Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric Group

 the Matrices of the MultinomialDescent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invx
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Hery Randriamaro

Universität Marburg

March 8, 2011

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Notation

Diagonalization of the Matrices of the Multinomial Descent and Multinomial
$[n]:\{1, \ldots, n\}$
\mathcal{S}_{n} : symmetric group
$I_{n!}$: identity matrix of $\mathbb{R}^{n!\times n!}$
$\operatorname{Sp}(\mathrm{A})$: spectrum of $\mathrm{A} \in \mathbb{R}^{n \times n}$
$V_{\mathrm{A}}(\mathrm{a})$: multiplicity of $a \in S p(\mathrm{~A})$
$E_{A}(a)$: eigenspace of $a \in S p(A)$
$\left\langle v>\right.$: subspace generated by $v \in \mathbb{R}^{n}$
$\mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$: polynomial ring in X_{i}

Hery Randriamaro

Presentation
The statistics des X
and inv ${ }_{X}$
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Contents

Presentation

The statistics des $_{\mathrm{X}}$ and $\mathrm{inv}_{\mathrm{X}}$
The matrices $\mathfrak{D}_{\mathfrak{n}}$ and $\mathfrak{I}_{\mathfrak{n}}$
Theorems
Proof
Proof for $\mathfrak{D}_{\mathfrak{n}}$
Proof for $\mathfrak{I}_{\mathfrak{n}}$
Applications and new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of Varchenko
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The descents set

Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:

The statistic des S_{x}
Let $n \geq 1$:
$\operatorname{DES}(\sigma):=\{k \in[n-1] \mid \sigma(k)>\sigma(k+1)\}$.
Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and inv X
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}

$\sigma \mapsto \operatorname{des}_{\mathrm{X}}(\sigma):=\sum_{i \in D E S(\sigma)} X_{i}$

Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The descents set
Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:

$$
\operatorname{DES}(\sigma):=\{k \in[n-1] \mid \sigma(k)>\sigma(k+1)\} .
$$

The statistic desx
Let $n \geq 1$:

$$
\begin{array}{rlc}
\operatorname{des}_{\mathrm{x}}: \mathcal{S}_{n} & \rightarrow & \mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right] \\
\sigma & \mapsto & \operatorname{des}_{\mathrm{x}}(\sigma):=\sum_{i \in \operatorname{DES}(\sigma)} X_{i}
\end{array}
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and inv X
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Example

Presentation

The descents set
Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:

$$
\operatorname{DES}(\sigma):=\{k \in[n-1] \mid \sigma(k)>\sigma(k+1)\} .
$$

The statistic desx
Let $n \geq 1$:

$$
\begin{array}{rlc}
\operatorname{des}_{\mathrm{x}}: \mathcal{S}_{n} & \rightarrow & \mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right] \\
\sigma & \mapsto & \operatorname{des}_{\mathrm{x}}(\sigma):=\sum_{i \in \operatorname{DES}(\sigma)} X_{i}
\end{array}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then $\operatorname{des}_{\mathrm{x}}(\sigma)=X_{2}+X_{3}+X_{5}+X_{6}$.

Presentation

The inversions set

Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:
Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

$$
\operatorname{INV}(\sigma):=\{(i, j) \mid i<j, \sigma(i)>\sigma(j)\} .
$$

The statistic $\mathrm{inv}_{\mathrm{x}}$
Let $n \geq 1$:

Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The inversions set
Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:
Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

$$
\operatorname{INV}(\sigma):=\{(i, j) \mid i<j, \sigma(i)>\sigma(j)\} .
$$

The statistic $\mathrm{inv}_{\mathrm{x}}$
Let $n \geq 1$:

$$
\begin{aligned}
\operatorname{invx}_{x}: & \rightarrow \mathbb{\mathcal { S } _ { n }} \\
\sigma & \left.\mapsto X_{1,2}, \ldots, X_{n-1, n}\right] \\
& \mapsto \operatorname{inv}_{x}(\sigma):=\sum_{(i, j) \in \operatorname{INV}(\sigma)} X_{i, j}
\end{aligned}
$$

Example

Let $\sigma=23514$. Then $\operatorname{des}_{\mathrm{X}}(\sigma)=X_{1,4}+X_{2,4}+X_{3,4}+X_{3,5}$.

Presentation

The inversions set
Let $n \geq 1$ and $\sigma \in \mathcal{S}_{n}$:

$$
\operatorname{INV}(\sigma):=\{(i, j) \mid i<j, \sigma(i)>\sigma(j)\}
$$

The statistic invx
Let $n \geq 1$:

$$
\begin{array}{rlcc}
\operatorname{inv}_{\mathrm{X}}: \mathcal{S}_{n} & \rightarrow & \mathbb{R}\left[X_{1,2}, \ldots, X_{n-1, n}\right] \\
\sigma & \mapsto & \operatorname{inv}_{\mathrm{X}}(\sigma):=\sum_{(i, j) \in \operatorname{INV}(\sigma)} X_{i, j}
\end{array}
$$

Example

Let $\sigma=23514$. Then $\operatorname{des}_{\mathrm{X}}(\sigma)=X_{1,4}+X_{2,4}+X_{3,4}+X_{3,5}$.

Presentation

The matrix $\mathfrak{D}_{\mathfrak{n}}$
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{des}_{\mathrm{x}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right]\left[\mathcal{S}_{n}\right]$ is:

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and I_{n}
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The matrix $\mathfrak{D}_{\mathfrak{n}}$
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{des}_{\mathrm{x}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right]\left[\mathcal{S}_{n}\right]$ is:

$$
\mathfrak{D}_{\mathfrak{n}}:=\left(\operatorname{des}_{\mathrm{x}}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

$\mathfrak{D}_{3}=$	0	x_{2}	χ_{1}	χ_{1}	χ_{2}	$\underset{X_{2}}{x_{1}+X_{2}}$
	χ_{2}	0	χ_{1}	χ_{1}	$x_{1}+x_{2}$	
	X_{1}	x_{2}	0	$X_{1}+X_{2}$	X_{2}	χ_{1}
	χ_{2}	χ_{1}	$X_{1}+X_{2}$	0	χ_{1}	χ_{2}
	χ_{1}	$X_{1}+X_{2}$	X_{2}	X_{2}	0	X_{1}
	$X_{1}+X_{2}$	χ_{1}	χ_{2}	X_{2}	X_{1}	0

Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The matrix $\mathfrak{I}_{\mathfrak{n}}$
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{inv}_{\mathrm{X}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1,2}, \ldots, X_{n-1, n}\right]\left[\mathcal{S}_{n}\right]$ is:

$$
\mathfrak{I}_{\mathfrak{n}}:=\left(\operatorname{inv}_{\mathrm{X}}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and I_{n}
Theorems
Proof
Proof for \mathscr{D}_{n}
Example

Applications and new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

The matrix \mathfrak{I}_{n}
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{inv}_{\mathrm{X}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1,2}, \ldots, X_{n-1, n}\right]\left[\mathcal{S}_{n}\right]$ is:

$$
\mathfrak{I}_{\mathrm{n}}:=\left(\operatorname{inv}_{\mathrm{x}}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and I_{n}
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems

1. $S p\left(\mathfrak{D}_{1}\right)=\{0\}$ and $V_{\mathfrak{D}_{1}}(0)=1$.
2. $\operatorname{Sp}\left(\mathfrak{D}_{2}\right)=\left\{X_{1},-X_{1}\right\}$ and $V_{\mathbb{D}_{2}}\left(X_{1}\right)=1, V_{\mathbb{D}_{2}}\left(-X_{1}\right)=1$.

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

2. $\operatorname{Sp}\left(\mathfrak{D}_{2}\right)=\left\{X_{1},-X_{1}\right\}$ and $V_{\mathfrak{D}_{2}}\left(X_{1}\right)=1, V_{\mathfrak{D}_{2}}\left(-X_{1}\right)=1$.

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Theorem 1

Let $n \geq 3$. Then $\mathfrak{D}_{\mathfrak{n}}$ is diagonalizable and:

$$
S p\left(\mathfrak{D}_{\mathfrak{n}}\right)=\left\{\frac{n!}{2} \sum_{k=1}^{n-1} X_{k},-(n-2)!\sum_{k=1}^{n-1} X_{k}, 0\right\}
$$

with:

- $V_{\mathfrak{D}_{\mathfrak{n}}}\left(\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)=1$,
- $V_{\mathfrak{D}_{\mathfrak{n}}}\left(-(n-2)!\sum_{k=1}^{n-1} X_{k}\right)=\binom{n}{2}$,
- $V_{\mathfrak{D}_{\mathfrak{n}}}(0)=n!-\binom{n}{2}-1$.

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics $\operatorname{des}_{\mathrm{X}}$
and inv ${ }_{X}$
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for $\mathfrak{D}_{\mathrm{n}}$
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Example

Diagonalized form of \mathfrak{D}_{3} :

$3\left(X_{1}+X_{2}\right)$	0	0	0	0	0
0	$-\left(X_{1}+X_{2}\right)$	0	0	0	0
0	0	$-\left(X_{1}+X_{2}\right)$	0	0	0
0	0	0	$-\left(X_{1}+X_{2}\right)$	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathscr{D}_{n} and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group

With simple calculation we get:

1. $\operatorname{Sp}\left(\mathfrak{I}_{1}\right)=\{0\}$ and $V_{\mathfrak{I}_{1}}(0)=1$.
2. $\operatorname{Sp}\left(\mathfrak{I}_{2}\right)=\left\{X_{1,2},-X_{1,2}\right\}$ and $V_{J_{2}}\left(X_{1,2}\right)=1$, $V_{\mathfrak{J}_{2}}\left(-X_{1,2}\right)=1$.

Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

With simple calculation we get:

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

1. $\operatorname{Sp}\left(\mathfrak{I}_{1}\right)=\{0\}$ and $V_{\mathfrak{I}_{1}}(0)=1$.
2. $\operatorname{Sp}\left(\mathfrak{I}_{2}\right)=\left\{X_{1,2},-X_{1,2}\right\}$ and $V_{\mathfrak{J}_{2}}\left(X_{1,2}\right)=1$, $V_{\mathfrak{J}_{2}}\left(-X_{1,2}\right)=1$.

Presentation

With simple calculation we get:

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Theorem 2
Let $n \geq 4$. Then $\mathfrak{I}_{\mathfrak{n}}$ is diagonalizable and:

$$
\begin{aligned}
\operatorname{Sp}\left(\mathfrak{I}_{\mathfrak{n}}\right)= & \left\{\frac{n!}{2} \sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}} X_{i, j},-(n-2)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(j-i) X_{i, j},\right. \\
& \left.-(n-3)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(n-2(j-i)) X_{i, j}, 0\right\}
\end{aligned}
$$

with

- $V_{\mathfrak{I}_{\mathfrak{n}}}\left(\frac{n!}{2} \sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}} X_{i, j}\right)=1$,
- $V_{\mathfrak{J}_{\mathfrak{n}}}\left(-(n-2)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(j-i) X_{i, j}\right)=n-1$,
$-V_{\mathfrak{I}_{\mathfrak{n}}}\left(-(n-3)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(n-2(j-i)) X_{i, j}\right)=\binom{n-1}{2}$,
- $V_{\mathfrak{I}_{\mathfrak{n}}}(0)=n!-\binom{n}{2}-n$.

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics $\operatorname{des}_{\mathrm{X}}$
and invx
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for $\mathfrak{D}_{\mathrm{n}}$
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Presentation

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Example

Diagonalized form of \Im_{3} :

$$
\begin{array}{cccc}
3\left(X_{1,2}+X_{1,3}+X_{2,3}\right) & 0 & 0 & 0 \\
0 & -X_{1,2}-2 X_{1,3}-x_{2,3} & 0 & 0 \\
0 & 0 & -X_{1,2}-2 x_{1,3}-x_{2,3} & 0 \\
0 & 0 & 0 & -X_{1,2}+x_{1,3}-X_{2,3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
For $n \geq 3$, the minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$ is

$$
X\left(X-\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)\left(X+(n-2)!\sum_{k=1}^{n-1} X_{k}\right)
$$

Consequences

$\Rightarrow D_{\mathrm{n}}$ is diagonalizable.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
Proof
Proof for $\mathfrak{D}_{\mathrm{n}}$
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
For $n \geq 3$, the minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$ is

$$
X\left(X-\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)\left(X+(n-2)!\sum_{k=1}^{n-1} X_{k}\right)
$$

Consequences

- $\mathfrak{D}_{\mathfrak{n}}$ is diagonalizable.
- $\operatorname{Sp}\left(\mathfrak{D}_{\mathfrak{n}}\right)=\left\{\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}, 0,-(n-2)!\sum_{k=1}^{n-1} X_{k}\right\}$

Presentation

The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
For $n \geq 3$, the minimal polynomial of $\mathfrak{D}_{\mathfrak{n}}$ is

$$
X\left(X-\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)\left(X+(n-2)!\sum_{k=1}^{n-1} X_{k}\right)
$$

Consequences

- $\mathfrak{D}_{\mathfrak{n}}$ is diagonalizable.
- $\operatorname{Sp}\left(\mathfrak{D}_{\mathfrak{n}}\right)=\left\{\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}, 0,-(n-2)!\sum_{k=1}^{n-1} X_{k}\right\}$

Presentation

The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
Proof
Proof for $\mathfrak{D}_{\mathrm{n}}$
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Multinomial version of Theorem of Perron-Frobenius

 Let $n \geq 2$ and $P_{n}=\left(P_{i, j}\right)_{i, j \in[n]}$ be a $n \times n$-matrix of polynomial $P_{i, j} \in \mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$ such that:(a) $P_{i, j} \neq 0$ and $\left(P_{i, j}, X_{1}^{i_{1}} \ldots X_{k}^{i_{k}}\right) \geq 0$,
(b) for any $i^{\prime}, i^{\prime \prime} \in[n]$,

$$
\sum_{j=1}^{n} P_{i^{\prime}, j}=\sum_{j=1}^{n} P_{i^{\prime \prime}, j}=P_{n} .
$$

Then $P_{n} \in S p\left(\mathrm{P}_{\mathrm{n}}\right)$ and $E_{\mathrm{P}_{\mathrm{n}}}\left(P_{\mathrm{n}}\right)=<\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)>$.

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from
the Determinant of
Varchenko

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{\mathfrak{D}_{\mathfrak{n}}}\left(\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)=1
$$

- The trace of $\mathfrak{D}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{D}_{\mathfrak{n}}}\left(-(n-2)!\sum_{k=1}^{n-1} X_{k}\right)=\binom{n}{2}
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{\mathfrak{D}_{\mathfrak{n}}}\left(\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)=1
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

- The trace of $\mathfrak{D}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{D}_{\mathfrak{n}}}\left(-(n-2)!\sum_{k=1}^{n-1} X_{k}\right)=\binom{n}{2}
$$

- The dimension of $\mathfrak{D}_{\mathfrak{n}}$ is $n!$:

$$
V_{\mathfrak{D}_{\mathfrak{n}}}(0)=n!-\binom{n}{2}-1
$$

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{\mathfrak{D}_{\mathfrak{n}}}\left(\frac{n!}{2} \sum_{k=1}^{n-1} X_{k}\right)=1
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric Group

Hery Randriamaro

Presentation
The statistics $\operatorname{des}_{\mathrm{X}}$
and invX
The matrices \mathfrak{D}_{n} and
Theorems

- The trace of $\mathfrak{D}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{P}_{\mathfrak{n}}}\left(-(n-2)!\sum_{k=1}^{n-1} X_{k}\right)=\binom{n}{2}
$$

- The dimension of $\mathfrak{D}_{\mathfrak{n}}$ is $n!$:

$$
V_{\mathfrak{P}_{\mathfrak{n}}}(0)=n!-\binom{n}{2}-1
$$

Proof

Minimal polynomial of $\Im_{\mathfrak{n}}$

Let $n \geq 4$. We write

$$
\begin{gathered}
\Omega=\frac{n!}{2} \sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}} x_{i, j}, \\
\Lambda=(n-2)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(j-i) X_{i, j}, \\
\Delta=(n-3)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(n-2(j-i)) x_{i, j} .
\end{gathered}
$$

Diagonalization of the Matrices of the Multinomial
Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and inv ${ }_{X}$
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for \boldsymbol{I}_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of Varchenko

Proof

Minimal polynomial of $\Im_{\mathfrak{n}}$

Let $n \geq 4$. We write

$$
\begin{gathered}
\Omega=\frac{n!}{2} \sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}} x_{i, j}, \\
\Lambda=(n-2)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(j-i) X_{i, j}, \\
\Delta=(n-3)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(n-2(j-i)) x_{i, j} .
\end{gathered}
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for \mathfrak{I}_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Minimal polynomial of $\Im_{\mathfrak{n}}$

Let $n \geq 4$. We write

$$
\begin{gathered}
\Omega=\frac{n!}{2} \sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}} x_{i, j}, \\
\Lambda=(n-2)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(j-i) X_{i, j}, \\
\Delta=(n-3)!\sum_{\left\{(i, j) \in[n]^{2} \mid i<j\right\}}(n-2(j-i)) x_{i, j} .
\end{gathered}
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and inv $_{\mathrm{X}}$
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{\mathfrak{J}_{n}}(\Omega)=1
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

- The trace of $\mathfrak{I}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{J}_{n}}(\Lambda)=n-1 \text { and } V_{J_{n}}(\Delta)=\binom{n-1}{2}
$$

Proof

Proof for $\mathcal{D}_{\text {, }}$
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{J_{n}}(\Omega)=1
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des $_{\mathrm{X}}$ and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

- The trace of $\mathfrak{I}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{J}_{n}}(\Lambda)=n-1 \text { and } V_{\mathfrak{J}_{n}}(\Delta)=\binom{n-1}{2}
$$

- The dimension of $\mathfrak{I}_{\mathrm{n}}$ is $n!$:

$$
V_{\mathcal{J}_{n}}(0)=n!-\binom{n}{2}-1
$$

Proof

Proof for \mathfrak{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Proof

Consequences

- Multinomial version and minimal polynomial:

$$
V_{\mathfrak{J}_{\mathrm{n}}}(\Omega)=1
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

- The trace of $\mathfrak{I}_{\mathfrak{n}}$ is 0 :

$$
V_{\mathfrak{J}_{\mathrm{n}}}(\Lambda)=n-1 \text { and } V_{\mathfrak{J}_{\mathrm{n}}}(\Delta)=\binom{n-1}{2}
$$

- The dimension of $\mathfrak{I}_{\mathfrak{n}}$ is $n!$:

$$
V_{\mathfrak{I}_{\mathfrak{n}}}(0)=n!-\binom{n}{2}-1
$$

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic des
Let $n \geq 1$:

$$
\begin{aligned}
\text { des: } \mathcal{S}_{n} & \rightarrow \\
\sigma & \mapsto \operatorname{des}(\sigma):=\# D E S(\sigma)
\end{aligned}
$$

Presentation
The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic des
Let $n \geq 1$:

$$
\begin{aligned}
\text { des: } \mathcal{S}_{n} & \rightarrow \\
\sigma & \mapsto \operatorname{des}(\sigma):=\# D E S(\sigma)
\end{aligned}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then $\operatorname{des}(\sigma)=4$.

Presentation

The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix D_{n}
Let $n \geq 1$:

$$
\mathrm{D}_{\mathrm{n}}:=\left(\operatorname{des}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}}
$$

Example

Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix D_{n}
Let $n \geq 1$:

$$
\mathrm{D}_{\mathrm{n}}:=\left(\operatorname{des}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}}
$$

Example

$$
\mathrm{D}_{3}=\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 & 2 & 1 \\
1 & 1 & 0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 & 1 & 1 \\
1 & 2 & 1 & 1 & 0 & 1 \\
2 & 1 & 1 & 1 & 1 & 0
\end{array}
$$

Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of

Thibon

The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
D_{n} is diagonalizable and:

1. If $n=1$ then $\operatorname{Sp}\left(\mathrm{D}_{1}\right)=\{0\}$ and $V_{D_{1}}(0)=1$.
2. If $n=2$ then $\operatorname{Sp}\left(D_{2}\right)=\{1,-1\}$ and $V_{D_{2}}(1)=1$, $V_{D_{2}}(-1)=1$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

D_{n} is diagonalizable and:

1. If $n=1$ then $\operatorname{Sp}\left(\mathrm{D}_{1}\right)=\{0\}$ and $V_{\mathrm{D}_{1}}(0)=1$.
2. If $n=2$ then $S p\left(D_{2}\right)=\{1,-1\}$ and $V_{D_{2}}(1)=1$,

$$
V_{D_{2}}(-1)=1 .
$$

3. If $n \geq 3$ then $\operatorname{Sp}\left(D_{n}\right)=\left\{\binom{n}{2}(n-1)\right.$!, $0,-(n-1)$! $\}$

- $\left.V_{\mathrm{D}_{n}}\binom{n}{2}(n-1)!\right)=1$,
- $V_{D_{n}}(-(n-1)!)=\binom{n}{2}$,
- $V_{D_{n}}(0)=n!-\binom{n}{2}-1$.

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

D_{n} is diagonalizable and:

1. If $n=1$ then $\operatorname{Sp}\left(\mathrm{D}_{1}\right)=\{0\}$ and $V_{D_{1}}(0)=1$.
2. If $n=2$ then $S p\left(D_{2}\right)=\{1,-1\}$ and $V_{D_{2}}(1)=1$, $V_{D_{2}}(-1)=1$.
3. If $n \geq 3$ then $\operatorname{Sp}\left(D_{n}\right)=\left\{\binom{n}{2}(n-1)\right.$!, $\left.0,-(n-1)!\right\}$ and

- $\left.V_{\mathrm{D}_{n}}\binom{n}{2}(n-1)!\right)=1$,
- $V_{D_{n}}(-(n-1)!)=\binom{n}{2}$,
- $V_{D_{n}}(0)=n!-\binom{n}{2}-1$.

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Example

Diagonalized form of D_{3} :

6	0	0	0	0	0
0	-2	0	0	0	0
0	0	-2	0	0	0
0	0	0	-2	0	0
0	0	0	0	0	0
0	0	0	0	0	0

the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic maj
Let $n \geq 1$:

$$
\begin{aligned}
\operatorname{maj}: \mathcal{S}_{n} & \rightarrow \\
\sigma & \mapsto \operatorname{maj}(\sigma):=\sum_{i \in D E S(\sigma)} i
\end{aligned}
$$

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic maj
Let $n \geq 1$:

\[

\]

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then $\operatorname{maj}(\sigma)=2+3+5+6=16$.

Presentation

The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix M_{n}
Let $n \geq 1$:

$$
\mathrm{M}_{\mathrm{n}}:=\left(\operatorname{maj}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}}
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group

Hery Randriamaro

Presentation
The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from
the Determinant of
Varchenko

Applications and new problems

The matrix M_{n}
Let $n \geq 1$:

$$
\mathrm{M}_{\mathrm{n}}:=\left(\operatorname{maj}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

$$
M_{3}=\begin{array}{llllll}
0 & 2 & 1 & 1 & 2 & 3 \\
2 & 0 & 1 & 1 & 3 & 2 \\
1 & 2 & 0 & 3 & 2 & 1 \\
2 & 1 & 3 & 0 & 1 & 2 \\
1 & 3 & 2 & 2 & 0 & 1 \\
3 & 1 & 2 & 2 & 1 & 0
\end{array}
$$

Diagonalization of the Matrices of the Multinomial Descent and Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for $\mathfrak{D}_{\mathrm{n}}$
Proof for J_{u}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

M_{n} diagonalizable and:

1. If $n=1$ then $S p\left(M_{1}\right)=\{0\}$ and $V_{M_{1}}(0)=1$.
2. If $n=2$ then $S p\left(M_{2}\right)=\{1,-1\}$ and $V_{M_{2}}(1)=1$, $V_{M_{2}}(-1)=1$.

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

M_{n} diagonalizable and:

1. If $n=1$ then $S p\left(M_{1}\right)=\{0\}$ and $V_{M_{1}}(0)=1$.
2. If $n=2$ then $S p\left(\mathrm{M}_{2}\right)=\{1,-1\}$ and $V_{\mathrm{M}_{2}}(1)=1$,

$$
V_{\mathrm{M}_{2}}(-1)=1 .
$$

3. If $n \geq 3$ then $\left.\operatorname{Sp}\left(M_{n}\right)=\left\{\begin{array}{l}n \\ 2\end{array}\right) \frac{n!}{2}, 0,-\frac{n!}{2}\right\}$ and

- $\left.V_{M_{n}}\binom{n}{2} \frac{n-1}{2}\right)=1$,
- $V_{M_{n}}\left(-\frac{n^{2}}{2}\right)=\binom{n}{2}$,
- $V_{M_{n}}(0)=n!-\binom{n}{2}-1$.

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Corollary

M_{n} diagonalizable and:

1. If $n=1$ then $S p\left(M_{1}\right)=\{0\}$ and $V_{\mathrm{M}_{1}}(0)=1$.
2. If $n=2$ then $\operatorname{Sp}\left(\mathrm{M}_{2}\right)=\{1,-1\}$ and $V_{\mathrm{M}_{2}}(1)=1$,

$$
V_{\mathrm{M}_{2}}(-1)=1
$$

3. If $n \geq 3$ then $\operatorname{Sp}\left(\mathrm{M}_{\mathrm{n}}\right)=\left\{\binom{n}{2} \frac{n!}{2}, 0,-\frac{n!}{2}\right\}$ and

- $\left.V_{M_{n}}\binom{n}{2} \frac{n!}{2}\right)=1$,
- $V_{M_{n}}\left(-\frac{n!}{2}\right)=\binom{n}{2}$,
- $V_{M_{n}}(0)=n!-\binom{n}{2}-1$.

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Example

Diagonalized form of M_{3} :

9	0	0	0	0	0
0	-3	0	0	0	0
0	0	-3	0	0	0
0	0	0	-3	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group

Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems
Proof
Proof for \mathfrak{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from
the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic thi of Thibon
Let $n \geq 1$:

$$
\text { thi : } \begin{aligned}
\mathcal{S}_{n} & \rightarrow \\
\sigma & \mapsto \operatorname{thi}(\sigma):=\prod_{i \in \operatorname{DES}(\sigma)} X^{i}
\end{aligned}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then thi $(\sigma)=X^{16}$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group

Hery Randriamaro
The statistic thi of Thibon
Let $n \geq 1$:

$$
\text { thi: } \begin{aligned}
\mathcal{S}_{n} & \rightarrow \text { } \\
\sigma & \mapsto \operatorname{thi}(\sigma):=\prod_{i \in \operatorname{DES}(\sigma)} X^{i}
\end{aligned}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then $\operatorname{thi}(\sigma)=X^{16}$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix T_{n}
Let $n \geq 1$:

$$
\mathrm{T}_{\mathrm{n}}:=\left(\operatorname{thi}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

The matrix T_{n}
Let $n \geq 1$:

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

$$
\mathrm{T}_{\mathrm{n}}:=\left(\operatorname{thi}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Presentation

The statistics des X
and invx
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

$$
\mathrm{T}_{3}=\begin{array}{cccccc}
1 & x^{2} & X & X & X^{2} & X^{3} \\
X^{2} & 1 & X & X & X^{3} & X^{2} \\
X & x^{2} & 1 & X^{3} & X^{2} & X \\
X^{2} & X & x^{3} & 1 & X & X^{2} \\
X & X^{3} & X^{2} & X^{2} & 1 & X \\
X^{3} & X & X^{2} & X^{2} & X & 1
\end{array}
$$

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Theorem of Thibon

Let $n \geq 1$. Then the eigenvalues of T_{n} are
Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
where $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ varies through all partitions of n and m_{i} is the number of occurences of i in the partition μ.

The statistic inv
Problem inspired from the Determinant of Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
A new statistic thix
Let $n \geq 1$:

$$
\begin{array}{rlcc}
\text { thix }: \mathcal{S}_{n} & \rightarrow & \mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right] \\
\sigma & \mapsto & \operatorname{thii_{X}}(\sigma):=\prod_{i \in \operatorname{DES}(\sigma)} X_{i}
\end{array}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then thix $(\sigma)=X_{2} X_{3} X_{5} X_{6}$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and

Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro
A new statistic thi ${ }_{X}$
Let $n \geq 1$:

$$
\begin{array}{rlcc}
\text { thix }: \mathcal{S}_{n} & \rightarrow & \mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right] \\
\sigma & \mapsto & \operatorname{thix}(\sigma):=\prod_{i \in \operatorname{DES}(\sigma)} X_{i}
\end{array}
$$

Example

Let $\sigma=5 \overline{9} \overline{8} 3 \overline{7} \overline{4} 126$. Then thix $(\sigma)=X_{2} X_{3} X_{5} X_{6}$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix $\mathfrak{T}_{\mathfrak{n}}$
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{thi}_{\mathrm{X}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right]\left[\mathcal{S}_{n}\right]$ is:

$$
\mathfrak{T}_{\mathfrak{n}}:=\left(\operatorname{thi}_{\mathrm{X}}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Example

Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix \mathfrak{T}_{n}
Let $n \geq 1$. The matrix representation of the multiplication $\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{thi}_{\mathrm{X}}(\sigma) \sigma$ on $\mathbb{R}\left[X_{1}, \ldots, X_{n-1}\right]\left[\mathcal{S}_{n}\right]$ is:

$$
\mathfrak{T}_{\mathfrak{n}}:=\left(\operatorname{thi}_{\mathrm{X}}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

$$
\mathfrak{T}_{3}=\begin{array}{cccccc}
1 & X_{2} & X_{1} & X_{1} & X_{2} & X_{1} X_{2} \\
X_{2} & 1 & X_{1} & X_{1} & X_{1} X_{2} & X_{2} \\
X_{1} & X_{2} & 1 & X_{1} X_{2} & X_{2} & X_{1} \\
X_{2} & X_{1} & X_{1} X_{2} & 1 & X_{1} & X_{2} \\
X_{1} & X_{1} X_{2} & X_{2} & X_{2} & 1 & X_{1} \\
& X_{1} X_{2} & X_{1} & X_{2} & X_{2} & X_{1} \\
1
\end{array}
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and inv ${ }_{X}$
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

 the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the SymmetricGroup
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
The determinant of $\mathfrak{T}_{\mathfrak{n}}$ or the spectrum of $\mathfrak{T}_{\mathfrak{n}}$ with the multiplicities of his elements.

Proof

Proof for \mathfrak{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic inv
Let $n \geq 1$:

$$
\begin{aligned}
\operatorname{inv}: & \rightarrow \mathcal{S}_{n} \\
\sigma & \mapsto \operatorname{inv}(\sigma):=\# \operatorname{INV}(\sigma)
\end{aligned}
$$

Example

Let $\sigma=23514$. Then $\operatorname{inv}(\sigma)=4$.

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic inv
Let $n \geq 1$:

$$
\begin{aligned}
\operatorname{inv}: \mathcal{S}_{n} & \rightarrow \mathbb{R} \\
\sigma & \mapsto \operatorname{inv}(\sigma):=\# \operatorname{INV}(\sigma)
\end{aligned}
$$

Example

Let $\sigma=23514$. Then $\operatorname{inv}(\sigma)=4$.

Presentation
The statistics des X and inv ${ }_{X}$
The matrices \mathfrak{D}_{n} and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

The matrix I_{n}
Let $n \geq 1$:

$$
\mathrm{I}_{\mathrm{n}}:=\left(\operatorname{inv}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}}
$$

Diagonalization of
the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathfrak{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from
the Determinant of
Varchenko

Applications and new problems

The matrix I_{n}
Let $n \geq 1$:

$$
I_{n}:=\left(i n v\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

$$
I_{3}=\begin{array}{llllll}
0 & 1 & 1 & 2 & 3 & 2 \\
1 & 0 & 2 & 3 & 2 & 1 \\
1 & 2 & 0 & 1 & 2 & 3 \\
2 & 3 & 1 & 0 & 1 & 2 \\
3 & 2 & 2 & 1 & 0 & 1 \\
2 & 1 & 3 & 2 & 1 & 0
\end{array}
$$

Diagonalization of the Matrices of the Multinomial
Descent and Multinomial
Inversion Statistics
Group
Hery Randriamaro

Presentation
The statistics des X and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Inspiration from Rainer-Saliola-Welker I_{n} is diagonalizable and $S p\left(I_{n}\right) \subset \mathbb{N}$.

Corollary
I_{n} is diagonalizable and:

1. If $n=1$ then $\operatorname{Sp}\left(I_{1}\right)=\{0\}$ and $V_{I_{1}}(0)=1$.

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathscr{D}_{n} and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Inspiration from Rainer-Saliola-Welker
I_{n} is diagonalizable and $S p\left(I_{n}\right) \subset \mathbb{N}$.
Corollary

Diagonalization of the Matrices of the Multinomial Descent and Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems
Proof
Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Corollary
I_{n} is diagonalizable and:

Applications and new problems

Inspiration from Rainer-Saliola-Welker

I_{n} is diagonalizable and $S p\left(I_{n}\right) \subset \mathbb{N}$.

1. If $n=1$ then $\operatorname{Sp}\left(\mathrm{I}_{1}\right)=\{0\}$ and $V_{\mathrm{I}_{1}}(0)=1$.
2. If $n=2$ then $S p\left(\mathrm{I}_{2}\right)=\{1,-1\}$ and $V_{\mathrm{I}_{2}}(1)=1, V_{\mathrm{I}_{2}}(-1)=1$.
3. $\operatorname{Sp}\left(\mathfrak{I}_{3}\right)=\{9,-4,-1,0\}$ and

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems
$>V_{\Im_{3}}(9)=1$,
$-V_{\mathfrak{I}_{3}}(-4)=2$,
$\Rightarrow V_{J_{3}}(-1)=1$,

- $V_{\mathfrak{J}_{3}}(0)=2$.

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Inspiration from Rainer-Saliola-Welker

I_{n} is diagonalizable and $S p\left(I_{n}\right) \subset \mathbb{N}$.

Corollary

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems

- $V_{\mathfrak{I}_{3}}(9)=1$,
- $V_{\mathfrak{I}_{3}}(-4)=2$,
- $V_{\mathfrak{I}_{3}}(-1)=1$,
- $V_{\mathfrak{I}_{3}}(0)=2$.

and
$\Rightarrow V_{I_{n}}\left(\frac{n!}{2}\binom{n}{2}\right)=1$,
$\Rightarrow V_{I_{n}}\left(\frac{(n+1)!}{6}\right)=n-1$,
$-V_{1_{n}}\left(\frac{n!}{6}\right)=\binom{n}{2}$,
- $V_{l_{n}}(0)=n!-\binom{n}{2}-n$.

Applications and new problems

Inspiration from Rainer-Saliola-Welker

I_{n} is diagonalizable and $S p\left(I_{n}\right) \subset \mathbb{N}$.

Corollary

I_{n} is diagonalizable and:

1. If $n=1$ then $S p\left(\mathrm{I}_{1}\right)=\{0\}$ and $V_{\mathrm{I}_{1}}(0)=1$.
2. If $n=2$ then $S p\left(I_{2}\right)=\{1,-1\}$ and $V_{1_{2}}(1)=1, V_{1_{2}}(-1)=1$.
3. $\operatorname{Sp}\left(\mathfrak{I}_{3}\right)=\{9,-4,-1,0\}$ and

- $V_{\mathfrak{I}_{3}}(9)=1$,
- $V_{\mathfrak{I}_{3}}(-4)=2$,
- $V_{\mathfrak{I}_{3}}(-1)=1$,
- $V_{\mathfrak{I}_{3}}(0)=2$.

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

- $V_{\mathrm{In}_{n}}\left(\frac{n!}{2}\binom{n}{2}\right)=1$,
- $V_{l_{n}}\left(\frac{(n+1)!}{6}\right)=n-1$,
- $V_{\mathrm{I}_{\mathrm{n}}}\left(\frac{n!}{6}\right)=\binom{n}{2}$,
- $V_{\mathrm{In}_{\mathrm{n}}}(0)=n!-\binom{n}{2}-n$.

Applications and new problems

Example

Diagonalized form of I_{3} :

9	0	0	0	0	0
0	-4	0	0	0	0
0	0	-4	0	0	0
0	0	0	-1	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group

Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices \mathfrak{D}_{n} and
Theorems
Proof
Proof for \mathfrak{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic var ${ }^{\prime}$ of Varchenko
Let $n \geq 1$:

$$
\left.\begin{array}{rl}
\operatorname{var}_{X}: \mathcal{S}_{n} & \rightarrow \\
\sigma & \mapsto \\
& \mapsto
\end{array} \operatorname{var}_{X}(\sigma):=X_{(i, 2) \in \operatorname{INv}(\sigma)}, \ldots, X_{n-1, n}\right] X_{i, j}
$$

Example

Let $\sigma=23514$. Then $\operatorname{varx}(\sigma)=X_{1,4} X_{2,4} X_{3,4} X_{3,5}$.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for $\mathcal{D}_{\text {, }}$
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of

Thibon

The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
The statistic var ${ }_{X}$ of Varchenko
Let $n \geq 1$:

$$
\begin{aligned}
& \operatorname{var}_{X}: \mathcal{S}_{n} \rightarrow \\
& \sigma \mathbb{R}\left[X_{1,2}, \ldots, X_{n-1, n}\right] \\
& \sigma \mapsto \\
& \operatorname{var}(\sigma):=\prod_{(i, j) \in \operatorname{INv}(\sigma)} X_{i, j}
\end{aligned}
$$

Example

Let $\sigma=23514$. Then $\operatorname{var}_{X}(\sigma)=X_{1,4} X_{2,4} X_{3,4} X_{3,5}$.

Presentation
The statistics des X
and inv ${ }_{X}$
The matrices $\mathfrak{D}_{\mathrm{n}}$ and

Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for J_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
The matrix $\mathfrak{V}_{\mathfrak{n}}$
Let $n \geq 1$:

$$
\mathfrak{V}_{\mathfrak{n}}:=\left(\operatorname{var}_{x}\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

Hery Randriamaro

Presentation
The statistics des X
and invx
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of Varchenko

Applications and new problems

The matrix $\mathfrak{V}_{\mathfrak{n}}$
Let $n \geq 1$:

$$
\mathfrak{V}_{\mathfrak{n}}:=\left(\operatorname{var} x\left(\pi \tau^{-1}\right)\right)_{\pi, \tau \in \mathcal{S}_{n}} .
$$

Example

$$
\mathfrak{V}_{3 \pi, \tau \in\{123,213,132\}}=\begin{array}{ccc}
X_{1,2} & 0 & x_{1,3} X_{2,3} \\
X_{2,3} & x_{1,2} X_{1,3} & 0
\end{array}
$$

Diagonalization of the Matrices of the Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of Varchenko

Applications and new problems

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics on the Symmetric

Group
Hery Randriamaro
Theorem of Varchenko
Let $n \geq 1$:

$$
\operatorname{det}\left(\mathfrak{V}_{\mathfrak{n}}\right)=\prod_{\substack{L \subseteq 2\left(\begin{array}{c}
{[n] \\
2}
\end{array}\right)}}\left(1-a(L)^{2}\right)^{I(L)}
$$

where $a(L)=\prod_{i, j \in L} X_{i, j}$ is the weight of L and $I(L)$ is the multiplicity of L.

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and

Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from
the Determinant of
Thibon
The statistic inv
Problem inspired from the Determinant of
Varchenko

Applications and new problems

Diagonalization of the Matrices of the Multinomial Descent and Multinomial Inversion Statistics on the Symmetric

Group
Hery Randriamaro

Presentation
The statistics des X
and invX
The matrices $\mathfrak{D}_{\mathrm{n}}$ and
Theorems

Proof

Proof for \mathscr{D}_{n}
Proof for I_{n}
Applications and
new problems
The statistic des
The statistic maj
Problem inspired from the Determinant of Thibon
The statistic inv
Problem inspired from the Determinant of Varchenko

