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PATTERN AVOIDANCE IN LABELLED TREES

VLADIMIR DOTSENKO

Abstract. We discuss a new notion of pattern avoidance moti-
vatedby operad theory: pattern avoidance in planar labelled trees.
It is a generalisation of various types of consecutive pattern avoid-
ance studied before: consecutive patterns in words, permutations,
colouredpermutations, etc. ThenotionofWilf equivalence for pat-
terns in permutations admits a straightforward generalisation for
(sets of) tree patterns; we describe classes for treeswith small num-
bers of leaves, and give several bijections between trees avoiding
pattern sets from the same class. We also explain a few general
results for tree pattern avoidance, both for exact and asymptotic
enumeration.

1. Introduction

Forpattern avoidance inwords, apart from the “realword interpre-
tation” (enumerate words not containing any “obscene” subwords),
the pattern avoidance problem arises from studying (noncommu-
tative) algebras with monomial relations. For example, describing
words in the alphabet {A, B, . . . , Z} not containing the word FCUK as a
subword is equivalent to figuring out which monomials in genera-
tors x1, . . . , x26 form a basis in the algebra k〈x1, . . . , x26 | x6x3x21x11 = 0〉.
The significance of algebras with monomial relations is, in turn, ex-
plained by the theory of Gröbner bases, which gives a method of
finding a “monomial replacement” for every algebra with monomial
relations [40]. Similarly, consecutive pattern avoidance in permu-
tations [2, 5] and coloured permutations [29] can be interpreted in
terms of shuffle algebras with monomial relations [9]. The goal of
this paper is to introduce to the combinatorics audience a new no-
tion of pattern avoidance naturally arising when studying operads.
Operads are similar to associative algebras, but while associative al-
gebras and groups capture the kind of associativity that one observes
when composing transformations of some set, operads capture the
associativity exhibited when composing operations with several ar-
guments. The property of an operation of having more than one
argument results in a choice that is not present in the choice of alge-
bras: one may either assume that our operations do not possess any
symmetries or allow symmetries in the picture. In the former case,
the pattern avoidance in question is the pattern avoidance in planar
rooted trees; a few papers, both of combinatorial spirit [1, 33, 36, 13]
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and operads-inspired [28] have been dealing with the arising ques-
tions of enumeration. In the case of operations with symmetries, the
corresponding notion has not been studied before, and this paper is
an attempt to give an elementary introduction to the arising research
area. The “right” notion of a monomial relation for operations with
symmetries is not as obvious as one might think: the action of sym-
metries makes every relation have too many consequences, and the
arising class of “operads with monomial relations” appears to be far
too narrow to be truly interesting or useful. The way to definemono-
mial relations which avoids narrowing down matters, and which in
particular led to a theory of operadic Gröbner bases, was suggested
in [8]; the corresponding algebraic object is called a shuffle operad. In
this paper we, however, shall try to concentrate on the combinatorial
aspects of the subject, touching the algebraic aspects only briefly; for
details on the algebraic aspects, see, for example, [6, 7, 8]. Though
we attempt to keep this article relatively self-contained, familiarity
with the key results of the theory of consecutive pattern avoidance
in permutations could be useful; for relevant historical information
on pattern avoidance as well as the state-of-art of this area the reader
is referred to the recent monograph [24].

There are several types of questions in the theory of tree patterns
which are meaningful from the operadic viewpoint. First of all, for
a given set of patterns, exact enumeration results for trees avoiding
that set are very important. Some examples of that sort appear in
the following sections; inmany cases the corresponding sequences of
numbers are well known in combinatorics, but in many other cases
one ends up with sequences that appear to be unrelated to classical
enumeration problems. Second, there is the question of asymptotic
enumeration. We shall prove some results of that sort relying on
the Golod–Shafarevich technique [17] (which has recently been re-
discovered in relation to combinatorics of pattern avoidance [3, 4,
35]). Also, there is a question of recognising the class of generating
functions arising in this type of enumerating questions. However,
while for word avoidance the answer is that the generating functions
arising as answers for enumerating the avoidance of finite sets of
words are always rational, even for consecutive pattern avoidance
in permutations the class of arising generating functions does not
have a satisfactory description. The answer is known if one ignores
the leaf labels completely; in that case, the generating functions are
algebraic (as proved in [36] in the case of binary trees, in [13] in the
case of ternary trees, and in [22] in the general case). For the notion
of tree pattern avoidance discussed here, it follows from one of the
theorems of [22] that under some additional assumptions on the set
of patterns (“shuffle regularity”) the generating functions for tree
pattern avoidance are differentially algebraic (i.e., satisfy algebraic
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differential equations with polynomial coefficients). Finally, it is
interesting to enumerate the Wilf equivalence classes of sets of tree
patterns1, and we discuss some basic results of this kind.

This paper is organised as follows. In Section 2, we define planar
labelled rooted trees and tree patterns, and we show that this notion
includes the classical types of consecutive pattern avoidance as par-
ticular cases. In Section 3, we present some results on asymptotics
for tree pattern avoidance, and we introduce the notion of growth
rate for a given set of patterns. In Section 4, we formulate an exact
enumeration result on tree pattern avoidance which follows from
our work with Khoroshkin [7], and we discuss some consequences
of that result and related questions. Finally, in Section 5 we discuss
various examples of patterns with small numbers of leaves. Each of
these sections also contains some conjectures and natural questions
that are beyond the scope of this paper. We also included an appen-
dix explaining how pattern avoidance in trees arises in the operadic
context.

Acknowledgements. I wish to thank Anton Khoroshkin and Dmitri
Piontkovski for sendingme a copy of their forthcoming preprint [22].

2. Planar labelled tree patterns

2.1. Tree patterns. Trees have vertices and edges. A rooted tree is a
tree with a distinguished vertex, called the root. A rooted tree can
be directed “away from the root”; this way every vertex except for
the root has exactly one parent. Vertices whose common parent is a
given vertex v are called children of v. Vertices that have at least one
child are called internal, vertices with no children are called leaves. A
planar rooted tree is a rooted tree together with a total order on the set
of children of each vertex, we shall think of it as of embedded in the
plane, the children of each vertex placed in increasing order from left
to right.

Throughout the paper,X =
⊔

n≥2 Xn is a finite alphabet represented
as a disjoint union of its subsets Xn, n ≥ 2.

Definition 1. A planar X-labelled rooted tree is a planar rooted tree T
with no internal vertices having exactly one child, and with a la-
belling of all vertices fulfilling the following restrictions:

- every internal vertex v with m children is labelled by an ele-
ment xv ∈ Xm;

- every leaf of T is labelled by a positive integer in such a way
that the following two conditions are satisfied:

1Equivalence classes for “strong equivalence” might lead to interesting combi-
natorial results as well, but are much less natural from the operad point of view.
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(1) (labelling set condition) the leaf labels are in one-to-one
correspondence with the set [l] = {1, 2, . . . , l} (where l is
the number of leaves of T);

(2) (local increasing condition) if we temporarily assign to
each internal vertex v the smallest of the labels of leaves
that are descendants of v in T (thus every vertex of T,
should it be an internal vertex or a leaf, has an integer
assigned to it), then for each internal vertex i the integers
assigned to its children increase from left to right.

Notation: for i ≥ 0, l ≥ 1 we denote by LT i,l(X) the set of planar
X-labelled rooted trees with i internal vertices and l leaves,

(1) LT l(X) =
⋃

i≥0

LT i,l(X)

is the set of planar X-labelled rooted trees with l leaves,

(2) LT (X) =
⋃

i≥0,l≥1

LT i,l(X)

is the set of all planar X-labelled rooted trees. In particular, LT 0,l(X)
is non-empty only for l = 1 (and in that case it consists of exactly one
element, a one-vertex tree with no edges), and LT 1(X) = LT 0,1(X)
(since every internal vertex has at least two children, hence in the
presence of an internal vertex we end up with at least two leaves).

Example 1. Let X = X2 = {◦, •}. The following tree is in LT 7,8(X):

(3)
•

◦

• ◦

◦ ◦ ◦

1 3 2 7 4 6

5

8

.

A tree T is said to be a left (right) comb if for every internal vertex
of T only its leftmost (rightmost) child may not be a leaf. Note that
the local increasing condition makes the notions of “left” and “right”
very different: for example, if a planar rooted tree t is a left comb,
the only restriction on the leaf labels is that the leftmost leaf of t is
labelled by 1; by contrast, if t is a right comb, there is only one leaf
labelling satisfying the local increasing condition.

Most of the time throughout the paper we consider only the case
X = Xd, thus assuming that for our trees all internal vertices have
the same number of children (that is, d children). This assumption is
mostly technical (it allows for closed formulas in various statements),
in particular, all the asymptotic results we prove and conjecture in
Section 3 are expected to be true in full generality. One particular
simplification is that for such trees the number of internal vertices and
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the number of leaves are related: every tree with k internal vertices
has kd − k + 1 leaves.

Let us prove a basic enumerative result which will be useful later.

Proposition 1. For X = Xd, we have

(4) |LT kd−k+1(X)| = |Xd|
k (kd)!

(d!)k · k!
.

Proof. For our purposes it is useful to consider, along with planar

X-labelled rooted trees, two other types of trees. We denote byT n(X)
the set of planar rooted trees with n leaves whose internal vertices
are labelled by X, and by Tn(X) the set of planar rooted trees with n
leaves whose internal vertices are labelled by X, and whose leaves
are labelled by {1, 2, . . . , n} (in all possible ways).

Recall that for X = Xd = {•}, we have [39]

(5) |T kd−k+1(X)| =
1

kd − k + 1

(

kd

k

)

.

For the general case, we note that |T kd−k+1(X)| is |Xd|
k times larger,

since every of k internal vertices should acquire a label from Xd.
Also, it is clear that

(6) |LT kd−k+1(X)| =
1

(d!)k
|Tkd−k+1(X)|,

since for each of the k internal vertices of a tree only one of the
d! permutations of its subtrees fulfils the local increasing condition.
Finally,

(7) |Tkd−k+1(X)| = (kd − k + 1)!|T kd−k+1(X)|,

since all leaf labelling are allowed in Tkd−k+1(X), and the formula
follows. �

By a subtree of a planar labelled rooted tree T we always mean a
subtree Swith its root at one of the internal vertices of T such that for
each internal vertex of S all its children in T are also its children in S.
(This way we can guarantee that the labels of internal vertices make
sense for S.) Note that the second condition on leaf-labelling assigns
to each internal vertex of a tree T a temporary integer label, so that a
subtree S of a tree T almost belongs to LT (X): its leaves are labelled
by integers such that the local increasing condition is satisfied (but
the labelling set condition might not be satisfied). Replacing, for a
subtree Swith l leaves, its leaf labels by 1, 2, . . . , l in the unique order-
preserving way, we shall obtain a tree st(S) ∈ LT (X) which we call
the standardisation of S.
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Definition 2. A tree T ∈ LT (X) is said to contain a tree P ∈ LT (X) as
a pattern if there exists a subtree S of T for which P = st(S). Otherwise
T is said to avoid S.

Example 2. Let us recall the tree from Example 1, and consider its
subtree represented by thick lines in the following figure:

(8)
•

◦

• ◦

◦ ◦ ◦

1 3 2 7 4 6

5

8

.

This subtree acquires the leaf numbering
◦

• ◦

1 5 2 4

, and after standard-

isation we get
◦

• ◦

1 4 2 3

. So
◦

• ◦

1 4 2 3

occurs in our tree as a pattern.

Throughout the paper, we only consider one type of tree patterns,
so we often use the term “tree pattern” where one should say “planar
labelled rooted tree pattern”; we hope that the reader will appreciate
this attempt of keeping terminology simple.

Let us fix some set of labels X, and consider pattern avoidance for
planar X-labelled trees. The central question arising in the theory
of pattern avoidance is that of enumeration of objects that avoid the
given set of forbidden patterns P or, more generally, that contain
exactly d occurrences of patterns from P . This question naturally
leads to the following equivalence relations for tree patterns. Two
sets of tree patterns P ,P ′ ⊂ LT (X) are said to be Wilf equivalent
(notation: P ∼W P ′) if, for every l, the number of P-avoiding trees
with l leaves is equal to the number of P ′-avoiding trees with l
leaves. (In the case of (non-consecutive) permutation patterns the
same notion was introduced by Wilf [42].) More generally, P and
P ′ are said to be (strongly) equivalent (notation: P ∼ P ′) if, for
every l and every k ≥ 0, the number of trees with l leaves that have k
occurrences of patterns from P is equal to the number of trees with
l leaves that have k occurrences of patterns from P ′.

For enumeration, we shall primarily use exponential generating
functions with respect to the number of leaves in trees, so that, for
example, the generating functions for the label set X and the pat-

tern set P are fX(z) =
∑

n≥1

|Xn |z
n

n!
and fP(z) =

∑

l≥1

|P∩LT l(X)|z
l

l!
, respec-

tively. We shall denote the set of all trees avoiding the pattern set P

by LT no-P(X), and its subset consisting of trees with l leaves by
LT l,no-P(X). The corresponding generating function is denoted by
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fno-P(z):

(9) fno-P(z) =
∑

l≥1

|LT l,no-P(X)|zl

l!
.

Remark 1. One can also include a second variable in the generating
function to count the internal vertices separately, and use the series

(10) gno-P(z, t) =
∑

i,l≥1

|LT i,l,no-P(X)|tizl

l!
,

which in particular would make all the sets finite when internal ver-
tices of our trees are allowed to have a single child (and the label set
X includes X1). To keep the exposition simple, we avoid discussing
these subtleties here.

The key feature of exponential generating functions in the con-
text of planar X-labelled rooted trees is expressed by the following
proposition.

Proposition 2. Suppose that K and L are two sets of planar X-labelled
rooted trees. Let us define a set M as follows: it consists of all trees T that
have an occurrence of a tree pattern from K rooted at the root of T, with the
additional condition that all the subtrees rooted at the leaves of that pattern
are occurrences of tree patterns from L . Then

(11) fM (z) = fK ( fL (z)).

Proof. Clearly,

(12) fK ( fL (z)) =
∑

l≥1

|K ∩ LT l(X)|( fL (z))l

l!
,

and it remains to note that the coefficient of zn in ( fL (z))l is the
number of ordered forests of l tree patterns from L with the total

leaf set {1, . . . , n}, therefore
( fL (z))l

l!
can be thought of as the enumerator

for forests satisfying the increasing condition for minimal leaves. �

2.2. Tree patterns and other types of consecutive patterns. In this
section we assume, for simplicity, that X = X2 (this corresponds to
considering only binary tree patterns).

Our first observation is that for |X| = 1 the set of all permutations
is naturally embedded in LT (X) as the set of left combs: recall that
a left comb has no conditions on where to put labels 2, 3 . . ., so left
combs with n + 1 leaves are in one-to one correspondence with per-
mutations of length n. If we denote by T(σ) the tree corresponding to
the permutation σ, then subtrees of T(σ) are in one-to-one correspon-
dence with subwords of σ, and the notion of a tree pattern for left
combs corresponds precisely to the notion of a consecutive pattern
for permutations. Moreover, ifΠ is a set of consecutive permutation
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patterns, and PΠ contains the left combs corresponding to elements
of Π and the right comb with three leaves, then the number of trees
with n + 1 leaves that avoid PΠ is equal to the number of permu-
tations of length n that avoid Π. For |X| > 1, the same construction
with left combs leads naturally to the notion of pattern avoidance in
coloured permutations [29].

Moreover, the set of all words in a given alphabet A is naturally
embedded in LT (X) with X = X2 = A as the set of right combs. In-
deed, recall that for a right combwith n+1 leaves there is exactly one
way to label its leaves to fulfil the local increasing condition; to obtain
a planarX-labelled rooted tree, it remains to label its internal vertices
by A, and the ways to do so are in one-to-one correspondence with
A-words of length n. If we denote by T(w) the tree corresponding to
the word w, then subtrees of T(w) are in one-to-one correspondence
with subwords of w, and the notion of a tree pattern for right combs
corresponds precisely to the notion of a divisor for words. Moreover,
if W is a set of words, and PW consists of the right combs corre-
sponding to elements of W and all the left combs with three leaves,
then the number of trees with n + 1 leaves that avoid PW is equal to
the number of words of length nwithout divisors from W.

It is also possible to go the other way round and replace trees
by objects resembling permutations and words. Let us assume, as
above, that |X| = 1 (ignoring this technical assumption will, as al-
ways, merely lead to coloured objects of the same sort). There is a
very natural way to “straighten” the tree patterns and thus translate
our questions into similar questions about patterns in sequences. Re-
call that the total number of planar labelled rooted tree patterns in

our case is equal to (2n)!

2nn!
= (2n−1)!!, the double factorial number. This

number is also equal [14] to the number of permutations of the mul-
tiset {1, 1, 2, 2, . . . , n, n} for which all the numbers appearing between
the two occurrences of k are greater than k (for every k = 1, . . . , n). To
a planar labelled rooted binary tree T, it is easy to assign recursively
a permutation σ(T) of this kind. For that purpose, it is convenient
to think of T as of a left comb with subtrees grafted in the places
of right children of internal vertices. We denote those subtrees by
T1, . . . , Tk, in the order from the leftmost one to the rightmost one.
Each subtree Ti has its leaf labels belonging to a subset of {1, 2, . . . , n},
so, strictly speaking, they are not trees of the kind we consider, but,
as usual, we can identify them with planar labelled rooted trees via
standardisation, so wemay apply σ to them, obtaining permutations
of appropriate multisets. We assume that σ takes the only one-vertex
tree to the empty word, and put

(13) σ(T) =

{

1σ(T1)1 for k = 1,

st(σ(T1)σ(T2) · · ·σ(Tk)) for k ≥ 2.
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For example, σ(
1 2

) = 11, σ(

1 2 3 4

) = 112332, σ(
4

1

2 3

) = 122133,

σ(
1

2 3

4

) = 122331; this leads to a meaningful notion of a generalised

permutation pattern. It would be interesting to investigate this no-
tion properly, in particular, to explore the links with patterns in set
partitions [19, 25, 37], and also to see if the constructions of [10] can
be adapted here.

3. Asymptotic enumeration

In this section, we discuss results on the asymptotic enumeration
of trees avoiding a given set of patterns, where the results turn out
to, in a way, mimick the results on the asymptotic enumeration for
consecutive patterns in permutations [9, 11]. Our main tool is the
following result, an adaptation of the classical Golod–Shafarevich
inequality [17]; it is closely related to a similar inequality for sym-
metric operads [34].

Theorem 1. For every (possibly infinite) pattern set P , we have the fol-
lowing coefficient-wise inequality of power series:

(14) fP( fno-P(z)) − fX( fno-P(z)) + fno-P(z) ≥ z.

Proof. Let us consider two series of finite sets: the set Bn is the subset
ofLT n(X) consisting of trees Twhose subtrees rooted at the children
of the root of T avoid patterns from P , and the set Cn is the subset of
the set of pairs P ×LT n(X) consisting of all pairs (P,T) where there
exists a subtree S of T rooted at the root of T for which st(S) = P,
and all the trees rooted at the leaves of S avoid patterns from P .
Proposition 2 implies that

∑

n≥1

|Bn|

n!
zn = fX( fno-P(z)),(15)

∑

n≥1

|Cn|

n!
zn = fP( fno-P(z)).(16)

Therefore, our power series inequality translates into

(17) |Cn| − |Bn| + |LT n,no-P(X)| ≥ 0, n ≥ 2.

This follows from the observation that there exists an obvious surjec-
tion from Cn ⊔ LT n,no-P(X) onto Bn: a tree from Bn either avoids P ,
or has a pattern from P rooted at its root. �
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Corollary 1. Suppose that the power series h(z) = 1

1−
fX (z)

z +
fP (z)

z

has non-

negative coefficients. Then we have

(18)
|LT n,no-P(X)|

n!
≥

1

n
[zn−1]h(z)n.

Proof. Let g(z) = z− fX(z)+ fP(z). According to theLagrange inversion
formula [39], for the coefficients of the compositional inverse g〈−1〉(z)
we have

(19) [zn]g〈−1〉(z) =
1

n
[zn−1]

(

z

g(z)

)n

=
1

n
[zn−1]h(z)n,

so under our assumption on h(z) the power series g〈−1〉(z) has non-
negative coefficients. According to Theorem 1, the power series

(20) fP( fno-P(z)) − fX( fno-P(z)) + fno-P(z) = g( fno-P(z))

has non-negative coefficients as well, so we see that

(21) fno-P(z) = g〈−1〉(g( fno-P(z))) =

=
∑

n≥1

(

1

n
[zn−1]h(z)n

)

g( fno-P(z))n ≥
∑

n≥1

(

1

n
[zn−1]h(z)n

)

zn.

This means that for every n ≥ 1 we have

(22)
|LT n,no-P(X)|

n!
≥

1

n
[zn−1]h(z)n,

which is exactly what we want to prove. �

Weuse this result to prove the following theorem, which gives a se-
ries of exampleswhen the set ofP-avoiding treeswithn leaves grows
rapidly, namely as Cn times the number of all trees with n leaves for
some constant C. A part of the proof is parallel to the corresponding
proof in [9].

Theorem 2. Suppose that X = Xd for some d ≥ 2, and that the power series

(23) h(z) = 1 −
|Xd|z

d−1

d!
+

fP(z)

z

has a root α > 0. Then we have

(24) |LT n,no-P(X)| ≥

(

(d!)
1

d−1

|Xd|
1

d−1α

)n−1

|LT n(X)|.

Proof. Recall that if X = Xd, then the set LT n(X) is non-empty only
for n = kd − k + 1 = k(d − 1) + 1 for some k. Therefore, h(z) is a power
series in zd−1; we shall consider the series

(25) ĥ(t) = 1 − t +
∑

t≥2

akt
k,
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for which h(z) = ĥ
(

|Xd|

d!
zd−1

)

; the only fact about the coefficients of that

series that we use is that all the coefficients ak are non-negative (ak
is a positive multiple of the number of certain labelled trees with k
internal vertices). Under our assumption, this power series has a

root β = |Xd|

d!
αd−1.

Let us consider the multiplicative inverse,
∑

l≥0 blt
l := (ĥ(t))−1;

clearly, b0 = 1 and bn − bn−1 +
∑n

k=2 akbn−k = 0. Let us prove by in-
duction that bn ≥ β

−1bn−1. Indeed, for n = 1 this statement is obvious

(β ≥ 1 because otherwise ĥ(β) is evidently positive), and for n > 1 we
note that by the induction hypothesis bn−1 ≥ β

1−kbn−k, so

bn = bn−1 −

n
∑

k=2

akbn−k ≥ bn−1 −

n
∑

k=2

akβ
k−1bn−1 ≥

≥ bn−1 −
∑

k≥2

akβ
k−1bn−1 = β

−1bn−1















β −
∑

k≥2

akβ
k















= β−1bn−1,

and the statement follows. Hence the kth coefficient of (ĥ(t))−1 is
greater than or equal to β−k. Therefore, the (k(d − 1))th coefficient

of h(z) is greater than or equal to
(

|Xd|

d!

)

·
(

|Xd|α
d−1

d!

)−k

= α−k(d−1). This

means that

(26) h(z) ≥
∑

k≥1

α−k(d−1)zk(d−1) =

(

1 −
(

z

α

)d−1
)−1

,

so, consequently,

(27) h(z)n ≥

(

1 −
(

z

α

)d−1
)−n

.

Since the coefficients of h(z) are non-negative, Corollary 1 applies,
and we deduce that

(28)
|LT kd−k+1,no-P(X)|

(kd − k + 1)!
≥

1

kd − k + 1
[zk(d−1)]h(z)kd−k+1 ≥

≥
1

kd − k + 1
α−k(d−1)

(

kd − k + 1 + k − 1

k

)

=
1

kd − k + 1
α−k(d−1)

(

kd

k

)

.

This, in view of Formula (4), simplifies to

(29) |LT kd−k+1,no-P(X)| ≥ (kd − k + 1)!
1

kd − k + 1
α−k(d−1)

(

kd

k

)

=

= α−k(d−1)
(kd)!

k!
=

(

d!

αd−1

)k
(kd)!

k!d!k
=

(

d!

|Xd|αd−1

)k

|LT kd−k+1(X)|,

which easily canbe transformed into the inequalitywewant to prove.
�
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This theorem, in particular, can be used to obtain estimates in the
case of one tree patterns and |X| = 1, that is, for trees with all internal
vertices of the same arity which carry the same label.

Theorem 3. Suppose that |X| = 1, so that X coincides with a one-element
set Xd for some d ≥ 2, and that the set of forbidden patterns consists of one
single pattern P with k ≥ 2 internal vertices. Then for every pair (d, k),
except for (2, 2), (2, 3), (2, 4), and (3, 2) there exists a positive number C
(depending only on d and k but not on the actual pattern) such that

(30) |LT n,no-P(X)| ≥ Cn−1|LT n(X)|.

Proof. It is enough to show that for all pairs (d, k) except for (2, 2),

(2, 3), (2, 4), and (3, 2), the polynomial h(z) = 1 − zd−1

d!
+ zk(d−1)

(kd−k+1)!
has a

positive root. Denoting, as above, t = zd−1

d!
, we see that it is enough

to prove that the polynomial ĥ(t) = 1 − t + d!ktk

(kd−k+1)!
has a positive

root. For that purpose, we note that the derivative −1 + kd!ktk−1

(kd−k+1)!
of

the polynomial ĥ(t) has the only positive root t0 =
(

(kd−k+1)!

kd!k

)
1

k−1
; thus,

to prove that ĥ(t) has a positive root, it is enough to prove that its
minimal value is attained at t0 and is negative. Using the formula

tk−1
0
=

(kd−k+1)!

kd!k
, we see that ĥ(t0) = 1− t0 +

t0
k
, so it suffices to prove that

t0 >
k

k−1
, or

(31)
(kd − k + 1)!(k − 1)k−1

d!kkk
> 1,

which is true in all cases we consider, since it is true for (d, k) = (2, 5),
(d, k) = (3, 3), and (d, k) = (4, 2), and its left hand side increases if
either d or k increases. �

Our results suggest a new numerical invariant of a set of patterns:

Definition 3. The growth rate of a set of patterns P ⊂ LT (X) is

(32) lim sup
n→∞

(

|LT n,no-P(X)|

|LT n(X)|

)
1

n−1

.

Weexpect that themethods of this section can be easily generalised
to prove that for every set of labels X (and for some k depending on
X) every pattern inLT (X) with at least k internal vertices has positive
growth. Moreover, computer experiments suggest that the follow-
ing conjecture generalising Warlimont’s conjecture for consecutive
patterns [41] (proved recently by Ehrenborg, Kitaev and Perry [10]
via a beautiful link between consecutive pattern avoidance and the
spectral theory for integral operators on the unit cube) holds for tree
patterns.
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Conjecture 1. For every set of labels X, there exists an integer d that
for every pattern P in LT (X) with at least d internal vertices and some
numbers c(P) > 0, λ(P) > 1 we have

(33)
|LT n,no-P(X)|

|LT n(X)|
∼ c(P)λ(P)−n.

It would be most interesting to adapt the approach of [10] for tree
patterns; such an adaptation, in addition to its consequences for the
asymptotic enumeration questions, may be of substantial interest
for operad theory as well. Another natural question arising from
asymptotic enumeration is to understand the “growth hierarchies”
of tree patterns, using the strategy of [26] or otherwise.

4. Exact enumeration: cluster inversion formula

The following result on power series inversion is simultaneously
a generalisation of the inversion formula for planar tree patterns
[1, 28, 33] andof the cluster inversion formula ofGoulden and Jackson
for words and permutations [20, 32]. This result is proved in [7] by
simple homological algebra; we formulate it here in a different way,
so that an interested reader will easily prove it directly using the
inclusion-exclusion formula, similarly to the usual cluster inversion.

Definition 4. Let P be a set of patterns in LT (X). A tree T together
with a collection of its subtrees T1, . . . ,Tk is said to be a k-cluster if the
following two conditions hold:

(1) For every i, the subtree Ti is an occurrence of a pattern from
P : st(Ti) ∈P ,

(2) every edge e of T that joins two internal vertices is an edge
between two internal vertices of some Ti.

By definition, the set of 0-clusters is the set of labels X.

Informally, a k-cluster is a tree which is completely covered by k
copies of patterns from P .

Let uswrite cn,k(P) for the number of k-clusters forwhich the tree T
has n leaves.

Theorem 4 ([7]). The compositional inverse of fno-P(z) can be computed
via clusters as follows:

(34) f 〈−1〉
no-P

(z) = z −
∑

n≥1,k≥0

(−1)kcn,k(P)zn

n!
.

The following consequence of the general inversion formula is
a direct analogue for planar labelled tree patterns of the inversion
formula [1, 28, 33] for planar tree patterns.
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Corollary 2. Suppose that X = X2, and that P and Q are two com-
plementary sets of tree patterns with 3 leaves, P ⊔ Q = LT 3(X). The
corresponding generating functions for pattern avoidance are inverse to
each other:

(35) fno-P(− fno-Q(−z)) = fno-Q(− fno-P(−z)) = z.

Proof. It is easy to see that in this case k-clusters for P are in one-to-
one correspondence with trees that avoid Q (each such tree admits
the unique covering by patterns from P), and that the signs in the
inversion formula match those suggested by (35) (since in our case
the underlying tree of every n-cluster has n + 2 leaves). �

Note that for left (right) combs corresponding to some consecutive
permutation patterns (words), clusters for left combs are the left
(right) combs corresponding to the usual Goulden–Jackson clusters
for these patterns (words). This instantly proves the following result.

Corollary 3. Suppose that two sets of consecutive permutation patterns
(words) are Wilf equivalent. Then the two sets of tree patterns consisting
of the left (right) combs corresponding to the given permutation patterns
(words) are Wilf equivalent as tree patterns.

As in the case of permutations, we expect that at least in the case
of a single pattern a careful study of its self-overlaps (“overlap sets”
of [23], or equivalently “overlap maps” of [31]) would be very ben-
eficial for studying Wilf equivalence. We shall discuss this in detail
elsewhere, mentioning a particular case briefly in the next section.

Let us conclude this section with an open question. For consecu-
tive patterns in permutations, Mendes and Remmel developed the
symmetric functions method [30] for enumeration of permutations
avoiding a given set of patterns. It is natural to expect that this
method can be generalised to deal with the case of tree patterns, pos-
sibly making use of the plethysm for symmetric functions where our
formulas compute compositions of power series. Some inversion for-
mulas in the completion of the algebra of symmetric functions exist
in the operadic context, being provided by homological algebra, in
particular the operadic Koszul duality for symmetric operads [16],
however, once we move from abstract trees to their representatives
(that is, planar labelled rooted trees studied in this paper), there is no
clear way to incorporate symmetric functions in the picture.

5. Examples

5.1. Case X = X2, |X| = 1. In this section, we assume that X = X2,
|X| = 1, that is, we only work with binary trees, and do not use labels
for internal vertices. To simplify the notation, we suppress X in the
formulas, and write simply LT n, etc.
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Webegin with classifying theWilf classes of pattern sets with three
leaves.

Theorem 5. There exist exactly four Wilf classes of sets of patterns with
three leaves.

Proof. This theorem follows from Lemmas 5.1 and 5.2 below, which
give a precise description of the five Wilf classes.

Lemma 5.1. The three patterns
2

1 3

,
3

1 2

,

32

1

are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of them is equal
to (n − 1)! for each n ≥ 3.

Proof. Let us write P1 =
2

1 3

, P2 =
3

1 2

, and P3 =

32

1

.

A correspondence ρ between the set of P1-avoiding trees and the
set of P2-avoiding trees can be defined recursively as follows. By

definition, ρ(
1 2

) =
1 2

. Let us represent a tree T ∈ LT n,no-P1
as a

left comb with some subtrees T1, . . . ,Tk (listed along the way from
the root) grafted at its “right-looking” leaves. To determine ρ(T), we
apply ρ to the subtrees Ti and reverse the order of grafting. In other
words, we graft ρ(Tk) in the place of T1, ρ(Tk−1) in the place of T2, etc.
Clearly, ρ identifies LT n,no-P1

with LT n,no-P2
.

A correspondenceκbetween the set ofP1-avoiding trees and the set
of P3-avoiding trees can be defined recursively as well. By definition,

ρ(
1 2

) =
1 2

. Let us represent a tree T ∈ LT n,no-P1
as a left comb with

some subtrees T1, . . . ,Tk (listed along the way from the root) grafted
at its right-looking leaves. We note that the set LT n,no-P3

is the set of
all left combs with n leaves; by induction we may assume that we
already know the left combs κ(T1), . . . , κ(Tk). Letκ(T) be the left comb
whose right-looking leaves, listed along the way from the root, are
the right-looking leaves of κ(Tk), the right-looking leaves of κ(Tk−1),
. . . , the right-looking leaves of κ(T1). The observation (which can
easily be proved by induction) that the label of the right-looking leaf
of κ(T) which is the farthest from the root is equal to the smallest leaf
label of T1 shows how to construct the inverse of κ, so we identified
LT n,no-P1

with LT n,no-P3
.

In addition, since the set LT n,no-P3
is the set of all left combs with

n leaves, it has cardinality (n − 1)!, so, for each of the three subsets
P ⊂ LT 3 with |P | = 1 and for each n, there are exactly (n − 1)!
different P-avoiding tree with n leaves. �
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Lemma 5.2. The three two-pattern sets {
3

1 2

,
2

1 3

}, {
3

1 2

,

32

1

}, and

{
2

1 3

,

32

1

} are Wilf equivalent to each other; the number of trees with n

leaves avoiding either of these sets is equal to 1 for each n ≥ 3.

Proof. Indeed, for P = {
3

1 2

,
2

1 3

} the only P-avoiding tree with

n leaves is the only right comb, for P = {
3

1 2

,

32

1

} the only P-

avoiding tree with n leaves is the only left comb with labels of right-
looking leaves increasing along the way from the root, and for P =

{
2

1 3

,

32

1

} the only P-avoiding tree with n leaves is the only left

comb with labels of right-looking leaves decreasing along the way
from the root. Therefore for each of the three subsets P ⊂ LT 3 with
|P | = 2 and for each n, there is exactly one P-avoiding tree with n
leaves.

Alternatively, one can apply the inversion formula (35): from
Lemma 5.1, we conclude that the exponential generating function
for every one-pattern set is equal to − log(1 − z); computing its in-
verse and adjusting the signs instantly shows that the exponential
generating function for every two-pattern set is exp(z) − 1, which is
the exponential generating function for the sequence 1, 1, 1, . . .. �

Since the empty pattern set and the pattern set containing all trees
with three leaves form their own Wilf classes, the theorem follows.

�

For pattern sets with at least four leaves, we have only partial

results. Note that there are 15 patterns with four leaves:
4

3

1 2

,

3

4

1 2

,
4

2

1 3

,
2

4

1 3

,
3

2

1 4

,
2

3

1 4

,
4

1

2 3

,
3

1

2 4

,
2

1

3 4

,

1 2 3 4

,

1 3 2 4

,

1 4 2 3

,
1

2 3

4

,
1

2 4

3

, and
1

2

3 4

. Therefore the number of sets of

tree patterns with 4 leaves is equal to 215 = 32768, so a complete
classification of Wilf classes is already a very heavy task. We shall
present a very simple result on the classification of Wilf classes for
sets consisting of a single pattern.
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Theorem 6. There exist exactly five Wilf classes of sets of one pattern with
four leaves.

Proof. This theorem follows from Lemmas 6.1– 6.3 below, which give
a precise description of the five Wilf classes.

Lemma 6.1. The three patterns
4

3

1 2

,
2

3

1 4

, and
1

2

3 4

are Wilf

equivalent to each other.

Proof. There is a bijective proof which is completely analogous to that
of Lemma 5.1; we leave it to the reader to fill in the details. �

Lemma 6.2. The six patterns

1 2 3 4

,

1 3 2 4

,

1 4 2 3

,
2

1

3 4

,
1

2 3

4

, and
1

2 4

3

are Wilf equivalent to each other.

Proof. Let us write P1 =

1 2 3 4

, P2 =

1 3 2 4

, P3 =

1 4 2 3

, P4 =
2

1

3 4

,

P5 =
1

2 3

4

, and P6 =
1

2 4

3

.

We show that P1 ∼W P2 by exhibiting a one-to-one correspondence
α between the P1-avoiding trees and the P2-avoiding ones. If a tree T
avoids both P1 and P2, we put α(T) = T. If T avoids P1 but contains
P2, we may assume that there is an occurrence of P2 at the root of T
(otherwise we find the internal vertices closest to the root that are roots
of occurrences of P2, and apply α recursively at these vertices). Let

T =

T1 T2 T3 T4

, and write Si = α(Ti), i = 1, . . . , 4. We put α(T) =

S1 S3 S2 S4

.

We constructed a bijection between P1-avoiding trees containing P2

and P2-avoiding trees containing P1. The case of P1 and P3 is handled
in a similar way.

We now show that P1 ∼W P4 by exhibiting a one-to-one correspon-
dence β between the P1-avoiding trees and the P4-avoiding ones. If
a tree T avoids both P1 and P4, we put β(T) = T. If T avoids P1 but
contains P4, we may assume that there is an occurrence of P4 at the
root of T (otherwise we find the internal vertices closest to the root
that are roots of occurrences of P4, and apply β recursively at these

vertices). Let T =
T2

T1

T3 T4

, and write S1 = β(
T1 T2

), S2 = β(
T3 T4

). We put

β(T) =
S1 S2

. Note that the only vertex of this tree where an occurrence
of P4 can be rooted is the root. However, if there is an occurrence of
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P4 there, it is easily seen to imply an occurrence of P1 in T, a contra-
diction. In this way, we constructed a bijection between P1-avoiding
trees containing P2 and P2-avoiding trees containing P1.

The equivalence P5 ∼W P6 can be established inductively similarly
to how this is done in Lemma 5.1.

Finally, the easiest way to see the equivalence P1 ∼W P5 is via
the inverse generating functions. Essentially, P1 and P5 have the
same structure of self-overlaps: there are two self-overlaps, one of
which is “rigid” (only one labelling of leaves is consistent with the
local increasing condition), and the other one admits three different
leaf labellings. This allows for an inductively constructed bijection
between the clusters that control the coefficients of the inverse series.
We leave the details to the reader. �

Lemma 6.3. The four patterns
3

4

1 2

,
4

2

1 3

,
2

4

1 3

, and
3

2

1 4

are

Wilf equivalent to each other.

Proof. The corresponding permutation patterns are Wilf equivalent,
so Corollary 3 applies. �

Combining the lemmas above with a somewhat lengthy computa-
tion showing that

• for the class described in Lemma 6.1 the sequence count-
ing the trees avoiding the patterns of that class begins with
1, 1, 3, 14, 91, 756, 7657,
• for the class described in Lemma 6.2 the sequence count-
ing the trees avoiding the patterns of that class begins with
1, 1, 3, 14, 90, 739, 7392,
• for the class described in Lemma 6.3 the sequence count-
ing the trees avoiding the patterns of that class begins with
1, 1, 3, 14, 90, 738, 7364,

• for the pattern
3

1

2 4

the sequence counting the trees avoiding

that pattern begins with 1, 1, 3, 14, 90, 740, 7420,

• for the pattern
4

1

2 3

the sequence counting the trees avoiding

that pattern begins with 1, 1, 3, 14, 90, 737, 7336,

we conclude that there are exactly five different Wilf classes. �

Of the five integer sequences we saw in the previous proof, only
two seem to appear in the Online Encyclopedia of Integer Sequences
[38]: the third one matches A088789, the sequence of coefficients in
the compositional inverse of the power series 2x

1+exp(x)
, and the first one
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matches A183611, which, if we take care of the difference in number-
ing, isdescribedas the sequenceof coefficients of thepower series f (z)
satisfying the differential equation f ′′(z) = f ′(z)2 + z f ′(z)3. The first
of these descriptions is not too surprising, as the inversion formula
(34) suggests that the inverse series makes lots of sense combinato-
rially. The second description is related to the results of Khoroshkin
and Piontkovski [22] who proved that in some cases the generating
function does indeed satisfy a differential equation; however, the
patterns of that Wilf class are not covered by their results, so the
appearance of a differential equation in this enumeration problem
would be another bit of evidence supporting their general conjec-
ture that states that for every finite set of patterns the corresponding
generating function satisfies an algebraic differential equation with
polynomial coefficients.

It is natural to ask which tree patterns are “the hardest to avoid”,
that have the fewest numbers of trees that avoid them, andwhich tree
patterns are “the easiest to avoid”, that is have the largest numbers
of trees that avoid them. After examining the proof of the previous
theorem and performing some computer experiments, we arrived
at the following conjecture which is closely related to the conjecture
of Elizalde and Noy [12] that the permutation 12 . . .n (the identity
permutation) is the easiest to avoid, and to the conjecture of Naka-
mura [31] that the permutation 12 . . . (n−2)n(n−1) (the transposition
of its last two entries) is the hardest to avoid.

Conjecture 2. Let us denote by LC<n , LC
>
n , and RCn the left comb with n

leaves whose leaf labels increase along the way from the root, the left comb
with n leaves whose leaf labels decrease along the way from the root, and the
right comb with n leaves, respectively. The patterns LC<n , LC

>
n , and RCn are

the easiest to avoid, and the pattern

RCn−1 n

is the hardest to avoid.

5.2. Case X = X2, |X| = 2. Throughout this section we assume that
we work with binary trees with two possible labels for internal ver-
tices, in other words, X = X2 = {◦, •}.

The following result is still easy to obtain “by hand”.

Theorem 7. There exist exactly two Wilf classes of one pattern sets with
three leaves, and exactly ten Wilf classes of sets of two patterns with three
leaves.

Proof. First of all, let usnote that becauseof the inversion formula (35),
we can work with the trees avoiding 11 and 10 patterns, respectively.
For the avoidance of 11 patterns, the only allowed pattern can either
use only one internal vertex label (in which case Theorem 5 means
that there exists only one allowed tree for each number of leaves) or
use two different internal vertex labels (in which case there is no way
to build an allowed tree with 4 or more leaves).
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For the avoidance of 10 patterns, our theorem follows from a se-
quence of lemmas which give a precise description of the ten Wilf
classes. Lemmas 7.1–7.7 are almost obvious, since the trees that are
being counted admit very explicit descriptions; we omit their proofs.
Note that we switch to complements again: instead of listing the ten-
element sets, we list their complements in the set of all tree patterns
with three leaves.

Lemma 7.1. The six sets whose complements in the set of all tree pat-

terns with three leaves are { •

•
3

1 2

, •

•
2

1 3

}, { •

•
2

1 3

,

3

•

2

•
1

}, { •

•
3

1 2

,

3

•

2

•
1

},

{ ◦

◦
3

1 2

, ◦

◦
2

1 3

}, { ◦

◦
2

1 3

,

3

◦

2

◦
1

}, { ◦

◦
3

1 2

,

3

◦

2

◦
1

} are Wilf equivalent to each

other; the number of trees with n leaves avoiding either of these sets is equal
to (n − 1)! for each n ≥ 4.

Lemma 7.2. The two sets whose complements in the set of all tree patterns

with three leaves are { •

◦
3

1 2

,

3

◦

2

•
1

}, { ◦

•
3

1 2

,

3

•

2

◦
1

} are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of these sets is

equal to 3
2

(

n
2

)

! for even n ≥ 4 and to
(

n−1
2

)

! + 1
2

(

n+1
2

)

! for odd n ≥ 3.

Lemma 7.3. The ten sets whose complements in the set of all tree pat-

terns with three leaves are { •

•
3

1 2

, •

◦
2

1 3

}, { •

•
2

1 3

, •

◦
3

1 2

}, { •

•
3

1 2

, ◦

•
2

1 3

},

{ •

•
2

1 3

, ◦

•
3

1 2

}, { ◦

◦
3

1 2

, •

◦
2

1 3

}, { ◦

◦
2

1 3

, •

◦
3

1 2

}, { ◦

◦
3

1 2

, ◦

•
2

1 3

}, { ◦

◦
2

1 3

, ◦

•
3

1 2

},

{

3

•

2

•
1

, ◦

•
3

1 2

}, {

3

◦

2

◦
1

, •

◦
3

1 2

} are Wilf equivalent to each other; the number

of trees with n leaves avoiding either of these sets is equal to n − 1 for each
n ≥ 4.

Lemma 7.4. The 32 sets whose complements in the set of all tree pat-

terns with three leaves are { •

•
3

1 2

, ◦

◦
3

1 2

}, { •

•
3

1 2

, ◦

◦
2

1 3

}, { •

•
3

1 2

,

3

◦

2

◦
1

},

{ •

•
2

1 3

, ◦

◦
3

1 2

}, { •

•
2

1 3

, ◦

◦
2

1 3

}, { •

•
2

1 3

,

3

◦

2

◦
1

}, {

3

•

2

•
1

, ◦

◦
3

1 2

}, {

3

•

2

•
1

, ◦

◦
2

1 3

},

{

3

•

2

•
1

,

3

◦

2

◦
1

}, { •

•
3

1 2

, ◦

•
3

1 2

}, { •

•
2

1 3

, ◦

•
2

1 3

}, { ◦

◦
3

1 2

, •

◦
3

1 2

}, { ◦

◦
2

1 3

, •

◦
2

1 3

},

{

3

•

2

•
1

,

3

◦

2

•
1

}, {

3

◦

2

◦
1

,

3

◦

2

•
1

}, {

3

•

2

•
1

,

3

•

2

◦
1

}, { •

•
2

1 3

, •

◦
2

1 3

}, { ◦

◦
3

1 2

, ◦

•
3

1 2

},
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{ ◦

◦
2

1 3

, ◦

•
2

1 3

}, {

3

•

2

•
1

,

3

◦

2

•
1

}, {

3

◦

2

◦
1

,

3

•

2

◦
1

}, { •

◦
3

1 2

, ◦

•
3

1 2

}, { •

◦
2

1 3

, ◦

•
2

1 3

},

{

3

•

2

◦
1

,

3

◦

2

•
1

}, {

3

•

2

•
1

, ◦

•
2

1 3

}, {

3

◦

2

◦
1

, •

◦
2

1 3

}, {

3

◦

2

•
1

, •

•
3

1 2

}, {

3

◦

2

•
1

, •

•
2

1 3

},

{ ◦

◦
3

1 2

,

3

•

2

◦
1

}, ◦

◦
2

1 3

,

3

•

2

◦
1

}, { •

◦
2

1 3

,

3

◦

2

•
1

}, { ◦

•
2

1 3

,

3

•

2

◦
1

} are Wilf equiva-

lent to each other; the number of trees with n leaves avoiding either of these
sets is equal to 2 for each n ≥ 4,.

Lemma 7.5. The two sets whose complements in the set of all tree patterns

with three leaves are { ◦

•
3

1 2

,

3

◦

2

•
1

}, { •

◦
3

1 2

,

3

•

2

◦
1

} are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of these sets is
equal to 1 for n = 4, and equal to 0 for each n ≥ 5.

Lemma 7.6. The two sets whose complements in the set of all tree patterns

with three leaves are { ◦

•
2

1 3

,

3

◦

2

•
1

}, { •

◦
2

1 3

,

3

•

2

◦
1

} are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of these sets is
equal to 2 for n = 4, and equal to 0 for each n ≥ 5.

Lemma 7.7. The two sets whose complements in the set of all tree patterns

with three leaves are { ◦

•
3

1 2

, ◦

•
2

1 3

}, { •

◦
3

1 2

, •

◦
2

1 3

} are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of these sets is
equal to 0 for each n ≥ 4.

Lemma 7.8. The six sets whose complements in the set of all tree pat-

terns with three leaves are { •

•
3

1 2

,

3

•

2

◦
1

}, { •

•
2

1 3

,

3

•

2

◦
1

}, { ◦

◦
3

1 2

,

3

◦

2

•
1

},

{ ◦

◦
2

1 3

,

3

◦

2

•
1

}, {

3

•

2

•
1

, •

◦
2

1 3

}, {

3

◦

2

◦
1

, ◦

•
2

1 3

} are Wilf equivalent to each

other; the number of trees with n leaves avoiding either of these sets is equal
to the number of involutions in Sn−1 for each n ≥ 4.

Proof. Examining the structure of the allowed trees, we see that in
each case we have a right comb or an increasing (decreasing) left
comb, possibly with leaves replaced by pairs of leaves. Examining
the leaf labels, one easily extracts a decomposition of an involution
into its product of disjoint cycles, which gives a one-to-one corre-
spondence. �

Lemma 7.9. The two sets whose complements in the set of all tree patterns

with three leaves are {

3

•

2

•
1

, •

◦
3

1 2

} and {

3

◦

2

◦
1

, ◦

•
3

1 2

} are Wilf equivalent
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to each other; the number of trees with n leaves avoiding either of these sets
is equal to the nth Fibonacci number ( f0 = 0, f1 = 1, fn+1 = fn + fn−1) for
each n ≥ 3.

Proof. Examining the structure of the allowed trees, we see that in
each case we have a right comb, possibly with leaves replaced by
pairs of leaves, but with the leaf labels increasing globally along the
path from the root. Therefore, the number of trees we are trying to
compute is equal to the number of sequences of 1’s and 2’s that sum
up to n − 1, which is known to be the Fibonacci number [39]. �

Lemma 7.10. The two sets whose complements in the set of all tree patterns

with three leaves are { •

◦
2

1 3

, ◦

•
3

1 2

}, { ◦

•
2

1 3

, •

◦
3

1 2

} are Wilf equivalent to

each other; the number of trees with n leaves avoiding either of these sets is
twice the number of alternating permutations in Sn−1 for each n ≥ 3.

Proof. Clearly, each allowed tree is a left comb, the labels ◦, • along
the path from the root alternate, and so do the leaf labels. Therefore,
the statement is obvious: alternating permutations come from the
leaf labels, and “twice” reflects the fact that for each k there are two
alternating sequences of ◦’s and •’s of length k. �

�

Further (computer-aided) investigation shows that the following
statement is true:

Theorem 8. For sets of patterns with 3 leaves, there are

(1) 2 Wilf classes of 1-element sets,
(2) 10 Wilf classes of 2-element sets,
(3) 40 Wilf classes of 3-element sets,
(4) 99 Wilf classes of 4-element sets,
(5) 189Wilf classes of 5-element sets,
(6) 202Wilf classes of 6-element sets,
(7) 189Wilf classes of 7-element sets,
(8) 99 Wilf classes of 8-element sets,
(9) 40 Wilf classes of 9-element sets,
(10) 10 Wilf classes of 10-element sets,
(11) 2 Wilf classes of 11-element sets.

To conclude this section, let us mention a promising direction
towards new bijective proofs for enumeration of Wilf equivalence
classes. In the case of unlabelled planar trees, many bijections have
been constructed in [13], where “word notation” for trees was used.
That “word notation” is a construction of crucial importance for op-
erad theory was discovered by Hoffbeck [18], who defined a partial
ordering compatible with the operad structure on the set of “tree
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monomials,” which was then used to formulate and prove a PBW
criterion for Koszul operads. Later, this partial ordering was ex-
tended to a total ordering (still compatible with the operad struc-
ture) in [8]; that ordering is one of the key ingredients of the Gröbner
bases machinery in the case of operads. The latter total ordering is
coming from replacing a tree T ∈ LT (X) by a pair (path(T), perm(T))
consisting of a “path sequence” path(T) (a sequence of words in the
alphabet X) and a permutation perm(T) of the set of leaves of T. All
questions of pattern avoidance for trees can be translated into ques-
tions of pattern avoidance for this type of data; the corresponding
notion of a pattern is a certain mixture of the classical notion of a
divisor of a word and the notion of a generalised pattern in permu-
tations [2, 5] (different from the naı̈ve notion of a generalised pattern
in coloured permutations). This way of thinking of patterns in trees
should be useful for bijective proofs; we hope to address this in more
detail elsewhere.

Appendix A. Shuffle operads and patterns in trees

In this appendix, we recall some relevant definitions of operad
theory, and explain how the notion of pattern avoidance in trees
arises naturally in this context.

Let us denote by Ord the category whose objects are non-empty
finite ordered sets (with order-preserving bijections as morphisms).
Also, we denote by Vect the category of vector spaces (with linear
operators as morphisms). It is usually enough to assume vector
spaces to be finite-dimensional, though sometimes more generality
is needed, and one assumes, for instance, that they are graded with
finite-dimensional homogeneous components.

Definition 5. (1) A (non-symmetric) collection is a contravariant
functor from the category Ord to the category Vect. We shall
refer to images of individual sets as components of our collec-
tion.

(2) Let P and Q be two non-symmetric collections. The shuffle
composition product of P and Q is the non-symmetric collec-
tion P ◦sh Q defined by the formula

(P ◦sh Q)(I) :=
⊕

k

P(k) ⊗

















⊕

f : I։[k]

Q( f−1(1)) ⊗ . . . ⊗Q( f−1(k))

















,

where the sum is taken over all shuffling surjections f , that is
surjections for which min f−1(i) < min f−1( j) whenever i < j.

(3) A shuffle operad is amonoid in the category of non-symmetric
collections equipped with the shuffle composition product.
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This definition is a counterpart of a more classical one, where one
deals with finite sets without a specified order, and all surjections
are allowed to define the composition. The corresponding monoids
are called (symmetric) operads, and these are monoids widely used
in algebra and topology, since they capture the algebraic properties
of compositions of operations with several arguments. In particular,
algebras of a certain type, like all associative algebras, or all Lie
algebras, can be viewed as modules over a monoid of this kind
(formed by all operations that can be defined on algebras of the
given type), and this point of view proves to be useful. However,
for computational purposes, the fact that finite sets have symmetries
gets in theway, and it turns out that shuffle operads allow one to deal
with some of the troubles arising because of that. (Every symmetric
operad can be viewed as a shuffle operad, since every ordered set
can be viewed as an unordered set.)

Monoids in themonoidal category of vector spaces (with the usual
tensor product) are associative algebras. One can present associative
algebras via generators and relations; if all relations are monomials
in generators, the corresponding algebra admits a straightforward
basis consisting of all monomials avoiding the monomials from the
set of relations. In general, there is no such elegant description; to
obtain one, one uses the machinery of Gröbner bases. A Gröbner
basis is a special choice of a set of relations that allows one to find a
“monomial replacement” for the given algebra A, that is, an algebra
with the same generators and with monomial relations for which the
natural monomial basis is also a basis for A. Such a set of monomial
relations is provided by the “leading terms” of the relations forming
a Gröbner basis.

It is very natural to try and find an appropriate Gröbner bases
theory for operads. For operads with symmetries, this turns out to
be impossible: not every symmetric operad has a monomial replace-
ment. However, for shuffle operads it turns out to be possible. Let us
be a little bit more precise. Similarly to the case of associative alge-
bras, a shuffle operad can be presented via generators and relations,
that is, as a quotient of the free operad F (V), where V is the space
of generators (which itself is a non-symmetric collection). If X is the
collection of ordered bases for components of V, that is, a functor
from Ord to Ord, then the free shuffle operad generated by V admits
a basis of “tree monomials” which can be defined combinatorially;
they are precisely planar X-labelled rooted trees studied throughout
this paper. Any shuffle composition of tree monomials is again a
tree monomial. The crucial feature of shuffle operads is that they
admit good monomial orderings (and therefore one can talk about
leading terms of relations). More precisely, there exist several ways
to introduce a total ordering of tree monomials in such a way that all
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the shuffle compositions respect that total ordering: increasing one
of the monomials we compose increases the result. Furthermore, the
algebraic statement that a tree monomial T is obtained from another
tree monomial S by shuffle compositions (that is, T is divisible by S
in our monoid) means, in combinatorial language, that S occurs in T
as a pattern.

We now have all the ingredients to relate questions about shuffle
operads to pattern avoidance in trees. A Gröbner basis of an ideal I
in the free shuffle operad is a system G of generators of I for which
the leading monomial of every element of I is divisible by one of
the leading terms of elements of G. Such a system of generators al-
lows one to perform “long division” modulo I, computing for every
element its canonical representative. Tree monomials avoiding the
leading terms of elements of G (“normal monomials”) form a basis
in the quotient by the ideal I; in other words, shuffle operads do ad-
mit monomial replacements. Thus, it is clear that enumerating trees
avoiding the given set of patterns literally corresponds to computing
dimensions of components of operads presented by generators and
relations. (Of course, the first step is to compute a Gröbner basis;
see [8] for an algorithmic approach to this problem.) From this point
of view, asymptotic enumeration is also very meaningful: in fact,
the area of operad theory primarily concerned with quotients of the
operad describing associative algebras (better known as “theory of
varieties of associative algebras”) has asymptotic questions (“codi-
mension growth”) among its core questions [15, 21]. Therewere even
some attempts to use the Gröbner bases formalism in that context,
see for example [27]. We expect that our approach will prove useful
in that context.
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