Ribbon Schur functions with full support and Schur positivity

O. Azenhas, A. Conflitti, R. Mamede

CMUC, Universidade de Coimbra 67th Séminaire Lotharingien de Combinatoire Joint session with XVII Incontro Italiano di Combinatoria Algebrica Bertinoro

September, 2011

Outline

Schur functions and support

- The Schur functions are considered to be the most important basis for the ring of symmetric functions.
- Given partitions $\mu \subseteq \lambda$, $A := \lambda/\mu$

$$s_{\mathcal{A}} = \sum_{\nu} c^{\nu}_{\mathcal{A}} s_{\nu},$$

where c_A^{ν} is the number of SSYT of shape A and content ν , satisfying the Littlewood-Richardson rule.

Schur functions and support

- The Schur functions are considered to be the most important basis for the ring of symmetric functions.
- Given partitions $\mu \subseteq \lambda$, $A := \lambda/\mu$

$$s_{\mathcal{A}} = \sum_{\nu} c^{\nu}_{\mathcal{A}} s_{\nu},$$

where c_A^{ν} is the number of SSYT of shape A and content ν , satisfying the Littlewood-Richardson rule.

$$s_A = s_{2111} + 2s_{221} + s_{311} + s_{32}$$

Schur functions and support

$$s_A = s_{2111} + 2s_{221} + s_{311} + s_{32}$$

r(A) is the partition consisting of the row lengths of A, and c(A) is defined similarly. The support of A, considered as a subposet of the *dominance lattice*, has a top element r(A)' and a bottom element c(A),

$$s_A = \sum_{c(A) \preceq \nu' \preceq r(A)'} c_A^{\nu} s_{\nu}$$

Schur functions and support

•
$$A = 3321/211 = \Box$$

$$s_A = s_{2111} + 2s_{221} + s_{311} + s_{32}$$

r(A) is the partition consisting of the row lengths of A, and c(A) is defined similarly. The support of A, considered as a subposet of the *dominance lattice*, has a top element r(A)' and a bottom element c(A),

$$s_A = \sum_{c(A) \preceq \nu' \preceq r(A)'} c_A^{\nu} s_{\nu'}$$

• $\operatorname{supp}(A) = \{\nu' : c_A^{\nu} > 0\}$

Schur functions and support

$$s_A = s_{2111} + 2s_{221} + s_{311} + s_{32}$$

r(A) is the partition consisting of the row lengths of A, and c(A) is defined similarly. The support of A, considered as a subposet of the *dominance lattice*, has a top element r(A)' and a bottom element c(A),

$$s_A = \sum_{c(A) \preceq \nu' \preceq r(A)'} c_A^{\nu} s_{\nu}.$$

•
$$\operatorname{supp}(A) = \{\nu' : \frac{c_A^{\nu}}{2} > 0\} \subseteq [c(A), r(A)'] =$$

[221; 41] 1 4.

Schur positivity

• Given skew shapes A and B, when is $s_A - s_B$ Schur positive?

Schur positivity

• Given skew shapes A and B, when is $s_A - s_B$ Schur positive?

 $s_A - s_B$ is Schur positive only if $supp(B) \subseteq supp(A)$.

Schur positivity

• Given skew shapes A and B, when is $s_A - s_B$ Schur positive?

 $s_A - s_B$ is Schur positive only if $supp(B) \subseteq supp(A)$.

 $s_A = s_{32} + s_{211} + 2s_{221} + s_{311},$ $s_B = s_{32} + s_{211} + 1s_{221} + s_{311}$ suppA = suppB, $s_A - s_B = s_{221}$ is Schur positive but $s_B - s_A = -1s_{221}$ is not.

Skew shape equivalences

• Skew shapes yielding the same Schur function A an B are said to be Schur equivalent if $s_A = s_B$ $[A] = \{B : s_A = s_B\}$ $A = \Box$ and $B = \Box$ are not Schur equivalent but A and its antipodal rotation $A^{\pi} = \Box$ are.

Skew shape equivalences

- Skew shapes yielding the same Schur function A an B are said to be Schur equivalent if $s_A = s_B$ $[A] = \{B : s_A = s_B\}$ $A = \square$ and $B = \square$ are not Schur equivalent but A and its antipodal rotation $A^{\pi} = \square$ are.
- Skew shapes yielding the same support
 A an B are said to be support equivalent if suppA = suppB
 [A] = {B : suppB = suppA}
 A, B and A^π are support equivalent.

Partial orders on skew shape classes

• *P_N* is the poset of all Schur equivalence classes [*A*] such that *A* has *N* boxes.

 $[A] \ge_s [B]$ if $s_A - s_B$ is Schur positive

• $Supp_N$ is the poset of all support equivalence classes $\lfloor A \rfloor$ such that A has N boxes.

 $\lfloor A \rfloor \geq_{supp} \lfloor B \rfloor \text{ if the support of } B \text{ is contained in that of } A$

 $[B] <_{s} [A]$ in P_5

 $\lfloor B \rfloor = \lfloor A \rfloor$ in $Supp_5$

Maximal supports among connected skew shapes

In *Maximal supports and Schur-positivity among connected skew shapes* arXiv:1107.4373 P. R. W. MacNamara, S. van Willigenburg classify the maximal connected skew shapes of $Supp_N$.

Theorem

An element $\lfloor R \rfloor$ in $Supp_N$ is a maximal connected element iff R is a ribbon in which the lengths of any two empty rows differ by at most one and the lengths of any two nonempty columns differ by at most one. The supp R is the full interval.

Maximal supports among connected skew shapes

In *Maximal supports and Schur-positivity among connected skew shapes* arXiv:1107.4373 P. R. W. MacNamara, S. van Willigenburg classify the maximal connected skew shapes of $Supp_N$.

Theorem

An element $\lfloor R \rfloor$ in $Supp_N$ is a maximal connected element iff R is a ribbon in which the lengths of any two empty rows differ by at most one and the lengths of any two nonempty columns differ by at most one. The supp R is the full interval.

Ribbon shapes with full support

• PROBLEM: What are the ribbon shapes $R = (r_1, ..., r_s)$ whose support consists of the whole interval in the dominance lattice?

Ribbon shapes with full support

- PROBLEM: What are the ribbon shapes R = (r₁,..., r_s) whose support consists of the whole interval in the dominance lattice?
- What are the ribbon shapes $R = (r_1, \ldots, r_s)$ with $\sup R = [(r_{k_1}, \ldots, r_{k_s}); (\sum_{j \ge 1} r_j s + 1, s 1)]?$

s-1 the number of rows with length two in R

$$R = (32522271) (75322221) \leq \xi = (888) \leq (24 - 7, 7).$$

$$R = (32522271) (75322221) \leq \xi = (888) \leq (24 - 7, 7).$$

$$R = (32522271) (75322221) \leq \xi = (888) \leq (24 - 7, 7).$$

$$R = (32522271)$$

(75322221) $\leq \xi = (888) \leq (24 - 7, 7).$

$$R = (32522271) (75322221) \leq \xi = (888) \leq (24 - 7, 7).$$

Maximal support and Schur positivity

$$R = (32522271)$$

(75322221) $\leq \xi = (888) \leq (24 - 7, 7).$

There is vertical space to put the last string of length 8.

$$\begin{split} \sum_{i=1}^{2} \xi_i &- \sum_{i=1}^{2} r_i = (8+8) - (7+5) = 4 > p = 3, \\ \xi_3 &= 8 < \sum_{i \ge 3} r_i - p = 3 + 2 + 2 + 2 + 2 + 1 - 3, \\ \xi_3 &= 8 = (\sum_{i \ge 3} r_i - p) - 1 \end{split}$$
(888) $\in \operatorname{supp}(R)$

Maximal support and Schur positivity

There are enough boxes to put the last string of length 7 but not enough vertical space: a row of length two remains.

$$\xi_1 - r_1 + \xi_2 - r_2 = 7 - 6 + 7 - 6 \le 3 - 1 \quad p = 3 \quad \xi_3 = 7 \ge 2 + 3 + 2 + 2 - 2$$

$$\xi = (777) \notin \operatorname{supp} R$$

Maximal support and Schur positivity

Maximal support and Schur positivity

• R = (662322) $(6^2 3 2^3) \preceq (7761) \preceq (777) \preceq (21, 21 - 5)$

There is not enough vertical space to put a third string of length 7 but there is enough vertical space to put two more strings: one of length 6 and another of length 1.

$$\begin{aligned} \xi_1 - r_1 + \xi_2 - r_2 &= 7 - 6 + 7 - 6 = 2 \quad p = 3 \quad \xi_3 = 6 = 2 + 3 + 2 + 2 - 3 \\ (777) \notin \operatorname{supp} R \quad (7761) \in \operatorname{supp} R \end{aligned}$$

Maximal support and Schur positivity

 $\xi_1 - r_1 + \xi_2 - r_2 = 8 - 6 + 7 - 6 = 3 = p = 3$ $\xi_3 = 6 = 2 + 3 + 2 + 2 - 3$ (777) $\notin \operatorname{supp} R$, (7761) $\in \operatorname{supp} R$, (876) $\in \operatorname{supp} R$

Ribbon shape LR fillings

Lemma

Let $\xi = (\xi_1, \dots, \xi_t)$ be a partition in the Schur interval $[(r_{k_1}, \dots, r_{k_s}); (\sum_{j \ge 1} r_j - s + 1, s - 1)]$ but not in the support of R. Then there exists an $1 \le i \le t - 1$ such that if $p \ge 1$ is the number of rows with length two among the columns indexed by $S = \{k_{i+1}, \dots, k_s\}$, one has

$$\xi_{i+1} \geq \sum_{q \in S} r_q - p + 1 \left(\Rightarrow \sum_{j=1}^i (\xi_j - r_{k_j}) \leq p - 1 \right).$$
 (1)

This implies that the number p of rows of length two, among the adjacent columns indexed by S in R, can not be shortened by what remains $\sum_{j=1}^{i} (\xi_j - r_{k_j})$.

Classification of ribbon Schur functions with interval support

Theorem

Let $R = (r_1, \ldots, r_s)$, $s \ge 2$, be a ribbon. Then $\operatorname{supp} R \subsetneq [(r_{k_1}, \ldots, r_{k_s}); (\sum_{j\ge 1} r_j - s + 1, s - 1)]$ if and only if for some $1 \le i \le s - 2$ with p > 0 rows of length two among the columns indexed by $\{k_{i+1}, \ldots, k_s\}$, there exist $g_1, \ldots, g_i \ge 0$ with $\sum_{j=1}^i g_j = p - 1$, such that

$$egin{aligned} &r_{k_1}+g_1 \geq \sum_{j=i+1}^{s}r_{k_j}-p+1\ &dots\ &dots\ &r_{k_{i-1}}+g_{i-1} \geq \sum_{j=i+1}^{s}r_{k_j}-p+1\ &r_{k_i}+g_i \geq \sum_{j=i+1}^{s}r_{k_j}-p+1 \end{aligned}$$

Moreover $(r_{k_1} + g_1, \ldots, r_{k_i} + g_i, \sum_{j=i+1}^s r_{k_j} - p + 1) \ge \notin \operatorname{supp} R$.

•
$$R = (662322)$$
 $(6^2 3 2^3) \leq (777) \leq (21, 21 - 5)$

•
$$R = (662322)$$
 $(6^2 3 2^3) \leq (777) \leq (21, 21 - 5)$

Examples

- Ribbons whose column and row lengths differ in one unity have full support
 [(t^m, (t-1)ⁿ); (mt + n(t-1) m n + 1, m + n 1)].
- The support of a ribbon $R = (r_1, r_2, r_3)$ has full interval except when $r = (r_1, r_2, r_3)$ or $r = (r_2, r_3, r_1)$ with $r_1 \ge r_2 + r_3$.

$$6+2 \ge 2+2+2+2-2 7, 6 \ge 2+2+2+2-2$$

•

Then $\xi = (6+2, 7, 6, 2+2+2+2-2) \notin supp(R)$.

- O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra 46 (1999), 51-99.
- P. R. W. McNamara, Necessary conditions for Schur-positivity, J Algebr Comb 28 (2008), 495-507.
- P. R. W. MacNamara, S. van Willigenburg, Maximal supports and Schur-positivity among connected skew shapes, arXiv:1107.4373 [math.CO, RT]
- P. R. W. MacNamara, S. van Willigenburg, Maximal supports and Schur-positivity among connected skew shapes arXiv:1107.4373
- S. van Willigenburg, Equality of Schur and skew Schur functions, Ann. Comb. 9 (2005), 355–362.
- I. Zaballa. Increasing and Decreasing Littlewood-Richardson Sequences and Duality, preprint, University of Basque Country, 1996.