} y n X$ (resp. $\mathcal{L} y n X)$ be the transcendence basis of $(\mathbb{C}\langle X\rangle, ш$) (resp. $(\mathbb{C}\langle Y\rangle, \pm))$ and let $\{\hat{l}\}_{I \in \mathcal{L} y n X}$ (resp. $\left.\{\hat{l}\}_{\mid \in \mathcal{L} y n Y}\right)$ be its dual basis. Then
Theorem (HNM, 2009)
We have $\Delta_{ш} \mathrm{~L}=\mathrm{L} \otimes \mathrm{L}$ and $\Delta_{+ \pm} \mathrm{H}=\mathrm{H} \otimes \mathrm{H}$.
Moreover, let $\mathrm{L}_{\mathrm{reg}}(z):=\prod_{\substack{1 \in \mathcal{C y n x} \\ 1 \neq x_{0}, x_{1}}}^{\searrow} e^{\mathrm{Li}(z) \hat{\jmath}}$ and $\mathrm{H}_{\mathrm{reg}}(N):=\prod_{\substack{1 \in \mathcal{C y y r} \\ 1 \neq y_{1}}}^{\searrow} e^{\mathrm{H}_{/}(N) \hat{\jmath}}$.
Then $\mathrm{L}(z)=e^{x_{1} \log \frac{1}{1-z}} \mathrm{~L}_{\mathrm{reg}}(z) e^{x_{0} \log z}$ and $\mathrm{H}(N)=e^{y_{1} \mathrm{H}_{1}(N)} \mathrm{H}_{\mathrm{reg}}(N)$. We put $Z_{ш}:=\mathrm{L}_{\mathrm{reg}}(1)$ and $Z_{+ \pm}:=\mathrm{H}_{\mathrm{reg}}(\infty)$.

Theorem (à la Abel theorem, HNM, 2005)
Let $\Pi_{Y} \mathrm{~L}$ and $\Pi_{Y} Z_{ш}$ be the projections of L and $Z_{ш}$ over Y. Then $\lim _{z \rightarrow 1} e^{y_{1} \log \frac{1}{1-2}} \Pi_{Y} \mathrm{~L}(z)=\lim _{N \rightarrow \infty} \exp \left[-\sum_{k \geq 1} H_{y_{k}}(N) \frac{\left(-y_{1}\right)^{k}}{k}\right] \mathrm{H}(N)=\Pi_{Y} Z_{\amalg}$. Hence, $Z_{ш}$ and $Z_{ \pm \pm}$are group-likes and $Z_{ \pm \pm}=e^{-\gamma y_{1}} \Gamma\left(1+y_{1}\right) \Pi_{Y} Z_{ш}$.

Successive derivations of L

For any $w=x_{i_{1}} \ldots x_{i_{k}} \in X^{*}$ and for any derivation multi-index $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)$ of degree $\operatorname{deg} \mathbf{r}=|w|=k$ and of weight wgt $\mathbf{r}=k+r_{1}+\ldots+r_{k}$, let us define the monomial $\tau_{\mathbf{r}}(w)$ by

$$
\tau_{\mathbf{r}}(w)=\tau_{r_{1}}\left(x_{i_{1}}\right) \ldots \tau_{r_{k}}\left(x_{i_{k}}\right)=\left[u_{i_{1}}^{\left(r_{1}\right)}(z) \ldots u_{i_{k}}^{\left(r_{k}\right)}(z)\right] x_{i_{1}} \ldots x_{i_{k}}
$$

In particular, for any integer r

$$
\begin{aligned}
\tau_{r}\left(x_{0}\right) & =u_{0}^{(r)}(z) x_{0}
\end{aligned}=\frac{-r!x_{0}}{(-z)^{r+1}}, ~=u_{1}^{(r)}(z) x_{1}=\frac{r!x_{1}}{(1-z)^{r+1}} .
$$

Theorem (HNM, 2003)
For any $n \in \mathbb{N}$, we have, $\mathrm{L}^{(n)}(z)=P_{n}(z) \mathrm{L}(z)$, where
$P_{n}(z)=\sum_{w g t} \sum_{r=n} \prod_{w \in X^{n}}^{\operatorname{deg} r}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau(w) \in \mathcal{D}\langle X\rangle$.

NONLINEAR FUCHSIAN DIFFERENTIAL EQUATIONS

Nonlinear Fuchsian differential equations (NLFDE)

$y(z)=\sum_{n \geq 0} y_{n} z^{n}$ is the output of :

$$
(\text { NLFDE })\left\{\begin{array}{l}
y(z)=f(q(z)), \\
\dot{q}(z)=\frac{A_{0}(q)}{z}+\frac{A_{1}(q)}{1-z}, \\
q\left(z_{0}\right)=q_{0},
\end{array}\right.
$$

$\left(\rho, \check{\rho}, C_{f}\right)$ and $\left(\rho, \check{\rho}, C_{i}\right)$, for $i=0, \ldots, m$, are convergence modules of f and $\left\{A_{i}^{j}\right\}_{j=1, \ldots, n}$ respectively at $q \in \operatorname{CV}(f) \mathbb{M}_{i=0, \ldots, m}^{j=1, \ldots, m} \operatorname{CV}\left(A_{i}^{j}\right)$. $\sigma f_{q_{0}}=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{q_{q_{0}}} w$ satisfies the χ-growth condition.

Computation of the output

The duality between $\sigma f_{q_{0}}$ and $S_{z_{0} \rightsquigarrow z}$ consists on the convergence (precisely speaking, the convergence of a duality pairing) of the Fliess' fundamental formula which is extended as follows

$$
y(z)=\left\langle\sigma f_{\left.\right|_{q_{0}}} \| S_{z_{0} \rightsquigarrow z}\right\rangle=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\left.\right|_{q_{0}}}\left\langle S_{z_{0} \rightsquigarrow z} \mid w\right\rangle .
$$

The output y admits then the following expansions

$$
\begin{aligned}
y(z) & =\sum_{w \in X^{*}} g_{w}(z) \mathcal{A}(w) \circ f_{\left.\right|_{q_{0}}} \\
& =\sum_{k \geq 0} \sum_{n_{1}, \ldots, n_{k} \geq 0} g_{x_{0}^{n_{1}} x_{1} \ldots x_{0}^{n_{k} x_{1}}}(z) \operatorname{ad}_{A_{0}}^{n_{1}} A_{1} \ldots \operatorname{ad}_{A_{0}}^{n_{k}} A_{1} e^{\log z A_{0}} \circ f_{\left.\right|_{q_{0}}} \\
& =\exp \left(\sum_{w \in X^{*}} g_{w}(z) \mathcal{A}\left(\pi_{1}(w)\right) \circ f_{\left.\right|_{q_{0}}}\right) \\
& =\prod_{I \in \mathcal{L} y n X} \exp \left(g_{l}(z) \mathcal{A}(\hat{l}) \circ f_{\left.\right|_{q_{0}}}\right)
\end{aligned}
$$

where, for any $w \in X^{*}, g_{w} \in \operatorname{LI}_{\mathcal{C}}$ and

$$
\left.\pi_{1}(w)=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{v_{1}, \cdots, v_{k} \in X^{*} \backslash\left\{1_{X^{*}}\right\}}\langle w| v_{1} ш \cdots \text { ш } v_{k}\right\rangle v_{1} \cdots v_{k}
$$

Asymptotics of the output

The output y of nonlinear differential equation with three singularities is then combination of the elements belonging the $\mathrm{LI}_{\mathcal{C}}$.

For $z_{0}=\varepsilon \rightarrow 0^{+}$, the asymptotic behaviour of the output y at $z=1$ is given by

$$
y(1) \underset{\varepsilon \rightarrow 0^{+}}{\widetilde{ }}\left\langle\sigma f_{\mid q_{0}} \| S_{\varepsilon \rightsquigarrow 1-\varepsilon}\right\rangle=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\mid q_{0}}\left\langle S_{\varepsilon \rightsquigarrow 1-\varepsilon} \mid w\right\rangle,
$$

with $S_{\varepsilon \rightsquigarrow 1-\varepsilon} \underset{\varepsilon \rightarrow 0^{+}}{ } e^{-x_{1} \log \varepsilon} Z_{ш} e^{-x_{0} \log \varepsilon}$.
If $y(z)=\sum_{n \geq 0} y_{n} z^{n}$ then, the coefficients of its ordinary Taylor
expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_{i} \in \mathbb{Z}, b_{i} \in \mathbb{N}$ and c_{i} belong a completion of the \mathbb{C}-algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$
y_{n} \widetilde{n \rightarrow \infty} \sum_{i \geq 0} c_{i} n^{a_{i}} \log ^{b_{i}} n
$$

Finite parts of the output

Definition
For any $f \in \mathcal{O}$ such that

$$
\left\langle\sigma f_{\mid q_{0}} \| S_{z_{0} \rightsquigarrow z}\right\rangle=\sum_{n \geq 0} y_{n} z^{n}
$$

and for $z_{0}=\varepsilon \rightarrow 0^{+}$, let
$\phi\left(f_{\left.\right|_{q_{0}}}\right) \underset{z \rightarrow 1}{ }$ f.p. $y(z)$ in the scale $\left\{(1-z)^{a} \log (1-z)^{b}\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$ $\psi\left(f_{\left.\right|_{0}}\right) \underset{n \rightarrow \infty}{ }$ f.p. y_{n} in the scale $\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$.

Proposition

For any $f, g \in \mathcal{O}$ anf for any $\lambda, \mu \in \mathbb{C}$, one has

$$
\begin{array}{rll}
\phi\left((\nu f+\mu g)_{\left.\right|_{q_{0}}}\right)=\phi\left(\nu f_{q_{0}}\right)+\phi\left(\mu g_{\left.\right|_{0}}\right) & \text { and } & \phi\left(f g_{\left.\right|_{q_{0}}}\right)=\phi\left(f_{\left.\right|_{q_{0}}}\right) \phi\left(g_{\left.\right|_{q_{0}}}\right), \\
\psi\left((\nu f+\mu g)_{\left.\right|_{q_{0}}}\right)=\psi\left(\nu f_{\left.\right|_{0}}\right)+\psi\left(\mu g_{\left.\right|_{q_{0}}}\right) & \text { and } & \psi\left(f g_{q_{0}}\right)=\psi\left(f_{\left.\right|_{q_{0}}}\right) \psi\left(\left.g\right|_{\left.\right|_{q_{0}}}\right) .
\end{array}
$$

Residual calculus and derivations

Let S and $P \in \mathbb{Q}\langle X\rangle$. The left (resp. right) residual of S by P, is the formal power series $P \triangleleft S$ (resp. $S \triangleright P$) in $\mathbb{Q}\langle\langle X\rangle\rangle$ defined by :

$$
\langle P \triangleleft S \mid w\rangle=\langle S \mid w P\rangle \quad(\text { resp. } \quad\langle S \triangleright P \mid w\rangle=\langle S \mid P w\rangle) .
$$

We straightforwardly get, for any $P, Q \in \mathbb{Q}\langle X\rangle$:
$P \triangleleft(Q \triangleleft S)=P Q \triangleleft S,(S \triangleright P) \triangleright Q=S \triangleright P Q,(P \triangleleft S) \triangleright Q=P \triangleleft(S \triangleright Q)$. In case $x, y \in X$ and $w \in X^{*}$, we get :

$$
x \triangleleft(w y)=\delta_{x}^{y} w \quad \text { and } \quad x w \triangleright y=\delta_{x}^{y} w .
$$

Thus, " $x \triangleleft$ " and " $\triangleright x$ " are derivations on $(\mathbb{Q}\langle\langle X\rangle$, ш) :

$$
\begin{aligned}
& x \triangleleft(u ш v)=(x \triangleleft u) ш v+u ш(x \triangleleft v), \\
& (u ш v) \triangleright x=(u \triangleright x) ш v+u ш(v \triangleright x) .
\end{aligned}
$$

Consequently, for any Lie series Q, the linear maps " $Q \triangleleft$ " and " $\triangleright Q$ " are derivations on $(\mathbb{Q}[\mathcal{L} y n X]$, ш $)$.

Successive derivations of the output

Let $n \in \mathbb{N}$,

$$
\begin{aligned}
y^{(n)}(z) & =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| \frac{d^{n}}{d z^{n}} S_{z_{0} \rightsquigarrow z}\right\rangle \\
& =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| \mathrm{L}^{(n)}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| P_{n}(z) \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle\sigma f_{q_{0}} \triangleright P_{n}(z) \| \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle\sigma f_{\left.\right|_{0}} \triangleright P_{n}(z) \| S_{z_{0} \rightsquigarrow z}\right\rangle,
\end{aligned}
$$

where the polynomial $P_{n}(z) \in \mathcal{D}\langle X\rangle$ is defined as follows

$$
P_{n}(z)=\sum_{\text {wgt } \mathbf{r}=n} \sum_{w \in X^{n}} \prod_{i=1}^{\operatorname{deg} \mathbf{r}}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau(w)
$$

Therefore, $\sigma f_{\mid q_{0}} \triangleright P_{n}(z) \in \mathcal{D}\langle\langle X\rangle\rangle$ is the non commutative generating series of $y^{(n)}$.

Asymptotics of the successive derivation of the output

Let $k \in \mathbb{N}$, the successive derivation $y^{(k)}$ of the output of nonlinear differential equation with three singularities is then combination of the elements g belonging the polylogarithm algebra.
For $z_{0}=\varepsilon \rightarrow 0^{+}$, the asymptotic behaviour of the output y at $z=1$ is given by

$$
\begin{aligned}
y^{(k)}(1) & \underset{\varepsilon \rightarrow 0^{+}}{\sim} \\
& \left\langle\sigma f_{q_{0}} \| P_{k}(1-\varepsilon) S_{\varepsilon \rightsquigarrow 1-\varepsilon}\right\rangle \\
& =\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\mid q_{0}}\left\langle P_{k}(1-\varepsilon) S_{\varepsilon \rightsquigarrow 1-\varepsilon} \mid w\right\rangle .
\end{aligned}
$$

If $y^{(k)}(z)=\sum_{n \geq 0} y_{n}^{(k)} z^{n}$ then, the coefficients of its ordinary Taylor
expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_{i} \in \mathbb{Z}, b_{i} \in \mathbb{N}$ and c_{i} belong a completion of the \mathbb{C}-algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$
y_{n}^{(k)} \widetilde{n \rightarrow \infty} \sum_{i \geq 0} c_{i} n^{a_{i}} \log ^{b_{i}} n
$$

THANK YOU FOR YOUR ATTENTION

