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Notation

[n]: {1,...,n}

Sn: symmetric group

I identity matrix of R™x"

Sp(A): spectrum of A € R"*"

Va(a): multiplicity of a € Sp(A)
Ea(a): eigenspace of a € Sp(A)

< v >: subspace generated by v € R”
R[X1,..., Xk]: polynomial ring in X;
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The descents set
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Presentation
The descents set
Let n>1 and o € S
DES(c) :=={ke[n—1] | o(k) > o(k+1)}.
The statistic desg
Let n > 1:
desy: S, — R[X1, ...y Xn-1]

o = desx(U) = ZieDES(U)Xi

Example

Let 0 =598374126. Then desx(0) = Xo + X3 + X5 + Xs.
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The inversions set
Let n>1and o0 € S,
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Presentation

The inversions set
Let n>1and o0 € S,

INV (o) :={(i.j) | i <Jj, o(i) > o(j)}.
The statistic invy
Let n > 1:

invy: S, — R[XLQ, - 7Xn—1,n]
o invx(0) = X2 hemv(o) Xid
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Presentation

The inversions set
Let n>1and o0 € S,

INV(0) == {(i.J) | i < j o(i) > o(j)}.

The statistic invy

Let n > 1:
invy: S, — R[XLQ, - 7Xn—1,n]
o invx(0) = X2 hemv(o) Xid
Example

Let 0 =23514. Then desx(0) = X14 + Xo4 + X34+ X35.
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Presentation

The matrix O,

Let n > 1. The matrix representation of the
> ves, desx(o)o on R[Xy, ..., Xy—1][Sn] is:

Dy = (desy(rr 1))

’TI',’TESn ’

multiplication
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The matrix D, e St
Let n > 1. The matrix representation of the multiplication Group
ZUESn desx(o‘)o‘ on R[Xl7 . 7Xn71][8n] IS Hery Randriamaro
o -1
Dy = (desx(ﬂT ))W,TESn' Rt
Example
0 X2 X1 X1 X2 Xl + X2
X5 0 X1 X1 X1+ X5 Xo
.- X Xo 0 Xi+X X X1
3 X X1 X+ X 0 X X,
X1 X1 + X2 X2 X2 0 Xl

X1+ Xo X1 X X5 X1 0




Presentation

The matrix J,

Let n > 1. The matrix representation of the multiplication
> ves, invx(o)o on R[X12,. .., Xp-1,0][Sn] is:

TJp = (invx(TrTfl))mTeSn.
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Presentation

The matrix J,

Let n > 1. The matrix representation of the multiplication
> ves, invx(o)o on R[X12,. .., Xp-1,0][Sn] is:

TJp = (invx(TrTfl))mTeSn.

Example

0 X2 Xa3
I3 ez oz iz — X1,2 0
Xo3 X1+ X13 0
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Presentation

With simple calculation we get:

1. Sp(®,) = {0} and V» (0) = 1.
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With simple calculation we get:
1. Sp(@l) = {O} and VDl (O) =1. Theorems

2. 5p(9,) = {X1,—X1} and Vp,(X1) =1, Vp,(-X1) =1




Presentation

Theorem 1
Let n > 3. Then ©,, is diagonalizable and:

n—1 n—1
Sp(0) = {5 3" X ~(n= 2! Xe. 0}
k=1 k=1

> Vo, (0)=nl—(3) — 1.
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Example

Diagonalized form of D;:

3(X1 + X2)

O O O O o

0
—(X1+ X2)
0

0
0
0
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0 00

0 00
—(X14X%) 0 0

0 0 0

0 0 0




Presentation

With simple calculation we get:
1. Sp(3,) = {0} and V5,(0) = 1.
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Presentation

With simple calculation we get:
1. Sp(3,) = {0} and V5,(0) = 1.

2. 5p(3,) = {X12,—X12} and V5, (X12) =1,
ij(—XLg) =1.
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Presentation

With simple calculation we get:
1. Sp(3,) = {0} and V5,(0) = 1.

2. 5p(3,) = {X12,—X12} and V5, (X12) =1,
ij(—XLg) =1.

3. 5p(35) = {3X12 +3X13+3X23, —X12 —2X13 —
X2.3, —Xl 2+ X13— Xp3, 0} and
> (3X12+3X13+3X23)—1
» Vo (= X2 —2X13 — X23) = 2,
» Vi (= X12+X13—X23)—1
> V3,(0) =
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Let n > 4. Then 7, is diagonalizable and:
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SO =13 X Xy (-2t Y G-,

{GNel? | i<i} {G)elP | i<i}

—(n=3)! > (n—2(j—i))Xi,j» 0}

{GNelP i<}

Theorems

with
> Vﬁn(%l Z{(IJ €ln? | i<j} Xij) =
Vi, (= (=23 e | '<1}(Jf') j)=n-1
> Vﬁn ( n - 3)' Z{ (ij)E? | i<} (n - 2(‘/ - I)> ) = ("gl),

> V3, (0)=nl—(3) —n.




Presentation

Example

Diagonalized form of J;:

3(X1,2 + X1,3 + X2,3)

coocoo

0
—X1,2 —2X13 — X2,3

oo oo

0
0

—X12 —2X13 — X2,3
0

0
0

0
0
0
—X1,2 + )61,3 = X2,3

0
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Proof for ©




Proof

Minimal polynomial of ®,
For n > 3, the minimal polynomial of ®, is

n—1

X(X——ZXk ) (X +(n—2 Zxk

k=1

Consequences

» %, is diagonalizable.
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For n > 3, the minimal polynomial of ®, is

n—1

X(X——ZXk ) (X +(n—2 Zxk
k=1

Proof for ©
Consequences

» %, is diagonalizable.
> Sp(Dn) = {5 S0 X, 0, —(n—2)! 027 X}




Proof

Multinomial version of Theorem of Perron-Frobenius

Let n>2and P, = (P"J)i,je[n] be a n X n-matrix of
polynomial P;; € R[Xy,..., Xk] such that:
(a) Pij#0and (P, X{*...X}) >0,

(b) for any i’,i" € [n],

> Pij=> Pinj=Pn
j=1 j=1

1
Then P, € Sp(Pn) and Ep, (P,) =< | © | >.
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Proof

Consequences

» Multinomial version and minimal polynomial:

n—1
n!
k=1
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Proof

Consequences

» Multinomial version and minimal polynomial:

» The trace of ®, is 0:

Vo, (= (n—2)! :Zéxk) = (;)
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Proof

Consequences

» Multinomial version and minimal polynomial:

» The trace of ®, is 0:
n—1 n
V’Dn( —(n—2)! ZX") = (2)
k=1

» The dimension of ©, is n!:

Va, (0) = nl — (g) 1

Diagonalization of
the Matrices of the
Multinomial
Descent and
Multinomial
Inversion Statistics
on the Symmetric
Group

Hery Randriamaro

Proof for ©




Diagonalization of

P rOOf the Matrices of the
Multinomial
Descent and
Multinomial

Inversion Statistics
on the Symmetric
Group

Minimal polynomial of J,

Let n > 4. We write Hery driamaro
|

n:% S Xij»

{(.JEm? | i<j}

A= (n—2) 3 G = DX js

{G.JEln? | i<j}

A=(n—3) > (n=2G-0)x;.

{G.Em? | i<j} 2

Proof for 3,

Then the minimal polynomial of J,, is X (X + A) (X + A) (X — Q).




Proof

Minimal polynomial of J,
Let n > 4. We write
|

nt
LD D
{(L)EM? | i<)}
A= (n-2)! 3 U = D)X j»
{G)el? | i<i}
A= (n—3) > (n—2(j—i))X,-yj.
{(L.)EM? | i<j}

Then the minimal polynomial of J,, is X (X + A) (X + A) (X — Q).
Consequences

> T, is diagonalizable.
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Proof

Minimal polynomial of J,
Let n > 4. We write
|

nt
LD D
{(L)EM? | i<)}
A= (n-2)! 3 U = D)X j»
{G)el? | i<i}
A= (n—3) > (n—2(j—i))X,-yj.
{(L.)EM? | i<j}

Then the minimal polynomial of J,, is X (X + A) (X + A) (X — Q).
Consequences

> T, is diagonalizable.
» Sp(J,) = {Q,—N\,—A,0}
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Proof

Consequences

» Multinomial version and minimal polynomial:

V5,(Q2) =1

» The trace of J, is O:

Vy (A) = n—1and Vs (A) = (” N 1)
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V5,(Q2) =1

» The trace of J, is O:

Proof for 3,

Vy (A) = n—1and Vs (A) = (” N 1)

» The dimension of J, is n!:

Vs (0) = n! — <g> 1
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Applications and new problems

The statistic des
Let n > 1:

des: S, — R
o > des(o):=#DES(0)

Example
Let 0 =5908374126. Then des(o) = 4.
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The matrix D,

Let n > 1:
Dy := (des(nm™1))

T, TES’
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Let n Z 1 Hery Randriamaro
Dy := (des(nm™1))

T, TESy’

Example

The statistic des

Ds =

NRPrR R R, EFPRO
R NP, PR O
R R NOR -
R =R, ONFH =
R O R EFE,NR
O, K, KFEEFEN




Applications and new problems

Corollary
D, is diagonalizable and:

1. If n=1 then Sp(D;) = {0} and Vp,(0) = 1.
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D, is diagonalizable and:
1. If n=1 then Sp(D;) = {0} and Vp,(0) = 1.
2. If n =2 then Sp(D2) = {1,—1} and Vp,(1) =1,
Vp,(—1) = 1.

The statistic des




Applications and new problems

Corollary
D, is diagonalizable and:
1. If n=1 then Sp(D;) = {0} and Vp,(0) = 1.
2. If n =2 then Sp(D2) = {1,—1} and Vp,(1) =1,

Vp,(—1) = 1.
3. If n >3 then Sp(Dn) = {(3)(n—1)!, 0, —(n—1)!}
and
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Applications and new problems

Example

Diagonalized form of Djs:

O O OO oo

O O O O oo

O O O O oo
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The statistic maj
Let n > 1:

maj: S, — R
o = maj(o) =) icpes(o) !
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The statistic maj
Let n > 1:

maj: S, — R
o = maj(o) =) icpes(o) !

Example
Let 0 =598374126. Then maj(c) =2+3+5+6 = 16.

The statistic maj




Applications and new problems

The matrix M,
Let n > 1:

M, = (maj(ﬂT_l))mTeSn.
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Let n 2 1: Hery Randriamaro
M, = (ma'(ﬂT_l))
n- ) m,7€SH’

Example
0211 2 3
2 0113 2
]- 2 0 3 2 ]‘ The statistic maj
Mi= 5 1301 2
1 32201
312210
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Corollary
M, diagonalizable and:
1. If n=1 then Sp(M;) = {0} and W,(0) = 1.
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Applications and new problems

Corollary
M, diagonalizable and:
1. If n=1 then Sp(M;) = {0} and W,(0) = 1.
2. If n=2then Sp(M2) = {1,—1} and V\,(1) =1,
Vi, (—1) = 1.
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Applications and new problems

Corollary
M, diagonalizable and:
1. If n=1 then Sp(M;) = {0} and W,(0) = 1.

2. If n=2then Sp(M2) = {1,—1} and V\,(1) =1,

Vm,(—1) = 1.
3. If n >3 then Sp(M,) = {(5)%, 0, —%} and
> Vi ((5 )*') =1,
> Vin(=%) = (3),

. Vi, (0):_1 (-1
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Example
Diagonalized form of Ms:

9 0 0 0 0O
0 -3 0 0 0 O
0O 0 -3 0 00O
0 0 0 -3 00
0 O 0 0 0O
0 0 0 0O 0 O The statistic maj
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Let n > 1:

thi: Sy — R[X] |
o = thi(o) = [licpes(s) X'

Problem inspired from
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The statistic thi of Thibon
Let n > 1:

thi: Sy — R[X] |
o = thi(o) = [licpes(s) X'

Example
Let o = 508374126. Then thi(c) = X'6.

the Determinant of
Thibon
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T, := (thi(wfl))m6 s,

Problem inspired from
the Determinant of
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The matrix T, G
Let n > 1: Hery Randriamaro
To = (thi(nm™), cs.
Example
1 X2 X X x2 x3
X2 1 X X X3 Xx?
.o X X2 1 X3 X2 X
TOX2 X X3 1 ox X2 e
1
X
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Let n > 1. Then the eigenvalues of T, are
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(X; X)n
[Tis1 (1 = Xn)

with multiplicities

n!
1mmq12mem,l "7

Problem inspired from
the Determinant of
Thibon

where p = (p1, pi2, - .. ) varies through all partitions of n and
m; is the number of occurences of i in the partition .
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A new statistic thix
Let n > 1:

thix : S, — R[X1,. .., Xp1]
o = thix(0) = [Tiepes(e) Xi

Problem inspired from
the Determinant of
Thibon
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A new statistic thix
Let n > 1:

thix : S, — R[X1,. .., Xp1]
o = thix(0) = [Tiepes(e) Xi

Example
Let o =508374126. Then thix(c) = XoX3XsXo.

the Determinant of
Thibon
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Let n > 1. The matrix representation of the multiplication

> s, thix(o)o on R[Xy, ..., X,—1][Sn] is:
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Ty := (thix(r7 1))

T,TESH’

Problem inspired from
the Determinant of
Thibon
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The matrIX ‘Iu on the Symmetric
. . T Group

Let n > 1. The matrix representation of the multiplication e R

> s, thix(o)o on R[Xy, ..., X,—1][Sn] is:

Th = (thiX(TrT_l))mTES,,'

Example
1 X2 Xl Xl X2 X1 X2
X2 v X X XX X2 Problem inspired from
.z _ Xl X2 1 Xl X2 X2 Xl tThhe_mEienterminant of
370X X1 X1 X5 1 X1 X

X1 XiXe X Xo 1 X1
X1 Xo Xt X2 X X1 1
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An open problem
The determinant of T, or the spectrum of T, with the
multiplicities of his elements.

Problem inspired from
the Determinant of
Thibon
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The statistic inv
Let n > 1:

inv: S, — R
o +— inv(o):=#INV(o)

The statistic inv
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The statistic inv
Let n > 1:

inv: S, — R
o +— inv(o):=#INV(o)

Example
Let c =23514. Then inv(o) = 4.
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The matrix I,
Let n > 1:

lh = (inV(WT_l))w,reSn‘
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Applications and new problems

The matrix I,

Let n > 1:
Iy = (I'nV(ﬂ'T_l))ﬂ_TEsn.

Example
0112 3 2
1 0 2 3 21
| 1 201 2 3
37 23101 2
322101
213 210
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Corollary

|, is diagonalizable and:
1. If n =1 then Sp(l;) = {0} and V|1(0) =1
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Inspiration from Rainer-Saliola-Welker
I, is diagonalizable and Sp(l,) C N.

Corollary

|, is diagonalizable and:
1. If n =1 then Sp(l;) = {0} and V|1(0) =1
2. If n=2then Sp(l2) = {1, =1} and V|, (1) = 1, V;,(-1) = 1.
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Applications and new problems

Inspiration from Rainer-Saliola-Welker
I, is diagonalizable and Sp(l,) C N.

Corollary

|, is diagonalizable and:
1. If n.=1then Sp(l) = {0} and V; (0) = 1.
2. If n=2then Sp(l2) = {1, =1} and V|, (1) = 1, V;,(-1) = 1.
3. Sp(J3)={9, —4, —1, 0} and
(9) =1,
5,(—4) =2
Vs, (1) = 1,
Vs, (0) = 2.

> V33
V.

v vy
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Applications and new problems

Inspiration from Rainer-Saliola-Welker
I, is diagonalizable and Sp(l,) C N.

Corollary

|, is diagonalizable and:

1.
2.

3.

If n =1 then Sp(l;) = {0} and V|1(0) =1

If n=2then Sp(l2) = {1, =1} and W, (1) =1, Vj,(-1) = 1.

Sp(33) = {9, —4, —1, 0} and
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Applications and new problems

Example

Diagonalized form of I3:

O O O O o v

o O O o

O O O O oo

O O O O oo
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The statistic varx of Varchenko
Let n > 1:

varx . Sn — R[XLQ, ceey Xn—l,n]
o = varx(o) = [ jem(o) Xij

Problem inspired from
the Determinant of
Varchenko
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The statistic varx of Varchenko

Let n > 1:
varx . Sn — R[XLQ, ceey Xn—l,n]
o = varx(o) = [ jem(o) Xij
Example

Let c =23514. Then Varx(O') = X1’4X274X3’4X3’5.

Problem inspired from
the Determinant of
Varchenko
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Let n > 1:
U, = (val’x(ﬂ'T_l))Tr’Tesn.
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Let n > 1:
Y, = -1
n = (varx(mm™?) Sy’
Example

0 X1 X23

)

X1,2 0 X1,3X23

) )

Xo3 X12X13 0

3m,7€{123,213,132}
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Theorem of Varchenko

Let n>1:

where a(L) =]

det(Vo) = [ (1-a(L)*)™

ijeL

multiplicity of L.

ng([gl)

X;j is the weight of L and /(L) is the
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An open problem
The spectrum of U, and the multiplicities of his elements.

Problem inspired from
the Determinant of
Varchenko
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