Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Universität Marburg

March 8, 2011

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Notation

 $[n]: \{1, ..., n\}$ $S_n: \text{ symmetric group}$ $I_{n!}: \text{ identity matrix of } \mathbb{R}^{n! \times n!}$ $Sp(A): \text{ spectrum of } A \in \mathbb{R}^{n \times n}$ $V_A(a): \text{ multiplicity of } a \in Sp(A)$ $E_A(a): \text{ eigenspace of } a \in Sp(A)$ $< v >: \text{ subspace generated by } v \in \mathbb{R}^n$ $\mathbb{R}[X_1, ..., X_k]: \text{ polynomial ring in } X_i$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のへの

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Contents

Presentation

The statistics des_X and inv_X The matrices $\mathfrak{D}_{\mathfrak{n}}$ and $\mathfrak{I}_{\mathfrak{n}}$ Theorems

Proof

Proof for $\mathfrak{D}_{\mathfrak{n}}$ Proof for $\mathfrak{I}_{\mathfrak{n}}$

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon The statistic *inv* Problem inspired from the Determinant of Varchenko Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The descents set Let $n \ge 1$ and $\sigma \in S_n$:

$$DES(\sigma) := \{k \in [n-1] \mid \sigma(k) > \sigma(k+1)\}.$$

The statistic des_x Let $n \ge 1$:

$$\begin{array}{rccc} \operatorname{des}_{X} : & \mathcal{S}_{n} & \to & \mathbb{R}[X_{1}, \dots, X_{n-1}] \\ & \sigma & \mapsto & \operatorname{des}_{X}(\sigma) := \sum_{i \in DES(\sigma)} X_{i} \end{array}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentatior

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The descents set Let $n \ge 1$ and $\sigma \in S_n$:

$$DES(\sigma) := \{k \in [n-1] \mid \sigma(k) > \sigma(k+1)\}.$$

The statistic des_X

Let $n \geq 1$:

$$\begin{array}{rccc} \operatorname{des}_{\mathtt{X}}: & \mathcal{S}_n & \to & \mathbb{R}[X_1, \dots, X_{n-1}] \\ & \sigma & \mapsto & \operatorname{des}_{\mathtt{X}}(\sigma) := \sum_{i \in DES(\sigma)} X_i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $des_X(\sigma) = X_2 + X_3 + X_5 + X_6$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The descents set Let $n \ge 1$ and $\sigma \in S_n$:

$$DES(\sigma) := \{k \in [n-1] \mid \sigma(k) > \sigma(k+1)\}.$$

The statistic des_x

Let $n \geq 1$:

$$\begin{array}{rccc} {\tt des}_{\tt X}: & \mathcal{S}_n & \to & \mathbb{R}[X_1, \dots, X_{n-1}] \\ & \sigma & \mapsto & {\tt des}_{\tt X}(\sigma) := \sum_{i \in \textit{DES}(\sigma)} X_i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $des_{X}(\sigma) = X_{2} + X_{3} + X_{5} + X_{6}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

The inversions set Let $n \ge 1$ and $\sigma \in S_n$:

 $INV(\sigma) := \{(i,j) \mid i < j, \, \sigma(i) > \sigma(j)\}.$

The statistic inv_x Let $n \ge 1$:

$$\begin{array}{rccc} \operatorname{inv}_{X} : & \mathcal{S}_{n} & \to & \mathbb{R}[X_{1,2}, \dots, X_{n-1,n}] \\ & \sigma & \mapsto & \operatorname{inv}_{X}(\sigma) := \sum_{(i,j) \in INV(\sigma)} X_{i,j} \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The inversions set Let $n \ge 1$ and $\sigma \in S_n$:

$$INV(\sigma) := \{(i,j) \mid i < j, \, \sigma(i) > \sigma(j)\}.$$

The statistic inv_X

Let $n \geq 1$:

$$\begin{array}{rccc} \operatorname{inv}_{\mathtt{X}}: & \mathcal{S}_n & \to & \mathbb{R}[X_{1,2}, \dots, X_{n-1,n}] \\ & \sigma & \mapsto & \operatorname{inv}_{\mathtt{X}}(\sigma) := \sum_{(i,j) \in \mathit{INV}(\sigma)} X_{i,j} \end{array}$$

Example

Let $\sigma = 23514$. Then $des_X(\sigma) = X_{1,4} + X_{2,4} + X_{3,4} + X_{3,5}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

I he statistic *inv* Problem inspired from the Determinant of Varchenko

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The inversions set Let $n \ge 1$ and $\sigma \in S_n$:

$$INV(\sigma) := \{(i,j) \mid i < j, \, \sigma(i) > \sigma(j)\}.$$

The statistic inv_X

Let $n \geq 1$:

$$\begin{array}{rccc} \operatorname{inv}_{\mathtt{X}}: & \mathcal{S}_n & \to & \mathbb{R}[X_{1,2}, \dots, X_{n-1,n}] \\ & \sigma & \mapsto & \operatorname{inv}_{\mathtt{X}}(\sigma) := \sum_{(i,j) \in \mathit{INV}(\sigma)} X_{i,j} \end{array}$$

Example

Let $\sigma = 23514$. Then $des_X(\sigma) = X_{1,4} + X_{2,4} + X_{3,4} + X_{3,5}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{X} and inv_{X} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ສຸ Proof for ສຸ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

The matrix $\mathfrak{D}_{\mathfrak{n}}$

Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} \text{des}_{X}(\sigma)\sigma$ on $\mathbb{R}[X_1, \dots, X_{n-1}][S_n]$ is:

$$\mathfrak{D}_{\mathfrak{n}} := \left(\mathtt{des}_{\mathtt{X}}(\pi au^{-1})
ight)_{\pi, au \in \mathcal{S}_n}$$

Example

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ Proof for ຼອຸ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The matrix $\mathfrak{D}_{\mathfrak{n}}$

Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} \text{des}_{X}(\sigma)\sigma$ on $\mathbb{R}[X_1, \dots, X_{n-1}][S_n]$ is:

$$\mathfrak{D}_{\mathfrak{n}} := \left(\mathtt{des}_{\mathtt{X}}(\pi au^{-1})
ight)_{\pi, au \in \mathcal{S}_n}$$

Example

Descent and Multinomial Inversion Statistics on the Symmetric Group Hery Randriamaro

Presentation

Diagonalization of

the Matrices of the Multinomial

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ສຸ Proof for ສຸ

Applications and new problems The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon The statistic *inv*

Problem inspired from the Determinant of Varchenko

The matrix $\mathfrak{I}_{\mathfrak{n}}$

Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} \operatorname{inv}_{\mathbf{X}}(\sigma) \sigma$ on $\mathbb{R}[X_{1,2}, \ldots, X_{n-1,n}][S_n]$ is:

$$\mathfrak{I}_{\mathfrak{n}} := \left(\mathtt{inv}_{\mathtt{X}}(\pi au^{-1}) \right)_{\pi, au \in \mathcal{S}_n}.$$

Example

$$\mathfrak{I}_{3_{\pi,\tau\in\{123,213,132\}}} = \begin{array}{ccc} 0 & X_{1,2} & X_{2,3} \\ X_{1,2} & 0 & X_{1,3} + X_{2,3} \\ X_{2,3} & X_{1,2} + X_{1,3} & 0 \end{array}$$

・ロット (雪) ・ (日) ・ (日) ・ (日)

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ສຸ Proof for ສຸ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The matrix $\mathfrak{I}_{\mathfrak{n}}$

Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} inv_{\mathbf{X}}(\sigma)\sigma$ on $\mathbb{R}[X_{1,2}, \dots, X_{n-1,n}][S_n]$ is:

$$\mathfrak{I}_{\mathfrak{n}} := \left(\mathtt{inv}_{\mathtt{X}}(\pi au^{-1}) \right)_{\pi, au \in \mathcal{S}_{n}}.$$

Example

$$\mathfrak{I}_{3_{\pi, au \in \{123, 213, 132\}}} = egin{array}{cccc} 0 & X_{1,2} & X_{2,3} \ X_{1,2} & 0 & X_{1,3} + X_{2,3} \ X_{2,3} & X_{1,2} + X_{1,3} & 0 \end{array}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

With simple calculation we get:

1.
$$Sp(\mathfrak{D}_1) = \{0\}$$
 and $V_{\mathfrak{D}_1}(0) = 1$.

2.
$$Sp(\mathfrak{D}_2) = \{X_1, -X_1\}$$
 and $V_{\mathfrak{D}_2}(X_1) = 1$, $V_{\mathfrak{D}_2}(-X_1) = 1$.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼງ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

With simple calculation we get:

1.
$$Sp(\mathfrak{D}_1) = \{0\}$$
 and $V_{\mathfrak{D}_1}(0) = 1$.
2. $Sp(\mathfrak{D}_2) = \{X_1, -X_1\}$ and $V_{\mathfrak{D}_2}(X_1) = 1$, $V_{\mathfrak{D}_2}(-X_1) = 1$

イロト 不得下 イヨト イヨト

э

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼອ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Theorem 1

Let $n \geq 3$. Then \mathfrak{D}_n is diagonalizable and:

$$Sp(\mathfrak{D}_n) = \{\frac{n!}{2} \sum_{k=1}^{n-1} X_k, -(n-2)! \sum_{k=1}^{n-1} X_k, 0\}$$

(日本)(四本)(日本)(日本)

with:

►
$$V_{\mathfrak{D}_n}(\frac{n!}{2}\sum_{k=1}^{n-1}X_k) = 1,$$

► $V_{\mathfrak{D}_n}(-(n-2)!\sum_{k=1}^{n-1}X_k) = \binom{n}{2},$
► $V_{\mathfrak{D}_n}(0) = n! - \binom{n}{2} - 1.$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Example

Diagonalized form of \mathfrak{D}_3 :

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_{π} and \mathfrak{I}_{π} Theorems

Proof

Proof for ລ_າ Proof for ງ_າ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Problem inspired from the Determinant of Varchenko

With simple calculation we get:

- 1. $Sp(\mathfrak{I}_1) = \{0\}$ and $V_{\mathfrak{I}_1}(0) = 1$.
- 2. $Sp(\mathfrak{I}_2) = \{X_{1,2}, -X_{1,2}\}$ and $V_{\mathfrak{I}_2}(X_{1,2}) = 1$, $V_{\mathfrak{I}_2}(-X_{1,2}) = 1$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອຸ Proof for ງຸ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

With simple calculation we get:

1.
$$Sp(\mathfrak{I}_1) = \{0\}$$
 and $V_{\mathfrak{I}_1}(0) = 1$.

2.
$$Sp(\mathfrak{I}_2) = \{X_{1,2}, -X_{1,2}\}$$
 and $V_{\mathfrak{I}_2}(X_{1,2}) = 1$,
 $V_{\mathfrak{I}_2}(-X_{1,2}) = 1$.

3.
$$Sp(\Im_3) = \{3X_{1,2} + 3X_{1,3} + 3X_{2,3}, -X_{1,2} - 2X_{1,3} - X_{2,3}, -X_{1,2} + X_{1,3} - X_{2,3}, 0\}$$
 and

$$V_{\mathcal{I}_3}(3X_{1,2} + 3X_{1,3} + 3X_{2,3}) = 1$$

$$V_{\mathfrak{I}_{3}}(-X_{1,2}-2X_{1,3}-X_{2,3})=2$$

$$V_{\mathfrak{I}_{3}}(-\lambda_{1,2}+\lambda_{1,3}-\lambda_{2,3})=1$$

$$V_{\mathfrak{I}_{3}}(0)=2.$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼງ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

With simple calculation we get:

1.
$$Sp(\mathfrak{I}_{1}) = \{0\}$$
 and $V_{\mathfrak{I}_{1}}(0) = 1$.
2. $Sp(\mathfrak{I}_{2}) = \{X_{1,2}, -X_{1,2}\}$ and $V_{\mathfrak{I}_{2}}(X_{1,2}) = 1$,
 $V_{\mathfrak{I}_{2}}(-X_{1,2}) = 1$.
3. $Sp(\mathfrak{I}_{3}) = \{3X_{1,2} + 3X_{1,3} + 3X_{2,3}, -X_{1,2} - 2X_{1,3} - X_{2,3}, -X_{1,2} + X_{1,3} - X_{2,3}, 0\}$ and
 $\blacktriangleright V_{\mathfrak{I}_{3}}(3X_{1,2} + 3X_{1,3} + 3X_{2,3}) = 1$,
 $\flat V_{\mathfrak{I}_{3}}(-X_{1,2} - 2X_{1,3} - X_{2,3}) = 1$,
 $\flat V_{\mathfrak{I}_{3}}(-X_{1,2} + X_{1,3} - X_{2,3}) = 1$,
 $\flat V_{\mathfrak{I}_{3}}(-X_{1,2} + X_{1,3} - X_{2,3}) = 1$,
 $\flat V_{\mathfrak{I}_{3}}(0) = 2$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣…

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ສຸ Proof for ສຸ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Theorem 2 Let $n \ge 4$. Then \mathfrak{I}_n is diagonalizable and:

$$Sp(\mathfrak{I}_{n}) = \left\{\frac{n!}{2} \sum_{\{(i,j)\in[n]^{2} \mid i < j\}} X_{i,j}, -(n-2)! \sum_{\{(i,j)\in[n]^{2} \mid i < j\}} (j-i)X_{i,j}, -(n-3)! \sum_{\{(i,j)\in[n]^{2} \mid i < j\}} (n-2(j-i))X_{i,j}, 0\right\}$$

with

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Example Diagonalized form of \mathfrak{I}_3 :

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for D_n Proof for ງຸ

Applications and new problems The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへの

Minimal polynomial of \mathfrak{D}_n

For $n \geq 3$, the minimal polynomial of \mathfrak{D}_n is

$$X(X-\frac{n!}{2}\sum_{k=1}^{n-1}X_k)(X+(n-2)!\sum_{k=1}^{n-1}X_k).$$

Consequences

▶ 𝔅_n is diagonalizable.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des $_{X}$ and inv $_{X}$ The matrices \mathfrak{D}_{n} and \mathfrak{I}_{n} Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Minimal polynomial of \mathfrak{D}_n

For $n \geq 3$, the minimal polynomial of \mathfrak{D}_n is

$$X(X-\frac{n!}{2}\sum_{k=1}^{n-1}X_k)(X+(n-2)!\sum_{k=1}^{n-1}X_k).$$

Consequences

D_n is diagonalizable.

• $Sp(\mathfrak{D}_n) = \{\frac{n!}{2} \sum_{k=1}^{n-1} X_k, 0, -(n-2)! \sum_{k=1}^{n-1} X_k\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{I}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Minimal polynomial of \mathfrak{D}_n

For $n \geq 3$, the minimal polynomial of \mathfrak{D}_n is

$$X(X-\frac{n!}{2}\sum_{k=1}^{n-1}X_k)(X+(n-2)!\sum_{k=1}^{n-1}X_k).$$

Consequences

• $\mathfrak{D}_{\mathfrak{n}}$ is diagonalizable.

•
$$Sp(\mathfrak{D}_n) = \{ \frac{n!}{2} \sum_{k=1}^{n-1} X_k, 0, -(n-2)! \sum_{k=1}^{n-1} X_k \}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des $_{X}$ and inv $_{X}$ The matrices \mathfrak{D}_{n} and \mathfrak{I}_{n} Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{I}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Multinomial version of Theorem of Perron-Frobenius Let $n \ge 2$ and $P_n = (P_{i,j})_{i,j\in[n]}$ be a $n \times n$ -matrix of polynomial $P_{i,j} \in \mathbb{R}[X_1, \dots, X_k]$ such that: (a) $P_{i,j} \ne 0$ and $(P_{i,j}, X_1^{i_1} \dots X_k^{i_k}) \ge 0$, (b) for any $i', i'' \in [n]$,

$$\sum_{j=1}^{n} P_{i',j} = \sum_{j=1}^{n} P_{i'',j} = P_{n}.$$

(日本)(同本)(日本)(日本)(日本)

Then
$$P_n \in Sp(P_n)$$
 and $E_{P_n}(P_n) = < \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} >$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{I}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Consequences

• Multinomial version and minimal polynomial:

$$V_{\mathfrak{D}_{\mathfrak{n}}}(\frac{n!}{2}\sum_{k=1}^{n-1}X_k)=1$$

• The trace of \mathfrak{D}_n is 0:

$$V_{\mathfrak{D}_{\mathfrak{n}}}\left(-(n-2)!\sum_{k=1}^{n-1}X_{k}\right) = \binom{n}{2}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Consequences

• Multinomial version and minimal polynomial:

$$V_{\mathfrak{D}_{\mathfrak{n}}}(\frac{n!}{2}\sum_{k=1}^{n-1}X_k)=1$$

The trace of D_n is 0:

$$V_{\mathfrak{D}_n}(-(n-2)!\sum_{k=1}^{n-1}X_k) = \binom{n}{2}$$

• The dimension of $\mathfrak{D}_{\mathfrak{n}}$ is n!:

$$V_{\mathfrak{D}_n}(0) = n! - \binom{n}{2} - 1$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{I}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Consequences

• Multinomial version and minimal polynomial:

$$V_{\mathfrak{D}_{\mathfrak{n}}}(\frac{n!}{2}\sum_{k=1}^{n-1}X_k)=1$$

$$V_{\mathfrak{D}_n}\big(-(n-2)!\sum_{k=1}^{n-1}X_k\big)=\binom{n}{2}$$

• The dimension of $\mathfrak{D}_{\mathfrak{n}}$ is *n*!:

$$V_{\mathfrak{D}_n}(0) = n! - \binom{n}{2} - 1$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{I}_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Minimal polynomial of $\mathfrak{I}_{\mathfrak{n}}$

Let $n \ge 4$. We write

$$\Omega = \frac{n!}{2} \sum_{\{(i,j)\in [n]^2 \mid i < j\}} X_{i,j}$$

$$\Lambda = (n-2)! \sum_{\{(i,j) \in [n]^2 \mid i < j\}} (j-i)X_{i,j},$$

$$\Delta = (n-3)! \sum_{\{(i,j)\in [n]^2 \mid i < j\}} (n-2(j-i))X_{i,j}.$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Then the minimal polynomial of \Im_n is $X(X + \Lambda)(X + \Delta)(X - \Omega)$.

Consequences

• $\mathfrak{I}_{\mathfrak{n}}$ is diagonalizable.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems The statistic *de*s

The statistic *maj* Problem inspired from the Determinant of Thibon

Minimal polynomial of $\mathfrak{I}_{\mathfrak{n}}$

Let $n \ge 4$. We write

$$\Omega = \frac{n!}{2} \sum_{\{(i,j) \in [n]^2 \mid i < j\}} X_{i,j}$$

$$\Lambda = (n-2)! \sum_{\{(i,j) \in [n]^2 \mid i < j\}} (j-i)X_{i,j},$$

$$\Delta = (n-3)! \sum_{\{(i,j)\in [n]^2 \mid i < j\}} (n-2(j-i))X_{i,j}.$$

Then the minimal polynomial of \Im_n is $X(X + \Lambda)(X + \Delta)(X - \Omega)$.

Consequences

► ℑ_n is diagonalizable.

• $Sp(\mathfrak{I}_n) = \{\Omega, -\Lambda, -\Delta, 0\}$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems The statistic *des*

The statistic *maj* Problem inspired from the Determinant of Thibon

Minimal polynomial of $\mathfrak{I}_{\mathfrak{n}}$

Let $n \ge 4$. We write

$$\Omega = \frac{n!}{2} \sum_{\{(i,j)\in [n]^2 \mid i < j\}} X_{i,j}$$

$$\Lambda = (n-2)! \sum_{\{(i,j) \in [n]^2 \mid i < j\}} (j-i)X_{i,j},$$

$$\Delta = (n-3)! \sum_{\{(i,j)\in [n]^2 \mid i < j\}} (n-2(j-i))X_{i,j}.$$

Then the minimal polynomial of \Im_n is $X(X + \Lambda)(X + \Delta)(X - \Omega)$.

Consequences

- J_n is diagonalizable.
- $Sp(\mathfrak{I}_n) = \{\Omega, -\Lambda, -\Delta, 0\}$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems The statistic *des*

The statistic *maj* Problem inspired from the Determinant of Thibon

Consequences

• Multinomial version and minimal polynomial:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Omega) = 1$$

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Lambda) = n-1 \text{ and } V_{\mathfrak{I}_{\mathfrak{n}}}(\Delta) = \binom{n-1}{2}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for D_n Proof for J_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

Consequences

• Multinomial version and minimal polynomial:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Omega) = 1$$

► The trace of ℑ_n is 0:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Lambda) = n-1 ext{ and } V_{\mathfrak{I}_{\mathfrak{n}}}(\Delta) = inom{n-1}{2}$$

• The dimension of $\mathfrak{I}_{\mathfrak{n}}$ is n!:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(0) = n! - \binom{n}{2} - 1$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems The statistic *des* The statistic *maj* Problem inspired from

the Determinant of Thibon

Consequences

Multinomial version and minimal polynomial:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Omega) = 1$$

• The trace of $\mathfrak{I}_{\mathfrak{n}}$ is 0:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(\Lambda) = n-1 ext{ and } V_{\mathfrak{I}_{\mathfrak{n}}}(\Delta) = inom{n-1}{2}$$

• The dimension of $\mathfrak{I}_{\mathfrak{n}}$ is n!:

$$V_{\mathfrak{I}_{\mathfrak{n}}}(0) = n! - \binom{n}{2} - 1$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for \mathfrak{D}_n Proof for \mathfrak{T}_n

Applications and new problems The statistic *des* The statistic *maj* Problem inspired from

he Determinant of Thibon

The statistic *inv* Problem inspired from the Determinant of Varchenko

Applications and new problems

The statistic *des* Let $n \ge 1$:

$$\begin{array}{rccc} des: & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & des(\sigma) := \# DES(\sigma) \end{array}$$

Example

Let $\sigma = 5\overline{9}\overline{8}3\overline{7}\overline{4}126$. Then $des(\sigma) = 4$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des*

Problem inspired from the Determinant of Thibon
The statistic *des* Let $n \ge 1$:

$$\begin{array}{rccc} des: & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & des(\sigma) := \# DES(\sigma) \end{array}$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $des(\sigma) = 4$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic des

Problem inspired from the Determinant of Thibon

The matrix D_n Let $n \ge 1$: $D_n := (des(\pi \tau^{-1}))_{\pi, \tau \in S_n}$.

Example

$$D_{3} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des $_{X}$ and inv $_{X}$ The matrices $\mathfrak{D}_{\mathfrak{n}}$ and $\mathfrak{I}_{\mathfrak{n}}$ Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of

The matrix D_n Let $n \ge 1$: $D_n := (d_n)$

$$\mathsf{D}_{\mathsf{n}} := \left(des(\pi \tau^{-1}) \right)_{\pi, \tau \in \mathcal{S}_{\mathsf{n}}}.$$

Example

(日本)(四本)(日本)(日本)

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des $_{\chi}$ and inv $_{\chi}$ The matrices $\mathfrak{D}_{_{\pi}}$ and $\mathfrak{I}_{_{\pi}}$ Theorems

Proof

Proof for ອຸ Proof for ງຸ

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

Corollary

 D_n is diagonalizable and:

1. If n = 1 then $Sp(D_1) = \{0\}$ and $V_{D_1}(0) = 1$.

2. If n = 2 then $Sp(D_2) = \{1, -1\}$ and $V_{D_2}(1) = 1$, $V_{D_2}(-1) = 1$.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອ_n Proof for ສ_n

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from he Determinant of Fhibon

Corollary

 D_n is diagonalizable and:

1. If n = 1 then $Sp(D_1) = \{0\}$ and $V_{D_1}(0) = 1$.

2. If n = 2 then $Sp(D_2) = \{1, -1\}$ and $V_{D_2}(1) = 1$, $V_{D_2}(-1) = 1$.

3. If
$$n \ge 3$$
 then $Sp(D_n) = \{\binom{n}{2}(n-1)!, 0, -(n-1)!\}$
and

(日本)(同本)(日本)(日本)(日本)

•
$$V_{D_n}(\binom{n}{2}(n-1)!) = 1$$
,

•
$$V_{D_n}(-(n-1)!) = \binom{n}{2}$$

•
$$V_{D_n}(0) = n! - \binom{n}{2} - 1$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອ_າ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from

he Determinant of Thibon

Corollary

 D_{n} is diagonalizable and:

1. If
$$n = 1$$
 then $Sp(D_1) = \{0\}$ and $V_{D_1}(0) = 1$.

2. If
$$n = 2$$
 then $Sp(D_2) = \{1, -1\}$ and $V_{D_2}(1) = 1$,
 $V_{D_2}(-1) = 1$.

3. If
$$n \ge 3$$
 then $Sp(D_n) = \{\binom{n}{2}(n-1)!, 0, -(n-1)!\}$
and

- 日本 - 1 日本 - 日本 - 日本 - 日本

•
$$V_{D_n}(\binom{n}{2}(n-1)!) = 1$$
,
• $V_{D_n}(-(n-1)!) = \binom{n}{2}$,

•
$$V_{D_n}(0) = n! - \binom{n}{2} - 1.$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອ_າ Proof for ງູ

Applications and new problems

The statistic *des*

Problem inspired from the Determinant of Thibon

Example

Diagonalized form of D_3 :

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອ_n Proof for ສ_n

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic *maj*

Let $n \geq 1$:

$$\begin{array}{rccc} \textit{maj}: & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & \textit{maj}(\sigma) := \sum_{i \in \textit{DES}(\sigma)} i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $maj(\sigma) = 2 + 3 + 5 + 6 = 16$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems The statistic *des* **The statistic** *maj*

Problem inspired from the Determinant of Thibon

The statistic *maj*

Let $n \geq 1$:

$$\begin{array}{rccc} \textit{maj}: & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & \textit{maj}(\sigma) := \sum_{i \in \textit{DES}(\sigma)} i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $maj(\sigma) = 2 + 3 + 5 + 6 = 16$.

- 日本 - 4 日本 - 4 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອູ Proof for ງູ

Applications and new problems The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix M_n Let $n \ge 1$: $M_n := (mai)$

$$\mathsf{M}_{\mathsf{n}} := \left(\mathsf{maj}(\pi\tau^{-1}) \right)_{\pi,\tau\in\mathcal{S}_{\mathsf{n}}}.$$

Example

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix M_n Let $n \ge 1$:

$$\mathsf{M}_{\mathsf{n}} := \left(\operatorname{maj}(\pi \tau^{-1}) \right)_{\pi, \tau \in \mathcal{S}_{\mathsf{n}}}.$$

Example

- 日本 - 4 日本 - 4 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

Corollary

M_n diagonalizable and:

1. If n = 1 then $Sp(M_1) = \{0\}$ and $V_{M_1}(0) = 1$.

2. If n = 2 then $Sp(M_2) = \{1, -1\}$ and $V_{M_2}(1) = 1$, $V_{M_2}(-1) = 1$.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອຸ Proof for ສຸ

Applications and new problems

The statistic *des* The statistic *maj*

^Problem inspired from :he Determinant of Thibon

Corollary

M_n diagonalizable and:

1. If
$$n = 1$$
 then $Sp(M_1) = \{0\}$ and $V_{M_1}(0) = 1$.

2. If
$$n = 2$$
 then $Sp(M_2) = \{1, -1\}$ and $V_{M_2}(1) = 1$,
 $V_{M_2}(-1) = 1$.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

3. If $n \ge 3$ then $Sp(M_n) = \{\binom{n}{2} \frac{n!}{2}, 0, -\frac{n!}{2}\}$ and

$$V_{\mathsf{M}_{\mathsf{n}}}\left(\binom{n}{2}\frac{n!}{2}\right) = 1,$$

$$\blacktriangleright V_{\mathsf{M}_{\mathsf{n}}}(-\frac{n!}{2}) = \binom{n}{2},$$

►
$$V_{M_n}(0) = n! - \binom{n}{2} - 1$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອ_n Proof for ສ_n

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Fhibon

Corollary

M_n diagonalizable and:

1. If
$$n = 1$$
 then $Sp(M_1) = \{0\}$ and $V_{M_1}(0) = 1$.

2. If
$$n = 2$$
 then $Sp(M_2) = \{1, -1\}$ and $V_{M_2}(1) = 1$,
 $V_{M_2}(-1) = 1$.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

3. If $n \ge 3$ then $Sp(M_n) = \{\binom{n}{2} \frac{n!}{2}, 0, -\frac{n!}{2}\}$ and

►
$$V_{M_n}(\binom{n}{2}\frac{n!}{2}) = 1$$
,
► $V_{M_n}(-\frac{n!}{2}) = \binom{n}{2}$,
► $V_{M_n}(0) = n! - \binom{n}{2} - 1$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for _{ວີກ}

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Fhibon

Example

Diagonalized form of M₃:

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The statistic *thi* of Thibon Let $n \ge 1$:

$$\begin{array}{rccc} thi: & \mathcal{S}_n & \to & \mathbb{R}[X] \\ & \sigma & \mapsto & thi(\sigma) := \prod_{i \in DES(\sigma)} X^i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $thi(\sigma) = X^{16}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

I he statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The statistic *thi* of Thibon Let $n \ge 1$:

$$\begin{array}{rccc} thi: & \mathcal{S}_n & \to & \mathbb{R}[X] \\ & \sigma & \mapsto & thi(\sigma) := \prod_{i \in DES(\sigma)} X^i \end{array}$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $thi(\sigma) = X^{16}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des $_{X}$ and inv $_{X}$ The matrices \mathfrak{D}_{n} and \mathfrak{I}_{n} Theorems

Proof

Applications and new problems

I he statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix T_n Let $n \ge 1$: $T_n := (thi(\pi \tau^{-1}))_{\pi, \tau \in S_n}$.

Example

$$\mathsf{T}_{3} = \begin{bmatrix} 1 & X^{2} & X & X & X^{2} & X^{3} \\ X^{2} & 1 & X & X & X^{3} & X^{2} \\ X & X^{2} & 1 & X^{3} & X^{2} & X \\ X^{2} & X & X^{3} & 1 & X & X^{2} \\ X & X^{3} & X^{2} & X^{2} & 1 & X \\ X^{3} & X & X^{2} & X^{2} & X & 1 \end{bmatrix}$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix T_n Let $n \ge 1$: $T_n := (thi(\pi \tau^{-1}))_{\pi, \tau \in S_n}$.

Example

- 日本 - 4 日本 - 4 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

Theorem of Thibon

Let $n \ge 1$. Then the eigenvalues of T_n are

$$\frac{(X;X)_n}{\prod_{i\geq 1}(1-X^{\mu_i})}$$

with multiplicities

$$\frac{n!}{1^{m_1}m_1!2^{m_2}m_2!}$$
..

where $\mu = (\mu_1, \mu_2, ...)$ varies through all partitions of *n* and m_i is the number of occurences of *i* in the partition μ .

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອູ Proof for ຼງູ

Applications and new problems The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

A new statistic thi_X Let $n \ge 1$:

$$\begin{array}{rccc} thi_X : & \mathcal{S}_n & \to & \mathbb{R}[X_1, \dots, X_{n-1}] \\ & \sigma & \mapsto & thi_X(\sigma) := \prod_{i \in DES(\sigma)} X_i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $thi_X(\sigma) = X_2X_3X_5X_6$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

A new statistic thi_X Let $n \ge 1$:

$$\begin{array}{rccc} thi_X : & \mathcal{S}_n & \to & \mathbb{R}[X_1, \dots, X_{n-1}] \\ & \sigma & \mapsto & thi_X(\sigma) := \prod_{i \in DES(\sigma)} X_i \end{array}$$

Example

Let $\sigma = 5\bar{9}\bar{8}3\bar{7}\bar{4}126$. Then $thi_X(\sigma) = X_2X_3X_5X_6$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix \mathfrak{T}_n Let $n \ge 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} \operatorname{thi}_{\mathbf{X}}(\sigma)\sigma$ on $\mathbb{R}[X_1, \dots, X_{n-1}][S_n]$ is:

$$\mathfrak{T}_{\mathfrak{n}} := \left(\mathtt{thi}_{\mathtt{X}}(\pi \tau^{-1}) \right)_{\pi, \tau \in \mathcal{S}_{n}}$$

Example

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The matrix \mathfrak{T}_n Let $n \ge 1$. The matrix representation of the multiplication $\sum_{\sigma \in S_n} \operatorname{thi}_{\mathbf{X}}(\sigma)\sigma$ on $\mathbb{R}[X_1, \dots, X_{n-1}][S_n]$ is:

$$\mathfrak{T}_{\mathfrak{n}} := \left(\mathtt{thi}_{\mathtt{X}}(\pi \tau^{-1}) \right)_{\pi, \tau \in \mathcal{S}_n}$$

Example

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic maj

Problem inspired from the Determinant of Thibon

An open problem

The determinant of \mathfrak{T}_n or the spectrum of \mathfrak{T}_n with the multiplicities of his elements.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ອຸ Proof for ງູ

Applications and new problems

The statistic *des* The statistic *maj*

Problem inspired from the Determinant of Thibon

The statistic *inv* Let $n \ge 1$:

$$\begin{array}{cccc} \operatorname{inv}: & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & \operatorname{inv}(\sigma) := \#\operatorname{INV}(\sigma) \end{array}$$

Example

Let $\sigma = 23514$. Then $inv(\sigma) = 4$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The statistic *inv* Let $n \ge 1$:

$$\begin{array}{cccc} \operatorname{inv} : & \mathcal{S}_n & \to & \mathbb{R} \\ & \sigma & \mapsto & \operatorname{inv}(\sigma) := \#\operatorname{INV}(\sigma) \end{array}$$

(日本)(四本)(日本)(日本)

Example

Let $\sigma = 23514$. Then $inv(\sigma) = 4$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The matrix I_n Let $n \ge 1$:

$$\mathsf{I}_{\mathsf{n}} := \left(inv(\pi\tau^{-1}) \right)_{\pi,\tau \in \mathcal{S}_{\mathsf{n}}}.$$

Example

$$I_{3} = \begin{bmatrix} 0 & 1 & 1 & 2 & 3 & 2 \\ 1 & 0 & 2 & 3 & 2 & 1 \\ 1 & 2 & 0 & 1 & 2 & 3 \\ 2 & 3 & 1 & 0 & 1 & 2 \\ 3 & 2 & 2 & 1 & 0 & 1 \\ 2 & 1 & 3 & 2 & 1 & 0 \end{bmatrix}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The matrix I_n Let $n \ge 1$:

$$\mathsf{I}_{\mathsf{n}} := \left(inv(\pi\tau^{-1}) \right)_{\pi,\tau \in \mathcal{S}_{\mathsf{n}}}.$$

Example

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Corollary

In is diagonalizable and:

1. If n = 1 then $Sp(I_1) = \{0\}$ and $V_{I_1}(0) = 1$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Problem inspired from the Determinant of Varchenko

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ● ● ● ● ● ● ●

Corollary

In is diagonalizable and:

- 1. If n = 1 then $Sp(I_1) = \{0\}$ and $V_{I_1}(0) = 1$.
- 2. If n = 2 then $Sp(I_2) = \{1, -1\}$ and $V_{I_2}(1) = 1$, $V_{I_2}(-1) = 1$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Corollary

 I_n is diagonalizable and:

- 1. If n = 1 then $Sp(I_1) = \{0\}$ and $V_{I_1}(0) = 1$.
- 2. If n = 2 then $Sp(I_2) = \{1, -1\}$ and $V_{I_2}(1) = 1$, $V_{I_2}(-1) = 1$.

3.
$$Sp(\Im_3) = \{9, -4, -1, 0\}$$
 and

•
$$V_{\mathfrak{I}_3}(9) = 1$$
,
• $V_{\mathfrak{I}_3}(-4) = 2$

►
$$V_{\mathfrak{I}_3}(-1) = 1$$

► $V_{\mathfrak{I}_3}(0) = 2.$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Corollary

 I_n is diagonalizable and:

1. If
$$n = 1$$
 then $Sp(I_1) = \{0\}$ and $V_{I_1}(0) = 1$.

2. If n = 2 then $Sp(I_2) = \{1, -1\}$ and $V_{I_2}(1) = 1$, $V_{I_2}(-1) = 1$.

3.
$$Sp(\Im_3) = \{9, -4, -1, 0\}$$
 and

•
$$V_{\mathfrak{I}_3}(9) = 1$$
,
• $V_{\mathfrak{I}_3}(-4) = 2$,
• $V_{\mathfrak{I}_3}(-1) = 1$,
• $V_{\mathfrak{I}_3}(0) = 2$.

4. If $n \ge 4$ then

$$Sp(I_n) = \left\{ \frac{n!}{2} \binom{n}{2}, -\frac{(n+1)!}{6}, -\frac{n!}{6}, 0 \right\}$$

and

$$V_{I_n}\left(\frac{n!}{2}\binom{n}{2}\right) = 1,$$

$$V_{I_n}\left(\frac{(n+1)!}{6}\right) = n-1,$$

$$V_{I_n}\left(\frac{n!}{6}\right) = \binom{n}{2},$$

$$V_{I_n}(0) = n! - \binom{n}{2} - n.$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Corollary

 I_n is diagonalizable and:

1. If
$$n = 1$$
 then $Sp(I_1) = \{0\}$ and $V_{I_1}(0) = 1$.

2. If n = 2 then $Sp(I_2) = \{1, -1\}$ and $V_{I_2}(1) = 1$, $V_{I_2}(-1) = 1$.

3.
$$Sp(\Im_3) = \{9, -4, -1, 0\}$$
 and

•
$$V_{\mathfrak{I}_3}(9) = 1$$
,
• $V_{\mathfrak{I}_3}(-4) = 2$,
• $V_{\mathfrak{I}_3}(-1) = 1$,
• $V_{\mathfrak{I}_3}(0) = 2$.

4. If $n \ge 4$ then

$$Sp(I_n) = \left\{ \frac{n!}{2} \binom{n}{2}, -\frac{(n+1)!}{6}, -\frac{n!}{6}, 0 \right\}$$

and

$$V_{I_n}\left(\frac{n!}{2}\binom{n}{2}\right) = 1,$$

$$V_{I_n}\left(\frac{(n+1)!}{6}\right) = n-1,$$

$$V_{I_n}\left(\frac{n!}{6}\right) = \binom{n}{2},$$

$$V_{I_n}(0) = n! - \binom{n}{2} - n.$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Example

Diagonalized form of I_3 :

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The statistic var_X of Varchenko Let $n \ge 1$:

$$\begin{array}{rccc} \mathsf{var}_{X} : & \mathcal{S}_{n} & \to & \mathbb{R}[X_{1,2}, \dots, X_{n-1,n}] \\ & \sigma & \mapsto & \mathsf{var}_{X}(\sigma) \coloneqq \prod_{(i,j) \in \texttt{INV}(\sigma)} X_{i,j} \end{array}$$

Example

Let $\sigma = 23514$. Then $var_X(\sigma) = X_{1,4}X_{2,4}X_{3,4}X_{3,5}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼງ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv
The statistic var_X of Varchenko Let $n \ge 1$:

$$\begin{array}{rccc} \mathsf{var}_{X} : & \mathcal{S}_{n} & \to & \mathbb{R}[X_{1,2}, \dots, X_{n-1,n}] \\ & \sigma & \mapsto & \mathsf{var}_{X}(\sigma) \coloneqq \prod_{(i,j) \in \texttt{INV}(\sigma)} X_{i,j} \end{array}$$

- 日本 - 4 日本 - 4 日本 - 日本

Example

Let $\sigma = 23514$. Then $var_X(\sigma) = X_{1,4}X_{2,4}X_{3,4}X_{3,5}$.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼງ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The matrix $\mathfrak{V}_{\mathfrak{n}}$ Let $n \geq 1$: $\mathfrak{V}_{\mathfrak{n}} := (var_X(\pi \tau^{-1}))_{\pi, \tau \in S_n}$.

Example

$$\mathfrak{V}_{3\pi,\tau\in\{123,213,132\}} = \begin{array}{ccc} 0 & X_{1,2} & X_{2,3} \\ X_{1,2} & 0 & X_{1,3}X_{2,3} \\ X_{2,3} & X_{1,2}X_{1,3} & 0 \end{array}$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_{χ} and inv_{χ} The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

The matrix
$$\mathfrak{V}_{\mathfrak{n}}$$

Let $n \geq 1$:
 $\mathfrak{V}_{\mathfrak{n}} := (var_X(\pi \tau^{-1}))_{\pi, \tau \in S_n}$.

Example

$$\mathfrak{V}_{3_{\pi,\tau\in\{123,213,132\}}} = \begin{array}{ccc} 0 & X_{1,2} & X_{2,3} \\ X_{1,2} & 0 & X_{1,3}X_{2,3} \\ X_{2,3} & X_{1,2}X_{1,3} & 0 \end{array}$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des χ and inv χ The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

Theorem of Varchenko Let $n \ge 1$:

$$det(\mathfrak{V}_{\mathfrak{n}}) = \prod_{L \subseteq 2^{\binom{[n]}{2}}} (1 - a(L)^2)^{I(L)}$$

where $a(L) = \prod_{i,j \in L} X_{i,j}$ is the weight of L and I(L) is the multiplicity of L.

- 日本 - 4 日本 - 4 日本 - 日本

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Proof for ຼອ_ກ Proof for ຼງ

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv

An open problem

The spectrum of \mathfrak{V}_n and the multiplicities of his elements.

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation

The statistics des_X and inv_X The matrices \mathfrak{D}_n and \mathfrak{I}_n Theorems

Proof

Applications and new problems

The statistic *des* The statistic *maj* Problem inspired from the Determinant of Thibon

The statistic inv