Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs

Martin Rubey

March 8, 2011

Abstract

maximal 0-1 fillings of a moon polyomino M with longest north-east chain having length k (eg., k-triangulations, k-noncrossing partitions)

can be identified with

an interval in the poset generated by chute moves of rc-graphs (also known as pipe dreams) associated with a certain permutation $\omega(M, k)$

moon polyominoes

- ▶ a polyomino is a finite subset of \mathbb{N}^2 , elements are called cells
- ▶ it is convex if for any two cells in a row or column all elements of \mathbb{N}^2 between them are also cells

moon polyominoes

- ▶ a polyomino is a finite subset of \mathbb{N}^2 , elements are called cells
- ▶ it is convex if for any two cells in a row or column all elements of \mathbb{N}^2 between them are also cells
- ▶ it is intersection-free if for every pair of columns the set of row coordinates of the cells of one column contains the set of row coordinates of the cells of the other:

moon polyominoes

- ▶ a polyomino is a finite subset of \mathbb{N}^2 , elements are called cells
- ▶ it is convex if for any two cells in a row or column all elements of \mathbb{N}^2 between them are also cells
- ▶ it is intersection-free if for every pair of columns the set of row coordinates of the cells of one column contains the set of row coordinates of the cells of the other:

▶ a moon polyomino is a convex and intersection-free polyomino:

Consider fillings of the cells of a moon polyomino with balls:

Consider fillings of the cells of a moon polyomino with balls:

A north-east chain is a sequence of non-empty cells such that

- each entry is strictly north-east of its predecessor and
- the smallest rectangle containing all of them is completely contained in the polyomino.

		•	•			
		•	•	•		
•	•	•		•	•	•
•	•	•				•
		•	•	•	•	•

a chain of length 2

a chain

Let $\mathcal{F}_{01}^{ne}(M, k, r)$ be the set of 0-1 fillings of M with r balls and longest north-east chain having length k.

Let $\mathcal{F}_{01}^{ne}(M, k, (r_1, r_2, ...))$ be the subset of $\mathcal{F}_{01}^{ne}(M, k, \sum r_i)$ with r_i balls in row i.

is in $\mathcal{F}_{01}^{ne}(M, 2, (2, 3, 6, 4, 5))$.

Let $\mathcal{F}_{01}^{ne}(M, k, r)$ be the set of 0-1 fillings of M with r balls and longest north-east chain having length k.

Let $\mathcal{F}_{01}^{ne}(M, k, (r_1, r_2, \dots))$ be the subset of $\mathcal{F}_{01}^{ne}(M, k, \sum r_i)$ with r_i balls in row i.

Theorem (2007)

Let M_1 and M_2 be moon polyominoes obtained from each other by rearranging columns. Then

$$\#\mathcal{F}^{ne}_{01}\big(M_1,k,(r_1,r_2,\dots)\big) = \#\mathcal{F}^{ne}_{01}\big(M_2,k,(r_1,r_2,\dots)\big)$$

Corollary

all have the same number of 0-1 fillings with r balls, for any k.

Let $\mathcal{F}_{01}^{ne}(M, k, r)$ be the set of 0-1 fillings of M with r balls and longest north-east chain having length k.

Let $\mathcal{F}_{01}^{ne}(M, k, (r_1, r_2, ...))$ be the subset of $\mathcal{F}_{01}^{ne}(M, k, \sum r_i)$ with r_i balls in row i.

Theorem (2007)

Let M_1 and M_2 be moon polyominoes obtained from each other by rearranging columns. Then

$$\#\mathcal{F}^{ne}_{01}\big(M_1,k,(r_1,r_2,\dots)\big) = \#\mathcal{F}^{ne}_{01}\big(M_2,k,(r_1,r_2,\dots)\big)$$

Theorem (2010, following Serrano and Stump)

Let S_1 and S_2 be stack polyominoes obtained from each other by rearranging columns and fix k. Then, for $\sum r_i$ maximal,

$$\mathcal{F}_{01}^{ne}(S_1, k, (r_1, r_2, \dots)) \stackrel{bij}{\longleftrightarrow} \mathcal{F}_{01}^{ne}(S_2, k, (r_1, r_2, \dots))$$

rc-graphs

A pipe dream for a permutation ω is a filling of \mathbb{N}^2 with

- ▶ elbow joints (ノ) and
- ▶ a finite number of crosses (+), such that
- ▶ a pipe entering from above in column i exits left in row $\omega^{-1}(i)$

If every pair of pipes crosses at most once the pipe dream is reduced (or an rc-graph, 'reduced word compatible sequence graph').

pipe dreams and fillings

We can associate a pipe dream with a filling of a moon polyomino M:

We will see that this pipe dream is reduced when the filling is maximal.

pipe dreams and fillings

We can associate a pipe dream with a filling of a moon polyomino M:

We will see that this pipe dream is reduced when the filling is maximal.

pipe dreams and fillings

We can associate a pipe dream with a filling of a moon polyomino M:

We will see that this pipe dream is reduced when the filling is maximal.

A (generalised) chute move is a (local) modification of a reduced pipe dream of the form

Generalised chute moves preserve the permutation associated with a reduced pipe dream!

A (generalised) chute move is a (local) modification of a reduced pipe dream of the form

Generalised chute moves preserve the permutation associated with a reduced pipe dream!

Generalised chute moves in moon polyominoes preserve the length of the longest north-east chain!

Conjecture

The poset of reduced pipe dreams associated with a permutation ω generated by generalised chute moves is a lattice with bottom element having crosses at

$$D_{bot}(\omega) = \{(i, c) : c \le \#\{j : j > i, \omega_j < \omega_i\}\}$$

and top element having crosses at

$$D_{top}(\omega) = \{(c,j) : c \leq \#\{i : i < \omega_j^{-1}, \omega_i > j\}\}.$$

Conjecture

The poset of reduced pipe dreams associated with a permutation ω generated by generalised chute moves is a lattice with bottom element having crosses at

$$D_{bot}(\omega) = \{(i, c) : c \leq \#\{j : j > i, \omega_j < \omega_i\}\}$$

and top element having crosses at

$$D_{top}(\omega) = \{(c,j) : c \leq \#\{i : i < \omega_j^{-1}, \omega_i > j\}\}.$$

Conjecture

The poset of reduced pipe dreams associated with a permutation ω generated by generalised chute moves is a lattice with bottom element having crosses at

$$D_{bot}(\omega) = \{(i,c) : c \leq \#\{j : j > i, \omega_j < \omega_i\}\}$$

and top element having crosses at

$$D_{top}(\omega) = \{(c,j) : c \leq \#\{i : i < \omega_j^{-1}, \omega_i > j\}\}.$$

Theorem (2010, see also Serrano and Stump)

Theorem (2010, see also Serrano and Stump)

The set of maximal fillings $\mathcal{F}_{01}^{ne}(M,k,r_{max})$ is an interval in the poset of reduced pipe dreams with minimal element $D_{bot}(M,k)$ and maximal element $D_{top}(M,k)$.

Proof.

Show that $D_{top}(M,2)$ is the only filling that does not admit a generalised chute move. Details are tricky.

Corollary

Let S_1 and S_2 be stack polyominoes obtained from each other by rearranging columns and fix k. Then, for $\sum r_i$ maximal,

$$\mathcal{F}_{01}^{ne}(S_1, k, (r_1, r_2, \dots)) \stackrel{bij}{\longleftrightarrow} \mathcal{F}_{01}^{ne}(S_2, k, (r_1, r_2, \dots))$$

Proof.

Follow Woo (2004) and Serrano and Stump (2010):

- Notice that the permutation ω associated with a stack polyomino (indeed: any moon polyomino) is vexillary.
- ▶ Apply the Edelman-Greene correspondence to the reduced factorisation of ω given by an rc-graph associated with a filling to obtain a pair of tableaux (P, Q).
- ► The *P*-tableau determines the shape of the stack polyomino, and is independent of the filling, the *Q*-tableau determines the filling.

Open problems

- Prove the lattice property does it have consequences?
- ► Find bijective proof of invariance for moon polyominoes.
- Generalise to non-maximal fillings.
- ► Find rc-graphs for other Dynkin types.