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FLAG WEAK ORDER ON WREATH PRODUCTS

RON M. ADIN, FRANCESCO BRENTI, AND YUVAL ROICHMAN

Abstract. A generating set for the wreath product Zr ≀ Sn which leads to a nicely
behaved weak order is presented. It is shown that the resulting poset has properties
analogous to those of the weak order on the symmetric group: it is a self-dual lattice,
ranked by the Foata–Han flag inversion number; any two maximal chains are connected
via Tits-type pseudo-Coxeter moves; and its intervals have the desired homotopy types.
The associated Möbius function and relevant generating functions are computed.

1. Introduction

The weak order on a Coxeter group is a fundamental tool in the study of the com-
binatorial structure of this group. A natural problem is to give a “correct definition”
of a weak order on the wreath product G(r, n) := Zr ≀ Sn. The weak order on a Cox-
eter group is determined via the generating set of simple reflections and the associated
length function. In this paper we address the basic question: which generating set for
the wreath product is the counterpart of the set of simple reflections? Unfortunately,
the natural analogue — the set of complex reflections — does not lead to a nicely be-
haved partial order. It will be shown that there is a generating set yielding an order on
G(r, n) with properties analogous to those of the weak order on Sn = G(1, n): the re-
sulting poset is ranked by the Foata–Han flag inversion number; it is a self-dual lattice;
it has a Tits-type property; and its intervals have the desired homotopy types. Finally,
the associated Möbius function and relevant generating functions will be computed.

The rest of the paper is organized as follows. Necessary preliminaries and notation
are given in Section 2. For the sake of clarity, results are first stated and proved for the
hyperoctahedral group Bn = G(2, n): the generating set and corresponding presentation
are described in Section 3, the flag weak order is defined in Section 4, and its properties
are studied in Sections 4–6. The corresponding results for general r are discussed in
Section 7. Section 8 contains final remarks and open problems.

2. Preliminaries

Let (W,S) be a Coxeter system; thus W is a group with a set of generators S =
{s0, s1, . . . , sn} and a presentation of the form

W = 〈s0, s1, . . . , sn | (sisj)
mij = e, 0 ≤ i ≤ j ≤ n〉,

where mij = mji ∈ {2, 3, . . .} ∪ {∞} and mii = 1.
The (right) weak order ≤ on W is the reflexive and transitive closure of the relation

w ⋖ ws if and only if w ∈ W, s ∈ S, and ℓ(w) + 1 = ℓ(ws),
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where ℓ(·) is the standard length function with respect to the Coxeter generating set
S. The left weak order is defined similarly, with sw instead of ws. For combinatorial
and other properties of the weak order the reader is referred to [3].

Let Sn be the symmetric group on the letters [n] := {1, . . . , n}. Recall that Sn is a
Coxeter group with respect to the set of Coxeter generators S := {si | 1 ≤ i ≤ n − 1},
where si may be interpreted as the adjacent transposition (i, i+ 1).

For π ∈ Sn let the inversion set be Inv(π) := {(i, j) : i < j, π(i) > π(j)}, the
inversion number be inv(π) := #Inv(π), and the descent set be Des(π) := {i ∈ [n− 1] :
π(i) > π(i+1)}. Recall the classical combinatorial interpretations of the Coxeter length
function and of the (right) weak order [3, Cor. 1.5.2, Prop. 3.1.3]:

(1) ℓ(π) = inv(π) = inv(π−1), π ≤ σ if and only if Inv(π−1) ⊆ Inv(σ−1).

Let Bn be the group of all bijections σ of the set [±n] := {−n, . . . ,−1, 1, . . . , n} onto
itself such that

σ(−a) = −σ(a), for all a ∈ [±n],

with composition as the group operation. Bn is known as the group of “signed permu-
tations” on [n], or as the hyperoctahedral group of rank n. We identify Sn as a subgroup
of Bn, and Bn as a subgroup of S2n, in the natural ways.

For σ ∈ Bn let Neg(σ) := {i ∈ [n] : σ(i) < 0}, neg(σ) := #Neg(σ) and |σ| =
[|σ(1)|, . . . , |σ(n)|] ∈ Sn.

More generally, consider the wreath product = Zr ≀ Sn, where Zr is the (additive)
cyclic group of order r:

G(r, n) := {g = ((c1, . . . , cn), σ) | ci ∈ Zr 1 ≤ i ≤ n, σ ∈ Sn},

with the group operation

((c1, . . . , cn), σ) · ((d1, . . . , dn), τ) := ((cτ(1) + d1, . . . , cτ(n) + dn), στ).

(This definition is slightly non-standard, and it is chosen for compatibility with the case
r = 2; see below.) The elements of Zr ≀Sn may be interpreted as r-colored permutations,
i.e., bijections g of the set Zr × [n] onto itself such that

g(c, i) = (d, j) implies g(c+ c′, i) = (d+ c′, j), for all c, c′, d ∈ Zr, i, j ∈ [n].

For example, G(1, n) is naturally isomorphic to the symmetric group Sn, and G(2, n)
is isomorphic to the hyperoctahedral group Bn, where ((c1, . . . , cn), σ) ∈ G(2, n) corre-
sponds to the element g ∈ Bn such that

g(i) = (−1)ciσ(i), for all i ∈ [n].

Thus Neg(g) = {i : ci = 1}, a basic compatibility (for r = 2) that underlies the choice
of group operation in G(r, n) above. Informally, this means that the colors (or signs) ci
are attached before the permutation σ is applied.

In the special cases r = 1, 2, G(r, n) is of course a Coxeter group.

For an r-colored permutation π = ((c1, . . . , cn), σ) ∈ G(r, n) let |π| := σ and n(π) :=
n∑

i=1

ci ∈ Z, where elements of Zr are interpreted as the corresponding elements of

{0, . . . , r − 1} ⊆ Z. Note that, for r = 2, n(π) = neg(π).
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The classical inversion number on permutations has a counterpart for wreath prod-
ucts, the flag inversion number. It was introduced by Foata and Han [8, 9] and further
investigated in [7, 6].

Definition 2.1. The flag inversion number of an r-colored permutation π ∈ G(r, n) is
defined by

finv(π) := r · inv(|π|) + n(π).

For a positive integer m and an indeterminate q, let us write

[m]q :=
1− qm

1− q
.

Proposition 2.2 ([7, Theorem 7.4]). For every r and n, we have

∑

π∈G(r,n)

qfinv(π) =
n∏

i=1

[ri]q.

3. Generators and Presentations

The alternating subgroup of a reflection group is the kernel of the sign homomorphism

which maps all the Coxeter generators (simple reflections) to −1.

Proposition 3.1. The alternating subgroup of the hyperoctahedral group Bn = G(2, n)
is isomorphic to the abstract group generated by {ai : 1 ≤ i ≤ n − 1} with defining

relations

a4i = 1, 1 ≤ i ≤ n− 1,(A1)

aiaj = ajai, |i− j| > 1,(A2)

aiai+1ai = ai+1aiai+1, 1 ≤ i ≤ n− 1,(A3)

and

(A4) (aiai+1)
3 = 1, 1 ≤ i ≤ n− 1.

Proof. Denote by B+
n the alternating subgroup of Bn, and let B̂+

n be the abstract
group with the above presentation. Define a map φ from the free group generated by
a1, . . . , an−1 to B+

n by

φ(ai) := [1, . . . ,−(i+ 1), i, . . . , n], 1 ≤ i ≤ n− 1.

Since φ(ai) = (i, i+ 1)(i,−i) is a product of two reflections in Bn, it indeed belongs to
B+

n . It is easy to check that relations (A1)–(A4) are satisfied when each ai is replaced
by φ(ai). Therefore, this defines a group homomorphism, which we again denote by φ,

from B̂+
n to B+

n . We shall show that it is actually an isomorphism.
Now, B+

n is generated by the set {(i, i + 1)(1,−1) : 1 ≤ i ≤ n − 1}; see, e.g., [10,
§5.1, Exercise 1]. Since φ(ai)

2 = (i+ 1,−(i+ 1))(i,−i), it follows that

φ(ai)φ(ai−1)
2φ(ai−2)

2 · · ·φ(a1)
2 = (i, i+ 1)(1,−1)

for 1 ≤ i ≤ n− 1, and therefore φ : B̂+
n → B+

n is surjective.
It remains to show that φ is injective. Since it is surjective and #B+

n = 2n−1n!, it

suffices to show that #B̂+
n ≤ 2n−1n!.
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Let N̂+
n be the subgroup of B̂+

n generated by a21, . . . , a
2
n−1. We shall show that N̂+

n is

a commutative normal subgroup of B̂+
n . Indeed, (A4) can be written as

aiai+1aiai+1aiai+1 = 1,

or, using (A3), as
aiai+1aiaiai+1ai = 1.

Rearrangement gives
a2i ai+1 = a−1

i+1a
−2
i ,

or

(2) a−1
i+1a

2
i ai+1 = a−2

i+1a
−2
i ∈ N̂+

n .

Similarly, (A4) and (A3) for i− 1 imply

a−1
i−1a

2
i ai−1 = a−2

i−1a
−2
i ∈ N̂+

n .

Finally, by (A2),
a−1
j aiaj = ai, |i− j| > 1,

so that
a−1
j a2i aj = a2i ∈ N̂+

n , |i− j| > 1.

Thus N̂+
n is a normal subgroup of B̂+

n .

Commutativity of N̂+
n is also easy: (2) and (A1) imply that

a−1
i+1a

2
i ai+1 = a−2

i+1a
2
i ,

or
ai+1a

2
i ai+1 = a2i ,

so that also
a2i+1a

2
i a

2
i+1 = ai+1(ai+1a

2
i ai+1)ai+1 = ai+1a

2
i ai+1 = a2i .

Thus, again by (A1),
a2i a

2
i+1 = a−2

i+1a
2
i = a2i+1a

2
i ,

i.e., a2i and a2i+1 commute. This is certainly also the case for a2i and a2j when |i− j| > 1,

so N̂+
n is commutative.

We can now wrap up the proof: N̂+
n is a commutative group generated by the invo-

lutions a21, . . . , a
2
n−1. Thus each element of N̂+

n can be written as a product a2i1 · · · a
2
ik

for some k ≥ 0 and 1 ≤ i1 < · · · < ik ≤ n − 1. In particular, #N̂+
n ≤ 2n−1. Also,

N̂+
n is a normal subgroup of B̂+

n . The quotient B̂+
n /N̂

+
n is generated by āi, the cosets

corresponding to the generators ai of B̂+
n , 1 ≤ i ≤ n − 1. The āi satisfy the same

relations (A2)–(A4) as the ai, with (A1) replaced by

ā2i = 1, 1 ≤ i ≤ n− 1.

These are exactly the Coxeter relations defining the symmetric group Sn (actually,

(A3) is now equivalent to (A4)), so that B̂+
n /N̂

+
n is a homomorphic image of Sn, and

in particular #(B̂+
n /N̂

+
n ) ≤ n!. Everything put together, we obtain #B̂+

n ≤ 2n−1n!, as
required. �

The above presentation may be extended to the whole group Bn = G(2, n).
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Proposition 3.2. The hyperoctahedral group Bn = G(2, n) is isomorphic to the abstract

group generated by S2,n := {ai : 1 ≤ i ≤ n−1}∪{bi : 1 ≤ i ≤ n} with defining relations

b2i = 1, 1 ≤ i ≤ n,(B1)

bibj = bjbi, 1 ≤ i < j ≤ n,(B2)

a2i = bibi+1, 1 ≤ i ≤ n− 1,(B3)

aiaj = ajai, |i− j| > 1,(B4)

aiai+1ai = ai+1aiai+1, 1 ≤ i ≤ n− 1,(B5)

aibj = bjai, j 6= i, i+ 1,(B6)

aibi = bi+1ai, 1 ≤ i ≤ n− 1,(B7)

and

(B8) aibi+1 = biai, 1 ≤ i ≤ n− 1.

Remark 3.3. Note that relations (A1)–(A4) in Proposition 3.1 follow from relations
(B1)–(B8) in Proposition 3.2. Relation (A1) follows from relations (B1), (B2) and
(B3). Relations (A2)–(A3) are relations (B4)–(B5). Finally, relation (A4) follows from
relations (B1), (B3), (B5)–(B8) as follows:

(aiai+1)
3 = (aiai+1ai)(ai+1aiai+1) = (aiai+1ai)(aiai+1ai)

= aiai+1bibi+1ai+1ai = bi+1aiai+1ai+1aibi+2

= bi+1aibi+1bi+2aibi+2 = bi+1biaiaibi+2bi+2

= bi+1bibibi+1bi+2bi+2 = 1.

Proof. This is similar to the proof of Proposition 3.1 (and somewhat simpler).

Let B̂n be the abstract group with the presentation described in Proposition 3.2.
Define a map φ from the free group generated by a1, . . . , an−1, b1, . . . , bn to Bn by

φ(ai) := [1, . . . ,−(i+ 1), i, . . . , n], 1 ≤ i ≤ n− 1,

and

φ(bi) := [1, . . . ,−i, . . . , n], 1 ≤ i ≤ n.

Thus φ(ai) = (i, i+1)(i,−i) and φ(bi) = (i,−i). It is easy to check that relations (B1)–
(B8) are satisfied when each ai (bi) is replaced by φ(ai) (φ(bi), respectively). Therefore

this defines a group homomorphism, which we again denote by φ, from B̂n to Bn. We
shall show that it is actually an isomorphism.

Clearly, {φ(ai)φ(bi) : 1 ≤ i ≤ n−1} is the set of Coxeter generators for the symmetric
group Sn, embedded naturally into Bn. A similar assertion holds for {φ(bi) : 1 ≤ i ≤ n}
and Z

n
2 . Since Bn = Z

n
2 ⋊ Sn, it follows that {φ(ai) : 1 ≤ i ≤ n− 1} ∪ {φ(bi) : 1 ≤ i ≤

n}) generates Bn. Thus φ is surjective and, in particular,

#B̂n ≥ #Bn.

It remains to show that φ is injective. Since it is surjective and #Bn = 2nn!, it

suffices to show that #B̂n ≤ 2nn!.

Let N̂n be the subgroup of B̂n generated by b1, . . . , bn. We shall show that N̂n

is a commutative normal subgroup of B̂n. Commutativity follows from (B2), while
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normality follows from (B6)–(B8), which may be written as

a−1
i bjai = bj, j 6= i, i+ 1,

a−1
i bi+1ai = bi, 1 ≤ i ≤ n− 1,

and

a−1
i biai = bi+1, 1 ≤ i ≤ n− 1.

We can now wrap up the proof: N̂n is a commutative group generated by the invo-

lutions b1, . . . , bn. Thus each element of N̂n can be written as a product bi1 · · · bik for

some k ≥ 0 and 1 ≤ i1 < · · · < ik ≤ n. In particular, #N̂n ≤ 2n. Also, N̂n is a normal

subgroup of B̂n. The quotient B̂n/N̂n is generated by āi, the cosets corresponding to

the generators ai of B̂n, 1 ≤ i ≤ n − 1. The āi satisfy relations (B4)–(B5), with (B3)
replaced by

ā2i = 1, 1 ≤ i ≤ n− 1.

These are exactly the Coxeter relations defining the symmetric group Sn, so that B̂n/N̂n

is a homomorphic image of Sn, and in particular #(B̂n/N̂n) ≤ n!. Everything put

together, we obtain #B̂n ≤ 2nn!, as required. �

4. Flag Weak Order

From now on we identify the abstract generating set of Bn,

S2,n = {ai : 1 ≤ i < n} ∪ {bi : 1 ≤ i ≤ n},

with the choice

ai := [1, . . . , i− 1,−(i+ 1), i, i+ 2, . . . , n]

and

bi := [1, . . . , i− 1,−i, i+ 1, . . . , n],

used in the proof of Proposition 3.2.

Following Foata and Han [8, 9], let the flag inversion number of π ∈ Bn be

finv(π) := 2 · inv(|π|) + neg(π).

Definition 4.1. The flag (right) weak order � on Bn is the reflexive and transitive
closure of the relation

π ⋖ πs if and only if π ∈ G(2, n), s ∈ S2,n and finv(π) < finv(πs).

Note that this order is not isomorphic to the classical weak order on Bn.

Proposition 4.2. The poset (Bn,�) is

(i) ranked (by flag inversion number);
(ii) self-dual (by π 7→ πµ0, where µ0 := [n̄, . . . , 1̄] is the unique maximal element in

this order);
(iii) rank-symmetric and unimodal.
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2̄1̄

2̄121̄

211̄2̄

12̄1̄2

12

Figure 1. The Hasse diagram of the flag weak order on B2. Edges are
drawn in dotted lines for ai’s and as solid lines for bi’s.

3̄2̄1̄

3̄2̄13̄21̄32̄1̄

3̄21 3̄1̄2̄32̄12̄3̄1̄ 321̄

3̄1̄23̄12̄31̄2̄32123̄1̄ 2̄31̄ 2̄3̄1

1̄3̄2̄3̄1231̄2312̄2̄3123̄1231̄ 2̄1̄3̄

13̄2̄1̄32̄1̄3̄231221̄3̄2̄13̄2̄1̄3231

132̄13̄21̄321̄2̄3̄213̄21̄32̄13

13212̄3̄1̄23̄1̄2̄3213

123̄12̄31̄23

123

Figure 2. The Hasse diagram of the flag weak order on B3. Edges are
drawn as dotted lines for ai’s and as solid lines for bi’s.

Proof. (i) In order to show that all maximal chains between two elements have the same
length (the difference between their finv values), it suffices to show that, if σ = πs, with
s ∈ S2,n and finv(π) < finv(σ), then there exists π ≺ w � σ with finv(w) = finv(π) + 1.
If s ∈ {b1, . . . , bn}, then

finv(πs)− finv(π) = 2 · (inv(|πs|)− inv(|π|)) + (neg(πs)− neg(π)) = 2 · 0± 1 = 1

(positive by the assumption finv(π) < finv(πs)). In this case we can take w := πs = σ.
Otherwise, s ∈ {a1, . . . , an−1}. Then

finv(πs)− finv(π) = 2 · (inv(|πs|)− inv(|π|)) + (neg(πs)− neg(π)) = 2 · (±1)± 1.
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Being positive by assumption, this number is either 1 or 3. In the first case, which
occurs if s = ai, 1 ≤ i ≤ n, |π(i)| < |π(i + 1)| and π(i + 1) < 0, we can again
take w := πs. In the second case, which occurs if s = ai, |π(i)| < |π(i + 1)| and
π(i + 1) > 0, we have, by relations (B1) and (B7) in Proposition 3.2, σ = πbi+1aibi,
with finv(π) + 3 = finv(πbi+1) + 2 = finv(πbi+1ai) + 1 = finv(σ), and we can take
w := πbi+1.

(ii) Let µ0 := [n̄, . . . , 1̄]. Then, for every π ∈ Bn,

finv(πµ0) = 2 · inv (|πµ0|) + neg(πµ0)

= 2

[(
n

2

)
− inv (|π|)

]
+ [n− neg(π)]

= finv(µ0)− finv(π).

If σ = πs with s ∈ S2,n and finv(π) < finv(σ), then

finv(πµ0)− finv(σµ0) = finv(σ)− finv(π) > 0.

Moreover, we have πµ0 = σµ0s̃, where

s̃ = µ−1
0 s−1µ0 =

{
bn+1−i, if s = bi;

an−i, if s = ai.

It follows, by Definition 4.1, that π � σ if and only if σµ0 � πµ0, and, since right
multiplication by µ0 is a bijection on Bn, this proves self-duality.

(iii) Rank-symmetry follows from (ii) (and (i)). Unimodality follows from (i) together
with Proposition 2.2. �

The proof of Proposition 4.2 implies the following statement.

Corollary 4.3. σ covers π in (Bn,�) if and only if either

(i) there exists an integer i with 1 ≤ i ≤ n such that

i 6∈ Neg(π) and σ = πbi;

or

(ii) there exists 1 ≤ i ≤ n− 1 such that

i+ 1 ∈ Neg(π), |π(i)| < |π(i+ 1)| and σ = πai.

5. Properties of the Flag Weak Order

5.1. Lattice Structure. For a set of pairs A ⊆ {(i, j) : 1 ≤ i < j ≤ n} let M(A) :=
{j : (i, j) ∈ A}. For example, M({(1, 6), (1, 4), (2, 3), (4, 6)}) = {3, 4, 6}.

Proposition 5.1. For every π, σ ∈ Bn,

π � σ if and only if Inv(|π−1|) ⊆ Inv(|σ−1|) and(3)

Neg(π−1) \ Neg(σ−1) ⊆ M
[
Inv(|σ−1|) \ Inv(|π−1|)

]
.

Proof. =⇒ : It suffices to show that the right-hand side of (3) holds whenever σ covers
π in (Bn,�). By Corollary 4.3, there are two cases to check:
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(i) There exists an integer i with 1 ≤ i ≤ n such that i 6∈ Neg(π) and σ = πbi.
Then clearly Inv(|π−1|) = Inv(|σ−1|) and Neg(π−1) \ Neg(σ−1) = ∅.

(ii) There exists an integer i with 1 ≤ i ≤ n− 1 such that i+ 1 ∈ Neg(π), |π(i)| <
|π(i+ 1)| and σ = πai. Defining p := |π(i)| and q := |π(i+ 1)|, we have

p < q, σ(i+ 1) = π(i) = ±p, σ(i) = −π(i+ 1) = q.

Thus Inv(|σ−1|) = Inv(|π−1|) ∪ {(p, q)} and Neg(π−1) \ Neg(σ−1) = {q}.

⇐= : Assume that the right-hand side of (3) holds. There are two cases to consider:

(i) Inv(|π−1|) = Inv(|σ−1|). Then |π−1| = |σ−1| and Neg(π−1) \ Neg(σ−1) = ∅, i.e.,
Neg(π−1) ⊆ Neg(σ−1). It is clear that one can get from π to σ by a sequence
of right multiplications by various bi, each step increasing finv(·) by 1. Thus
π � σ.

(ii) Inv(|π−1|) is strictly contained in Inv(|σ−1|). Thus |π| is strictly smaller than |σ|
in the right weak order on Sn, and one can get from |π| to |σ| by a sequence of
right multiplications by various Coxeter generators si of Sn, each step increasing
the cardinality of the inversion set by 1. Let si1 , . . . , sik be such a sequence,
so that |σ| = |π|si1 · · · sik . Let ai1 , . . . , aik be the corresponding sequence of
generators of Bn. Define π0 := π and, recursively,

πj := πj−1ãj, 1 ≤ j ≤ k,

where

ãj :=

{
aij , if ij + 1 ∈ Neg(πj−1);

bij+1aij , otherwise.

It is easy to see that

π = π0 � π1 � · · · � πk,

with finv(πj) − finv(πj−1) ∈ {1, 2}, j = 2, . . . , k. We shall show that πk � σ,
implying π � σ.
Indeed |πk| = |σ|, and in particular Inv(|π−1

k |) = Inv(|σ−1|). Moreover, for
each 1 ≤ j ≤ k, we have

Neg(π−1
j ) =

{
Neg(π−1

j−1) \ {|πj−1(ij + 1)|}, if ij + 1 ∈ Neg(πj−1);

Neg(π−1
j−1), otherwise.

Since M
[
Inv(|π−1

j |) \ Inv(|π
−1
j−1|)

]
= {|πj−1(ij + 1)|} we conclude that, in both

cases,

Neg(π−1
j ) = Neg(π−1

j−1) \M
[
Inv(|π−1

j |) \ Inv(|π
−1
j−1|)

]
.

Thus

Neg(π−1
k ) = Neg(π−1

0 ) \
k⋃

j=1

M
[
Inv(|π−1

j |) \ Inv(|π
−1
j−1|)

]

= Neg(π−1
0 ) \M

[
Inv(|π−1

k |) \ Inv(|π
−1
0 |)

]
,

where we have used the property
⋃

j M [Aj] = M
[⋃

j Aj

]
and the fact that

Inv(|π−1
j−1|) ⊆ Inv(|π−1

j |). Since π0 = π and Inv(|π−1
k |) = Inv(|σ−1|), we conclude
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that
Neg(π−1

k ) = Neg(π−1) \M
[
Inv(|σ−1|) \ Inv(|π−1|)

]
.

Our assumption

Neg(π−1) \ Neg(σ−1) ⊆ M
[
Inv(|σ−1|) \ Inv(|π−1|)

]

is equivalent to

Neg(σ−1) ⊇ Neg(π−1) \M
[
Inv(|σ−1|) \ Inv(|π−1|)

]
,

namely to
Neg(σ−1) ⊇ Neg(π−1

k ).

Together with Inv(|π−1
k |) = Inv(|σ−1|), this implies, by case (i) above, that

πk � σ. �

Proposition 5.2. The poset (Bn,�) is a lattice.

Proof. For simplicity of notation, let

(4) M(|π|, |σ|) := M
[
Inv(|σ−1|) \ Inv(|π−1|)

]
, π, σ ∈ Bn.

Proposition 5.1 can be stated as:

π � σ if and only if

Inv(|π−1|) ⊆ Inv(|σ−1|) and Neg(π−1) ⊆ Neg(σ−1) ∪M(|π|, |σ|).

Let σ1, σ2 be two elements of Bn. It follows that, for any π ∈ Bn,

π � σ1 and π � σ2 if and only if(5)

Inv(|π−1|) ⊆ Inv(|σ−1
1 |) ∩ Inv(|σ−1

2 |) and

Neg(π−1) ⊆
(
Neg(σ−1

1 ) ∪M(|π|, |σ1|)
)
∩
(
Neg(σ−1

2 ) ∪M(|π|, |σ2|)
)
.

We shall now define a candidate for the meet (in Bn) of σ1 and σ2, and prove that
it has the required properties. First note that the intersection of inversion sets (of
permutations in Sn) is not necessarily an inversion set. Nevertheless, since Sn under
right weak order is a lattice, there exists a meet

τ = |σ1| ∧Sn
|σ2| ∈ Sn

which satisfies, by (1),

Inv(τ−1) ⊆ Inv(|σ−1
1 |) ∩ Inv(|σ−1

2 |)

and
(6)
Inv(γ−1) ⊆ Inv(|σ−1

1 |) ∩ Inv(|σ−1
2 |) implies Inv(γ−1) ⊆ Inv(τ−1), for all γ ∈ Sn).

Define σ∧ ∈ Bn by

(7) |σ∧| := |σ1| ∧Sn
|σ2| (= τ)

and

(8) Neg(σ−1
∧ ) :=

(
Neg(σ−1

1 ) ∪M(τ, |σ1|)
)
∩
(
Neg(σ−1

2 ) ∪M(τ, |σ2|)
)
.

Then clearly σ∧ � σ1 and σ∧ � σ2. It remains to show that π � σ1 and π � σ2 implies
π � σ∧. This is straightforward if Inv(|π−1|) = Inv(|σ−1

∧ |), but more intricate otherwise.
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Assume that π � σ1 and π � σ2. Then

Inv(|π−1|) ⊆ Inv(|σ−1
1 |) ∩ Inv(|σ−1

2 |),

so that, by (6),

Inv(|π−1|) ⊆ Inv(τ−1) = Inv(|σ−1
∧ |).

From

Inv(|π−1|) ⊆ Inv(|σ−1
∧ |) ⊆ Inv(|σ−1

1 |)

it now follows that

Inv(|σ−1
1 |) \ Inv(|π

−1|) =
(
Inv(|σ−1

1 |) \ Inv(|σ
−1
∧ |)

)
∪
(
Inv(|σ−1

∧ |) \ Inv(|π
−1|)

)
,

and therefore

M(|π|, |σ1|) = M(|π|, |σ∧|) ∪M(|σ∧|, |σ1|).

A similar assertion holds for σ2. From (5) it thus follows that

Neg(π−1) ⊆
(
Neg(σ−1

1 ) ∪M(|π|, |σ1|)
)
∩
(
Neg(σ−1

2 ) ∪M(|π|, |σ2|)
)

=
(
Neg(σ−1

1 ) ∪M(|π|, |σ∧|) ∪M(|σ∧|, |σ1|)
)

∩
(
Neg(σ−1

2 ) ∪M(|π|, |σ∧|) ∪M(|σ∧|, |σ2|)
)

= M(|π|, |σ∧|)

∪
[(
Neg(σ−1

1 ) ∪M(|σ∧|, |σ1|)
)
∩
(
Neg(σ−1

2 ) ∪M(|σ∧|, |σ2|)
)]

= M(|π|, |σ∧|) ∪ Neg(σ−1
∧ ),

using definition (8) of Neg(σ−1
∧ ). In other words, π � σ∧, as required.

We have shown the existence of meets in (Bn,�). The existence of joins follows by
self-duality (Proposition 4.2(ii)):

σ1 ∨ σ2 = (σ1µ0 ∧ σ2µ0)µ0.

�

Note that (7)–(8) in the proof of Proposition 5.2 provide an explicit description of the
meet of two elements. One can generalize this description to any number of elements,
using the notation M(|π|, |σ|) from (4). For the corresponding description of the join it
is convenient to use also the notation Pos(σ) := [n] \ Neg(σ) for σ ∈ Bn.

Lemma 5.3. Let A be an arbitrary subset of Bn.

(i) The meet A∧ of A in (Bn,�) is determined by

|A∧| :=
∧

σ∈A

|σ|,

where the meet is taken with respect to the (right) weak order on Sn, and by

Neg(A−1
∧ ) :=

⋂

σ∈A

(
Neg(σ−1) ∪M(|A∧|, |σ|)

)
.

(ii) The join A∨ of A in (Bn,�) is determined by

|A∨| :=
∨

σ∈A

|σ|
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and by

Pos(A−1
∨ ) :=

⋂

σ∈A

(
Pos(σ−1) ∪M(|σ|, |A∨|)

)
.

Remark 5.4. For n ≥ 3, the lattice (Bn,�) is not semi-modular. To verify this, notice
that π = 21̄3̄ and σ = 1̄32̄ cover their meet π ∧ σ = 1̄2̄3̄ but are not covered by their
join π ∨ σ = 321̄. Moreover, for n ≥ 2, the lattice (Bn,�) is not complemented, since
12̄ has no complement in (B2,�).

5.2. Homotopy Type and Möbius Function. The following results generalize well-
known properties of the classical weak order on a Coxeter group. Recall that an atom

in an interval [π, σ] is an element τ ∈ [π, σ] covering π. Recall also the notation A∨

from Lemma 5.3(ii).

Lemma 5.5. Suppose that π ≺ σ in Bn. Then, for any two sets A and B of atoms in

the interval [π, σ], we have

A 6= B =⇒ A∨ 6= B∨.

Proof. For a set A of atoms in the interval [π, σ], define

A1 := A ∩ {πai : 1 ≤ i ≤ n− 1}

and

A2 := A ∩ {πbi : 1 ≤ i ≤ n}.

Assume now that A and B are sets of atoms in [π, σ] such that A∨ = B∨. We shall
prove that A = B.

Since |πbi| = |π| for all i, it follows from Lemma 5.3(ii) that

|A∨| =
∨

τ∈A

|τ | =
∨

τ∈A1

|τ |,

where joins are taken in Sn. Consequently, we have

A∨ = B∨ implies |A∨| = |B∨|, and the latter implies A1 = B1.

The last implication holds since joins of sets of atoms uniquely determine the sets in
any interval in the usual weak order on Sn; see, e.g., [3, Lemma 3.2.4(i)].

We still need to show that A2 = B2. If σ = πai covers π then, by definition,
Pos(σ−1) is the (disjoint) union of Pos(π−1) and {|π(i + 1)|}, while M(|π|, |A∨|) is the
(not necessarily disjoint) union of M(|σ|, |A∨|) and {|π(i+1)|}. Hence, for every σ ∈ A1,
we have

Pos(σ−1) ∪M(|σ|, |A∨|) = Pos(π−1) ∪M(|π|, |A∨|).

On the other hand, if σ = πbi ∈ A2, then

Pos(σ−1) ∪M(|σ|, |A∨|) = (Pos(π−1) \ {π(i)}) ∪M(|π|, |A∨|).
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Thus, by Lemma 5.3(ii), we obtain

Pos(A−1
∨ ) =

⋂

σ∈A1∪A2

(
Pos(σ−1) ∪M(|σ|, |A∨|)

)

=
(
Pos(π−1) ∪M(|π|, |A∨|)

)
∩

⋂

σ∈A2

(
Pos(σ−1) ∪M(|σ|, |A∨|)

)

=
(
Pos(π−1) ∪M(|π|, |A∨|)

)
∩

⋂

πbi∈A2

(
(Pos(π−1) \ {π(i)}) ∪M(|π|, |A∨|)

)

=
(
Pos(π−1) \ {π(i) : πbi ∈ A2}

)
∪M(|π|, |A∨|).

(The intermediate steps, though not the end result, should be slightly rewritten if
A1 = ∅.) If we show that

(9) πbi ∈ A2 implies π(i) 6∈ M(|π|, |A∨|),

it will then follow that, assuming |A∨| = |B∨|,

(10) Pos(A−1
∨ ) = Pos(B−1

∨ ) if and only if A2 = B2.

Indeed,

πbi ∈ A2 implies π(i) > 0, and the latter implies πai−1 6∈ A1.

An examination of |A∨| as a join of atoms in an interval of Sn shows that

M(|π|, |A∨|) ⊆ {|π(i)| : πai−1 ∈ A1},

which implies (9) and (10) and completes the proof. �

Lemma 5.5 leads to an easy way to determine the homotopy type and Möbius function
for open intervals in (Bn,�), generalizing [3, Theorem 3.2.7 and Corollary 3.2.8].

Proposition 5.6. Suppose that π ≺ σ in Bn and finv(σ)−finv(π) ≥ 2. Then the order

complex of the open interval (π, σ) is homotopy equivalent to the sphere Sk−2 if σ is the

join of k atoms in the interval [π, µ0], and is contractible otherwise.

Corollary 5.7. For every π, σ ∈ Bn,

µ(π, σ) =

{
(−1)k, if σ is the join of k atoms in [π, µ0];

0, otherwise.

The proofs of Proposition 5.6 and Corollary 5.7 are along the lines of the analogous
proofs for the symmetric group [3, Theorem 3.2.7 and Corollary 3.2.8], and are left to
the reader.

5.3. Tits Property. In this subsection, it will be shown that maximal chains in (Bn,�
) exhibit a Tits-type connectivity property.

Let π, σ ∈ Bn such that π � σ. Each maximal chain in the interval [π, σ] of (Bn,�)
corresponds to a unique word w = si1 · · · sid of length d = finv(σ)− finv(π) with letters
sij in the alphabet S2,n, such that finv(πsi1 · · · sij)− finv(π) = j for all 1 ≤ j ≤ d.
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Proposition 5.8 (Tits Property). Any two maximal chains in any interval [π, σ]
of (Bn,�) are connected via the following pseudo-Coxeter moves on the corresponding

words:

bibj ←→ bjbi, 1 ≤ i < j ≤ n,(T1)

aibj ←→ bjai, j 6= i, i+ 1,(T2)

aibi+1 ←→ biai, 1 ≤ i ≤ n− 1,(T3)

aiaj ←→ ajai, |i− j| > 1,(T4)

and

(T5) aiai+1bi+1ai ←→ ai+1bi+1aiai+1, 1 ≤ i ≤ n− 1.

In order to prove this proposition, we first classify maximal chains in certain special
intervals.

Lemma 5.9. Let π ∈ Bn, s, s
′ ∈ S2,n, s 6= s′, such that both πs and πs′ cover π. Then

the following assertions hold true:

(i) The interval [π, πs∨ πs′] contains exactly two maximal chains, one described by

a word starting with s, and one by a word starting with s′.
(ii) The above words are independent of π, as long as both πs and πs′ cover π.

Denote by α(s, s′) the word corresponding to the chain starting with s.
(iii) The complete list of words corresponding to maximal chains in intervals of the

form [π, πs ∨ πs′] in (Bn,�) is:

α(bi, bj) = bibj, i 6= j;

α(ai, bj) = aibj, α(bj , ai) = bjai, j 6= i, i+ 1;

α(ai, bi) = aibi+1, α(bi, ai) = biai, 1 ≤ i ≤ n− 1;

α(ai, aj) = aiaj, |i− j| > 1;

and

α(ai, ai+1) = aiai+1bi+1ai, α(ai+1, ai) = ai+1bi+1aiai+1, 1 ≤ i ≤ n− 2.

The words α(ai, bi+1) and α(bi+1, ai) do not exist, since πai and πbi+1 cannot

cover π simultaneously.

Proof of Lemma 5.9. First of all, πai and πbi+1 cannot cover π simultaneously since, by
Corollary 4.3,

πai covers π implies π(i+ 1) < 0, and the latter implies πbi+1 ≺ π.

We shall deal with the other cases one by one.

If i 6= j then, by Corollary 4.3, πbi and πbj cover π if and only if π(i) > 0 and
π(j) > 0. Then πbi∨πbj = πbibj, and indeed α(bi, bj) = bibj is unique and independent
of π.

If j 6= i, i+ 1 then, by Corollary 4.3, πai and πbj cover π if and only if π(i+ 1) < 0,
|π(i)| < |π(i+1)| and π(j) > 0. Then πai∨πbj = πaibj = πbjai, so that α(ai, bj) = aibj
and α(bj , ai) = bjai are clearly unique and independent of π.
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If πai and πbi cover π (for some 1 ≤ i ≤ n − 1) then, by Corollary 4.3, π(i) > 0,
π(i + 1) < 0 and |π(i)| < |π(i + 1)|. Then πai ∨ πbi = πbiai = πaibi+1, and again
α(ai, bi) = aibj+1 and α(bi, ai) = biai are unique and independent of π.

Similarly, if |i − j| > 1 then πai and πaj cover π if and only if π(i + 1) < 0,
|π(i)| < |π(i + 1)|, π(j + 1) < 0 and |π(j)| < |π(j + 1)|. Then πai ∨ πaj = πaiaj, so
that α(ai, aj) = aiaj is clearly unique and independent of π.

In all of the above cases, the interval [π, πs∨ πs′] is of length 2. It is easy to identify
which generators ak appear in a maximal chain, and the rest readily follows.

Let us now turn to the last case, and assume that πai and πai+1 cover π, for
some 1 ≤ i ≤ n − 2. By Corollary 4.3, π(i + 1) < 0, π(i + 2) < 0 and |π(i)| <
|π(i+1)| < |π(i+2)|. By Lemma 5.3(ii), σ := πai∨πai+1 satisfies |σ| = |π|sisi+1si and
Pos(σ−1) = Pos(π−1) ∪ {|π(i + 1)|, |π(i + 2)|}. Thus finv(σ) − finv(π) = 2 · 3 − 2 = 4.
The only maximal chains in Sn from |π| to |σ| correspond to sisi+1si and si+1sisi+1, and
thus each maximal chain from π to σ must correspond to either aiai+1ai or ai+1aiai+1,
with one additional letter of type bk. It is easy to see that the only possibilities are
α(ai, ai+1) = aiai+1bi+1ai and α(ai+1, ai) = ai+1bi+1aiai+1. �

Proof of Proposition 5.8. The proof is similar to the analogous proof for the symmetric
group [3, Theorem 3.3.1]. It proceeds by induction on the difference between the ranks
of the top and bottom elements.

If the difference is zero then the statement obviously holds.
Assume that the difference is k > 0. Consider two maximal chains in the interval

[π, σ], corresponding to the words ss2 · · · sk and s′s′2 · · · s
′
k, all letters being in S2,n. Thus

σ = πss2 · · · sk = πs′s′2 · · · s
′
k.

If s = s′ then the statement holds by the induction hypothesis for the interval [πs, σ].
If s 6= s′ then πs � σ and πs′ � σ. By the lattice property, πs ∨ πs′ � σ. By

Lemma 5.9 there exists a maximal chain in the interval [π, πs ∨ πs′] corresponding
to the word α(s, s′) starting with s. It can be extended to a maximal chain in [π, σ]
corresponding to the word α(s, s′)β, where β corresponds to some maximal chain in
[πs ∨ πs′, σ]. Both words ss2 · · · sk and α(s, s′)β start with s. By the induction hy-
pothesis for [πs, σ], it is possible to transform ss2 · · · sk into α(s, s′)β using the moves
(T1)–(T5). By the same argument applied to s′, it is possible to transform α(s′, s)β
into s′s′2 · · · s

′
k using the moves (T1)–(T5). Finally, by Lemma 5.9, it is possible to

transform α(s, s′)β into α(s′, s)β using one of the moves (T1)–(T5), thus completing
the proof. �

6. Bivariate Distribution

Let

En(t) :=
∑

π∈Sn

tdes(π)

be the Eulerian Polynomial. More generally, let

Sn(q, t) :=
∑

π∈Sn

qinv(π)tdes(π).

Recall that (Bn,�) is graded by finv.



16 RON M. ADIN, FRANCESCO BRENTI, AND YUVAL ROICHMAN

Definition 6.1. For every π ∈ Bn let wdes(π) be the number of elements in Bn which
are covered by π in the poset (Bn,�).

Lemma 6.2. For every π ∈ Bn, we have

wdes(π) = # (Des(|π|) ∪ Neg(π)) .

Proof. By Corollary 4.3 (with π and σ interchanged), σ is covered by π in (Bn,�) if
and only if

(i) there exists 1 ≤ i ≤ n, such that

i ∈ Neg(π) and σ = πbi;

or
(ii) there exists 1 ≤ i ≤ n− 1, such that

i 6∈ Neg(π), |π(i)| > |π(i+ 1)| and σ = πa−1
i .

Hence, the set of elements which are covered by π in (Bn,�) is

{πbi : i ∈ Neg(π)} ∪ {πa−1
i : i ∈ Des(|π|) \ Neg(π)},

a disjoint union.
It follows that

wdes(π) = #Neg(π) + #(Des(|π|) \ Neg(π)) = #(Des(|π|) ∪ Neg(π)).

�

Proposition 6.3. For every n, we have

∑

π∈Bn

twdes(π) = (1 + t)n · En

(
2t

1 + t

)

and

∑

π∈Bn

qfinv(π)twdes(π) = (1 + qt)n · Sn

(
q2,

(1 + q)t

1 + qt

)
.

Remark 6.4. By a well known result of Stanley [12], Sn(q, t) has an elegant q-exponential
generating function; for details and generalizations see [3, §7.2]. It follows that the same
is true when the pair (finv,wdes) is used instead of (inv, des).

Proof of Proposition 6.3. Zn
2 and Sn can be viewed as subgroups of Bn, restricting ele-

ments π ∈ Bn to have |π| = id or π(i) > 0, i = 1, . . . , n, respectively. Moreover, every
π ∈ Bn can be written in the form π = vu for some u ∈ Z

n
2 and v = |π| ∈ Sn. Hence,

∑

π∈Bn

twdes(π) =
∑

u∈Zn
2

∑

v∈Sn

twdes(vu).
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By Lemma 6.2, the right-hand side is equal to
∑

u∈Zn
2

∑

v∈Sn

t#(Des(v)∪Neg(u)) =
∑

v∈Sn

∑

u∈Zn
2

t#Des(v)t#(Neg(u)\Des(v))

=
∑

v∈Sn

t#Des(v)
∑

u∈Zn
2

t#(Neg(u)\Des(v))

=
∑

v∈Sn

t#Des(v)2#Des(v)(1 + t)n−#Des(v)

= (1 + t)n
∑

v∈Sn

(
2t

1 + t

)#Des(v)

= (1 + t)n · En

(
2t

1 + t

)
.

The proof of the second identity is similar:
∑

π∈Bn

qfinv(π)twdes(π) =
∑

u∈Zn
2

∑

v∈Sn

qfinv(vu)twdes(vu)

=
∑

u∈Zn
2

∑

v∈Sn

q2·inv(v)+#Neg(u)t#(Des(v)∪Neg(u))

=
∑

v∈Sn

q2·inv(v)t#Des(v)
∑

u∈Zn
2

q#Neg(u)t#(Neg(u)\Des(v))

=
∑

v∈Sn

q2·inv(v)t#Des(v)(1 + q)#Des(v)(1 + qt)n−#Des(v)

= (1 + qt)n
∑

v∈Sn

q2·inv(v)
(
(1 + q)t

1 + qt

)#Des(v)

= (1 + qt)n · Sn

(
q2,

(1 + q)t

1 + qt

)
.

�

7. Wreath Products

The above results generalize to the group G(r, n) := Zr ≀Sn, for every positive integer
r. The proofs are similar and will be left to the reader.

For 1 ≤ i ≤ n define the vector di := (δi1, . . . , δin) ∈ Z
n
r , where

δij =

{
1, if i = j;

0, otherwise.

Let

ai := (di, si), 1 ≤ i ≤ n− 1,

and

bi := (di, id), 1 ≤ i ≤ n.
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Proposition 7.1. The wreath product G(r, n) = Zr ≀ Sn is generated by the set Sr,n :=
{ai : 1 ≤ i ≤ n − 1} ∪ {bi : 1 ≤ i ≤ n} with defining relations (B1)–(B8) of

Proposition 3.2, except that relation (B1) is replaced by

(B1r) bri = 1, 1 ≤ i ≤ n,

Recall Definition 2.1 of the flag inversion number.

Definition 7.2. The flag (right) weak order on G(r, n), �, is the reflexive and transitive
closure of the relation

π ⋖ πs implies π ∈ G(r, n), s ∈ Sr,n and finv(π) < finv(πs).

Proposition 7.3. The poset (G(r, n),�) is

(i) ranked (by flag inversion number);
(ii) self-dual (by π 7→ π̄µ0, where µ0 = ((r − 1, . . . , r − 1), [n, . . . , 1]) is the unique

maximal element in this order and π̄ = ((−c1, . . . ,−cn), τ) when π = ((c1, . . . , cn), τ));
and

(iii) rank-symmetric and unimodal.

Proposition 7.4. σ covers π in (G(r, n),�) if and only if either

(i) there exists 1 ≤ i ≤ n such that

ci(π) 6= r − 1 and σ = πbi;

or

(ii) there exists 1 ≤ i ≤ n− 1 such that

ci+1(π) = r − 1, |π(i)| < |π(i+ 1)| and σ = πai.

In the following statement, elements −cj(π
−1) = c|π−1(j)|(π) ∈ Zr are compared using

the natural linear order 0 < 1 < · · · < r − 1 on Zr.

Proposition 7.5. For every π, σ ∈ G(r, n), we have

π � σ if and only if Inv(|π−1|) ⊆ Inv(|σ−1|) and

{j : −cj(π
−1) > −cj(σ

−1)} ⊆ M
[
Inv(|σ−1|) \ Inv(|π−1|)

]
.

It follows that all the results of Section 5 can be generalized to G(r, n). In particular,
the following assertions hold true.

Proposition 7.6. The poset (G(r, n),�) is a lattice.

Lemma 7.7. Let A be an arbitrary subset of G(r, n).

(i) The meet A∧ of A in (G(r, n),�) is determined by

|A∧| :=
∧

σ∈A

|σ|,

where the meet is taken with respect to the (right) weak order on Sn, and by

−cj(A
−1
∧ ) := min{−cj(σ

−1) : σ ∈ A, j 6∈M(|A∧|, |σ|)}, 1 ≤ j ≤ n,

where M(|π|, |σ|) := M [Inv(|σ−1|) \ Inv(|π−1|)], and the minimum is taken with

respect to the linear order 0 < 1 < · · · < r − 1 on Zr, using the convention

min ∅ := maxZr = r − 1.
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(ii) The join A∨ of A in (G(r, n),�) is determined by

|A∨| :=
∨

σ∈A

|σ|

and by

−cj(A
−1
∨ ) := max{−cj(σ

−1) : σ ∈ A, j 6∈M(|σ|, |A∨|)}, 1 ≤ j ≤ n,

using the convention max ∅ := minZr = 0.

Proposition 7.8. Suppose that π ≺ σ in G(r, n) and finv(σ)− finv(π) ≥ 2. Then the

order complex of the open interval (π, σ) is homotopy equivalent to the sphere Sk−2 if σ
is the join of k atoms in the interval [π, µ0], and is contractible otherwise.

Corollary 7.9. For every π, σ ∈ G(r, n), we have

µ(π, σ) =

{
(−1)k, if σ is a join of k atoms in [π, µ0];

0, otherwise.

Definition 7.10. For every π ∈ G(r, n), we write wdes(π) for the number of elements
in G(r, n) which are covered by π in the poset (G(r, n),�).

Clearly, for r = 1, wdes is the standard descent number. For r = 2 it coincides with
Definition 6.1.

Proposition 7.11. For every n and r, we have

∑

π∈G(r,n)

twdes(π) = (1 + (r − 1)t)n · En

(
rt

1 + (r − 1)t

)

and ∑

π∈G(r,n)

qfinv(π)twdes(π) = (1 + [r − 1]qqt)
n · Sn

(
qr,

[r]qt

1 + [r − 1]qqt

)
.

8. Final Remarks and Open Problems

Recall the pseudo-Coxeter moves (T1)–(T5) from Proposition 5.8. Consider the graph
Γn, whose vertices are all maximal chains in the flag weak order on Bn and whose edges
correspond to these moves. By Proposition 5.8, Γn is connected.

Problem 8.1. Find the diameter of Γn.

For a solution of an analogous problem for the classical weak orders of types A and
B see [11].

Following comments of an anonymous referee, it should be noted that progress toward
a solution of Problem 8.1 may be obtained by explicit calculation of various poset
parameters such as order dimension and width. Another approach is a search for
symmetries induced by group actions, as well as recursive poset properties such as
supersolvability. Such methods were found useful in similar contexts; see, e.g., [1, 11].

It is now natural to look for a definition of a nicely-behaved weak order on other
complex reflection groups. A key tool may be the discovery of convenient presentations
for kernels of one-dimensional characters.
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Finally, a challenging problem is to find a “correct” definition of strong (Bruhat) order
on wreath products and other complex reflection groups, having desired properties (such
as a nice interval structure and a subword property) which, hopefully, demonstrate an
interplay with the flag weak order. Such an order may be useful in developing an
appropriate Kazhdan–Lusztig theory.

Acknowledgements. The authors thank the anonymous referees for many helpful
comments.
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