On the top coefficients of Kazhdan-Lusztig polynomials

Bosca Corrado

Universitá degli studi di Roma "La Sapienza"
September 20, 2011

Plan of the work

Plan of the work

- Notations and preliminaries
- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings

Plan of the work

- Notations and preliminaries
- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings
- Conjecture, results and some considerations
- Motivations
- Main Conjecture
- Main results

Plan of the work

- Notations and preliminaries
- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings
- Conjecture, results and some considerations
- Motivations
- Main Conjecture
- Main results

Symmetric group

Given $[n]:=\{1, \ldots, n\}$ we define:

$$
S_{n}:=\{\pi:[n] \rightarrow[n]: \pi \text { is a bijection }\}
$$

the symmetric group.

Symmetric group

Given $[n]:=\{1, \ldots, n\}$ we define:

$$
S_{n}:=\{\pi:[n] \rightarrow[n]: \pi \text { is a bijection }\}
$$

the symmetric group.

Given an element $v \in S_{n}$ we write v in disjoint cycle form or in the line notation.

Example:

- $v=(1,2)(3,4)$ is the disjoint cycle form.
- $v=2143$ is the line notation, meaning that

$$
v(1)=2, v(2)=1, v(3)=4, v(4)=3
$$

Example:

- $v=(1,2)(3,4)$ is the disjoint cycle form.
- $v=2143$ is the line notation, meaning that

$$
v(1)=2, v(2)=1, v(3)=4, v(4)=3
$$

Observation: S_{n} with the set of generators

$$
S:=\{(i, i+1): i \in[n-1]\}
$$

is a Coxeter group.

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

In the symmetric group the length function is:

$$
I(v):=\left|\left\{(i, j) \in[n]^{2}: i<j, v(i)>v(j)\right\}\right|
$$

Example: Given $v=2143$ then $I(v)=2$

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

In the symmetric group the length function is:

$$
I(v):=\left|\left\{(i, j) \in[n]^{2}: i<j, v(i)>v(j)\right\}\right|
$$

Example: Given $v=2143$ then $I(v)=2$

Observation: Given $u, v \in S_{n}$ for brevity we denote:

$$
I(u, v):=I(v)-I(u)
$$

In the sequel, we use the following set:

In the sequel, we use the following set:

- the set of reflections:

$$
T:=\left\{(i, j) \in S_{n}: i, j \in[n], i<j\right\}
$$

In the sequel, we use the following set:

- the set of reflections:

$$
T:=\left\{(i, j) \in S_{n}: i, j \in[n], i<j\right\}
$$

- given $v \in S_{n}$ the right descent set

$$
D_{R}(v):=\{i \in[n]: v(i)>v(i+1)\}
$$

Given a Coxeter group, and in particular, for the symmetric group we can define a partial order

Given a Coxeter group, and in particular, for the symmetric group we can define a partial order

Definition
Given $u, v \in S_{n}$ we say that $u \leq v$ if $\exists t_{1}, \ldots, t_{r} \in T(r \geq 0)$ such that:

$$
u t_{1} \cdots t_{r}=v
$$

and

$$
I(u)<I\left(u t_{1}\right)<\ldots<I\left(u t_{1} \cdots t_{r}\right)=I(v)
$$

this order is called Bruhat order.

Given $u, v \in S_{n}$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and $I(u, v)=1$.

Given $u, v \in S_{n}$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and $I(u, v)=1$.

Given $u, v \in S_{n}$ with $u \leq v$ we consider the interval:

$$
[u, v]:=\left\{z \in S_{n}: u \leq z \leq v\right\}
$$

Given $u, v \in S_{n}$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and $I(u, v)=1$.

Given $u, v \in S_{n}$ with $u \leq v$ we consider the interval:

$$
[u, v]:=\left\{z \in S_{n}: u \leq z \leq v\right\}
$$

Given an interval $[u, v]$ its Hasse diagram is the graph $G=(V, E)$ where:

- $V:=[u, v]$
- $E:=\left\{\{x, y\} \in V^{2}: x \triangleleft y\right\}$

Example \ln the figure we show the Hasse diagram of S_{4}

Figure: [1234, 4321]

In my work I consider the coatom and atom sets. Given an interval $[u, v]$ we define:

$$
\begin{aligned}
& c(u, v):=\{z \in[u, v]: z \triangleleft v\} \\
& a(u, v):=\{z \in[u, v]: u \triangleleft z\}
\end{aligned}
$$

In my work I consider the coatom and atom sets. Given an interval $[u, v]$ we define:

$$
\begin{aligned}
& c(u, v):=\{z \in[u, v]: z \triangleleft v\} \\
& a(u, v):=\{z \in[u, v]: u \triangleleft z\}
\end{aligned}
$$

Finally I use also the following rank generating function:

$$
r_{u, v}(q):=\sum_{i=0}^{I(u, v)} r_{i} q^{i}
$$

where $r_{i}:=|\{z \in[u, v]: l(u, z)=i\}|$

Kazhdan-Lusztig polynomials

In their fundamental paper [Representations of Coxeter groups and Hecke algebras], Kazhdan and Lusztig defined, for every Coxeter group W a family of polynomials indexed by a pair of elements of W.

These polynomials are intimately related to the Bruhat order of W and depend on the descendent set of an elements.

There are several way to introduce these polynomials, here we use the best for our purpose. So by Definition-Theorem we define first the R -polynomials and then we use these we define the Kazhdan-Lusztig polynomials.

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials $\left\{R_{u, v}(q)\right\}_{u, v \in W} \subseteq \mathbb{Z}[q]$ such that:

- $R_{u, v}(q)=0$ if $u \not \leq v$.
- $R_{u, v}(q)=1$ if $u=v$.
- If $s \in D_{R}(v)$ then:

$$
R_{u, v}(q)= \begin{cases}R_{u s, v s} & \text { if } s \in D_{R}(u) \\ q R_{u s, v s}(q)+(q-1) R_{u, v s}(q) & \text { if } s \notin D_{R}(u)\end{cases}
$$

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials $\left\{P_{u, v}(q)\right\}_{u, v \in W} \subseteq \mathbb{Z}[q]$ (that we call Kazhdan-Lusztig polynomial) such that:

- $P_{u, v}(q)=0$ if $u \leq v$.
- $P_{u, v}(q)=1$ if $u=v$.
- $\operatorname{deg}\left(P_{u, v}(q)\right) \leq \frac{I(u, v)-1}{2}$ if $u<v$
- Se $u \leq v$ then:

$$
q^{l(v)-I(u)} P_{u, v}\left(\frac{1}{q}\right)=\sum_{a \in[u, v]} R_{u, a}(q) P_{a, v}(q)
$$

We are interested about the top coefficients of Kazhdan-Lusztig polynomials.

We are interested about the top coefficients of Kazhdan-Lusztig polynomials.

Definition (Top coefficient function)
Given W a Coxeter group, $u, v \in W$ with $u \leq v$:

$$
\bar{\mu}(u, v):= \begin{cases}{\left[q^{\frac{(v)-(u)-1}{2}}\right] P_{u, v}} & \text { if } I(u, v) \equiv 1 \bmod 2 \\ 0 & \text { otherwise }\end{cases}
$$

where with $\left[q^{i}\right] P_{u, v}$ we denote the coefficient of q^{i} in $P_{u, v}$.

Special matchings

Given P a poset and $G:=(V, E)$ its Hasse diagram, then we say that the function

$$
M: V \rightarrow V
$$

is a special matching if:

- M is an involution such that $\{v, M(v)\} \in E$ for all $v \in V$.
- $x \triangleleft y \Rightarrow M(x) \leq M(y)$ for all $x, y \in V$ such that $M(x) \neq y$

Example: the dot line in the following Figure is a special matching of [41256378, 41562738].

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:
Observation: if $x \triangleleft y$

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:
Observation: if $x \triangleleft y$ and $M(x) \triangleright x$

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:
Observation: if $x \triangleleft y$ and $M(x) \triangleright x$ then $M(y) \triangleright y$ and $M(y) \triangleright M(x)$.

Observation: Dually if $x \triangleleft y$ and $M(y) \triangleleft y$ imply $M(x) \triangleleft x$ and $M(x) \triangleleft M(y)$.

There is a Proposition very important in my work
Proposition (Coatom's condition)
Given $u, v \in S_{n}$ with $u \leq v$ then:

$$
\begin{gathered}
|c(u, v)|-1>\left|c\left(u, v^{\prime}\right)\right| \forall v^{\prime} \triangleleft v \\
\Downarrow \\
{[u, v] \text { doesn't have a special matching }}
\end{gathered}
$$

We show this Proposition by an example

Example:

In this example the previous proposition is true.

Example:

In this example the previous proposition is true. If we choose $M(v)=a$ then we must have that:

$$
M(b) \triangleleft a, M(c) \triangleleft a, M(d) \triangleleft a
$$

Note that is also true
Proposition (Atoms condition)
Given $u, v \in S_{n}$ with $u \leq v$ then:

$$
|a(u, v)|-1>\left|a\left(u^{\prime}, v\right)\right| \forall u \triangleleft u^{\prime}
$$

\Downarrow
[u, v] doesn't have a special matching

Main motivations

Main motivations

- When does a poset have a special matching?

Main motivations

- When does a poset have a special matching?
- There is some connection between special matching and Kazhdan-Lusztig polynomials

Main motivations

- When does a poset have a special matching?
- There is some connection between special matching and Kazhdan-Lusztig polynomials
- Can we use the connection between special matching and Kazhdan-Lusztig polynomials to prove the combinatorial invariance?

Conjecture (Lusztig 1980, Dyer 1987)
Given $u, v \in W$ and $x, y \in W^{\prime}$ then:

$$
[u, v] \cong[x, y] \Rightarrow P_{u, v}=P_{x, y}
$$

Recalling that an interval $[u, v]$ (with $u, v \in S_{n}$) is irreducible if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that

$$
[u, v] \cong[x, y] \times[z, t]
$$

Recalling that an interval $[u, v]$ (with $u, v \in S_{n}$) is irreducible if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that

$$
[u, v] \cong[x, y] \times[z, t]
$$

then we can show the Conjecture:
Conjecture (Brenti)
Given $u, v \in S_{n}$ with $[u, v]$ irreducible, $I(u, v)>1$ and $I(u, v)$ odd then:

$$
[u, v] \text { has a special matching } \Leftrightarrow \bar{\mu}(u, v)=0
$$

Recalling that an interval $[u, v]$ (with $u, v \in S_{n}$) is irreducible if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that

$$
[u, v] \cong[x, y] \times[z, t]
$$

then we can show the Conjecture:
Conjecture (Brenti)
Given $u, v \in S_{n}$ with $[u, v]$ irreducible, $I(u, v)>1$ and $I(u, v)$ odd then:

$$
[u, v] \text { has a special matching } \Leftrightarrow \bar{\mu}(u, v)=0
$$

This Conjecture is due to Brenti in [Kazhdan-Lusztig polynomials: history, problems, and combinatorial invariance] and is verified for $1 \leq I(u, v) \leq 5$.

Observation: for $I(u, v)=7$ the direction $" \Leftarrow$ " is no true.
Given $u=231564, v=562341$ we have that:

Observation: for $I(u, v)=7$ the direction $" \Leftarrow$ " is no true.
Given $u=231564, v=562341$ we have that:

- $P_{u, v}(q)=1+4 q+4 q^{2}$ and so $\bar{\mu}(u, v)=0$

Observation: for $I(u, v)=7$ the direction $" \Leftarrow$ " is no true.
Given $u=231564, v=562341$ we have that:

- $P_{u, v}(q)=1+4 q+4 q^{2}$ and so $\bar{\mu}(u, v)=0$
- The poset $[u, v]$ is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:

$$
\begin{gathered}
\text { if doesn't exixts } x, y \in S_{m} \text { and } z, t \in S_{p}(\text { with } m, p \leq n) \text { such } \\
\text { that } r_{u, v}(q)=r_{x, y}(q) r_{z, t}(q) \text { then }[u, v] \text { is irreducible }
\end{gathered}
$$

Observation: for $I(u, v)=7$ the direction $" \Leftarrow$ " is no true.
Given $u=231564, v=562341$ we have that:

- $P_{u, v}(q)=1+4 q+4 q^{2}$ and so $\bar{\mu}(u, v)=0$
- The poset $[u, v]$ is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]: if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that $r_{u, v}(q)=r_{x, y}(q) r_{z, t}(q)$ then $[u, v]$ is irreducible
I compute the rank generating function:

$$
r_{u, v}(q)=(1+q)\left(1+5 q+13 q^{2}+20 q^{3}+19 q^{4}+8 q^{5}+q^{6}\right)
$$

Observation: for $I(u, v)=7$ the direction " \Leftarrow " is no true.
Given $u=231564, v=562341$ we have that:

- $P_{u, v}(q)=1+4 q+4 q^{2}$ and so $\bar{\mu}(u, v)=0$
- The poset $[u, v]$ is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:
if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that $r_{u, v}(q)=r_{x, y}(q) r_{z, t}(q)$ then $[u, v]$ is irreducible
I compute the rank generating function:

$$
r_{u, v}(q)=(1+q)\left(1+5 q+13 q^{2}+20 q^{3}+19 q^{4}+8 q^{5}+q^{6}\right)
$$

I prove that doesn't exixts a pair of permutation in $z, t \in S_{m}$ (with $m \leq 7$) such that :

$$
r_{z, t}(q)=1+5 q+13 q^{2}+20 q^{3}+19 q^{4}+8 q^{5}+q^{6}
$$

Observation: for $I(u, v)=7$ the direction " \Leftarrow " is no true.
Given $u=231564, v=562341$ we have that:

- $P_{u, v}(q)=1+4 q+4 q^{2}$ and so $\bar{\mu}(u, v)=0$
- The poset $[u, v]$ is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:
if doesn't exixts $x, y \in S_{m}$ and $z, t \in S_{p}$ (with $m, p \leq n$) such that $r_{u, v}(q)=r_{x, y}(q) r_{z, t}(q)$ then $[u, v]$ is irreducible
I compute the rank generating function:

$$
r_{u, v}(q)=(1+q)\left(1+5 q+13 q^{2}+20 q^{3}+19 q^{4}+8 q^{5}+q^{6}\right)
$$

I prove that doesn't exixts a pair of permutation in $z, t \in S_{m}$ (with $m \leq 7$) such that :

$$
r_{z, t}(q)=1+5 q+13 q^{2}+20 q^{3}+19 q^{4}+8 q^{5}+q^{6}
$$

Figure: $[231564,562341],|c(u, v)|-1>\left|c\left(u, v^{\prime}\right)\right|$ for all $v^{\prime} \triangleleft v$

So we study this new Conjecture
Conjecture (Bosca)
Given $u, v \in W$ with $I(u, v)>1$ then:

$$
[u, v] \text { has a special matching } \Rightarrow \bar{\mu}(u, v)=0
$$

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

- Take $u, v \in S_{n}$ such that $\bar{\mu}(u, v) \neq 0$.

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

- Take $u, v \in S_{n}$ such that $\bar{\mu}(u, v) \neq 0$.
- show that $[u, v]$ doesn't have a special matching using the fact that $|c(u, v)|-1>\left|c\left(u, v^{\prime}\right)\right|$ for all $v^{\prime} \triangleleft v$.
- show that $[u, v]$ doesn't have a special matching using the fact that $|a(u, v)|-1>\left|a\left(u^{\prime}, v\right)\right|$ for all $u \triangleleft u^{\prime}$.

We consider now the permutations $u, v \in S_{n}$ such that $u \leq v$ and $D_{R}(v) \subseteq\{1, n-1\}$. By the following theorem:

Theorem (B. Shapiro, M. Shapiro, A. Vainshtein)
Given $u, v \in S_{n}$ be such that $u \leq v$ and $D_{R}(v) \subseteq\{1, n-1\}$. Then

$$
P_{u, v}(q)=(1+q)^{r}
$$

where $r:=\left|\left\{j \in[v(n)+1, v(1)-2]: \sum_{i=1}^{j} u(i)=\binom{j+1}{2}\right\}\right|$
by an isomorprhism between poset and other combinatorial constructions I have prove that:

Proposition (Bosca)

Given $u, v \in S_{n}$ with $u \leq v$ and $D_{R}(v) \subseteq\{1, n-1\}$. All pair such that $\bar{\mu}(u, v) \neq 0$ and $[u, v] \not \equiv[e, w]$ (for some $w \in S_{n}$) up to isomorphism are of the type:

$$
\begin{gathered}
v=n, 2, \ldots, n-1,1 \\
u=i, 1, \ldots, \widehat{i}, \ldots \widehat{j}, \ldots, n, j
\end{gathered}
$$

and $j-i=n-3$.

Proposition (Bosca)

Given $u, v \in S_{n}$ with $u \leq v$ and $D_{R}(v) \subseteq\{1, n-1\}$. All pair such that $\bar{\mu}(u, v) \neq 0$ and $[u, v] \not \equiv[e, w]$ (for some $w \in S_{n}$) up to isomorphism are of the type:

$$
\begin{gathered}
v=n, 2, \ldots, n-1,1 \\
u=i, 1, \ldots, \widehat{i}, \ldots \widehat{j}, \ldots, n, j
\end{gathered}
$$

and $j-i=n-3$.
By this theorem and the Coatoms condition I can conclude that:
Theorem (Bosca)
Given $u, v \in S_{n}, u \leq v$ and $D_{R}(v) \subseteq\{1, n-1\}$ be such that $\bar{\mu}(u, v) \neq 0$. Then $[u, v]$ doesn't have a special matching.

Example:

Figure: $[4123576,7124563] \cong[21354,52341]$

Grasmannian permutation

I study the conjecture also for permutation in the following set:
$S_{n}^{S \backslash\{(i, i+1)\}}=\left\{x \in S_{n}: x(1)<\ldots<x(i)\right.$ and $\left.x(i+1)<\ldots<x(n)\right\}$
and for this permutations we consider the following partition

$$
\Lambda_{v}:=(v(i)-i, \ldots, v(1)-1)
$$

and its diagram

$$
\left\{(i, j) \in \mathbb{N}: 1 \leq i \leq k, 1 \leq j \leq \lambda_{i}\right\}
$$

Example: Given $v=2461357 \in S_{n}^{S \backslash\{(3,4)\}}$ then:

$$
\Lambda_{v}=(v(3)-3, v(2)-2, v(1)-1)=(3,2,1)
$$

and its diagram (Russian notation):

In my work I consider pair of permutations $u, v \in S_{n}^{S \backslash\{(i, i+1)\}}$ such that the diagram of the following partition:

$$
\Lambda:=\Lambda_{v}-\Lambda_{u}=\left(v_{i}-u_{i}, \ldots, v_{1}-u_{1}\right)
$$

is a Dyck cbs. A diagram is a Dyck cbs if:

- is connected.
- no contains 2×2 square.
- no cells in the diagram have the level strictly less than the rightmost and leftmost cells.
Example: the following are three example of no Dyck cbs

Using the following Corollary:
Corollary (Lascoux)
Given $u, v \in S_{n}^{S \backslash\{(i, i+1)\}}$ then:

$$
\Lambda=\Lambda_{v}-\Lambda_{u} \text { is a Dyck cbs } \Leftrightarrow \bar{\mu}(u, v) \neq 0
$$

and other combinatorial constructions and isomorphism between poset I can state that:

Proposition (Bosca)
Given $u, v \in S_{n}^{S \backslash\{(i, i+1)\}}$ with $u \leq v$. Then (up to isomorphism) $\bar{\mu}(u, v) \neq 0$ if and only if:

$$
\begin{gathered}
v=v(1), v(2), \ldots v(i-1), n, 1, \ldots \widehat{v}(1), \ldots, \widehat{v}(2), \ldots, \widehat{v}(i-1) \ldots, n-1 \\
u=1, v(1), v(2), \ldots n-1,2, \ldots \widehat{v}(1), \ldots, \widehat{v}(2), \ldots, \widehat{v}(i-1), \ldots, n
\end{gathered}
$$

Theorem (Bosca)

Given $u, v \in S_{n}^{S \backslash\{(i, i+1)\}}$ be such that $\bar{\mu}(u, v) \neq 0$ then $[u, v]$ doesn't have a special matching

Example: Given $u=145236$ and $v=456123$ in $S_{6}^{(S \backslash(3,4))}$ we have that the poset $[u, v]$ doesn't have special matching.

Boolean elements

In this part of my work I extend my Conjecture for linear Coxeter group

Definition
A Coxeter system ($W,\left\{s_{1}, \ldots, s_{n}\right\}$) is called linear if:

- $\left(s_{i} s_{j}\right)^{r}=e$ for $r \geq 3$ if $|i-j|=1$.
- $s_{i} s_{j}=s_{j} s_{i}$ if $1<|i-j|<n-1$.
W is called strictly linear if also $s_{1} s_{n}=s_{n} s_{1}$.

Recalling that given $v \in W$:

$$
v=s_{1} \cdots s_{k}
$$

is called reduced expression of v if $l(v)=k$.

Recalling that given $v \in W$:

$$
v=s_{1} \cdots s_{k}
$$

is called reduced expression of v if $l(v)=k$. We use the work of Marietti in [Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group] and we consider this pair of elements:

Recalling that given $v \in W$:

$$
v=s_{1} \cdots s_{k}
$$

is called reduced expression of v if $l(v)=k$.
We use the work of Marietti in [Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group] and we consider this pair of elements:

- Boolean reflection: elements $t \in W$ such that there t admits a reduced expressions:

$$
t=s_{1} \cdots s_{n-1} s_{n} s_{n-1} \cdots s_{1}
$$

Recalling that given $v \in W$:

$$
v=s_{1} \cdots s_{k}
$$

is called reduced expression of v if $I(v)=k$.
We use the work of Marietti in [Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group] and we consider this pair of elements:

- Boolean reflection: elements $t \in W$ such that there t admits a reduced expressions:

$$
t=s_{1} \cdots s_{n-1} s_{n} s_{n-1} \cdots s_{1}
$$

- Boolean elements: $v \in W$ such that smaller than a Boolean reflection.

Given v Boolean element we define:
$V_{h}:=$ the number of occurrences of s_{h} in a reduced expression of v
Then we can use
Theorem (Marietti)
Given u, v Boolean elements in W with $u \leq v$. Then:

$$
P_{u, v}(q)=(1+q)^{b}
$$

where:

$$
b=\left|\left\{k \in[n]: V_{k}=V_{k+1}=2, U_{k+1}=0\right\}\right|
$$

Proposition (Bosca)

Given ($W,\left\{s_{1}, \ldots, s_{n}\right\}$) be a linear Coxeter system and

$$
v=s_{i} \cdots s_{j-2} s_{j-1} s_{j-2} \cdots s_{i}
$$

be a Boolean reflection and $u \leq v$. Then $\bar{\mu}(u, v) \neq 0$ if and only if:

$$
\begin{equation*}
u=s_{i} \cdots s_{k-1} \widehat{s}_{k} \widehat{s}_{k+1} \cdots \widehat{s}_{k+r} s_{k+r+1} \cdots s_{j-1} \cdots \widehat{s}_{k+r} \cdots \widehat{s}_{k+1} s_{k} \cdots s_{i} \tag{1}
\end{equation*}
$$

for some $i \leq k \leq j-2$ and $0 \leq r \leq j-k-2$.
and so conlude that:
Theorem (Bosca)
Given $\left(W,\left\{s_{1}, \ldots, s_{n}\right\}\right)$ be a linear Coxeter system, v be a boolean reflection and $u \leq v$ be such that $\bar{\mu}(u, v) \neq 0$. Then $[u, v]$ doesn't have special matching.

Example: Given the following poset:

$$
\left[s_{1} S_{5} S_{2} S_{1}, s_{1} S_{2} S_{3} S_{4} S_{5} S_{4} S_{3} S_{2} s_{1}\right]
$$

Bibliography

圊 A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer-Verlag, New York, 2005.

击 F. Brenti Kazhdan-Lusztig and R-polynomials from combinatorial point of view, Discrete Math., 193 (1998), 93-116. Discrete Mathematics Editor's Choice for 1998.
E F. Brenti, Kazhdan-Lusztig polynomials: history, problems, and combinatorial invariance, Sém. Lothar. Combin. 49 (2002), Art. B49b, 30 pp. (electronic).
A. Hultman, Combinatorial complexes, Bruhat intervals and reflection distances, Ph.D. Thesis, KTH Stockholm, Sweden, 2003.

R J.E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics. 29. Cambridge University Press, Cambridge, 1990.
(F. Incitti, On the combinatorial invariance of KazhdanLusztig polynomials, J. Combin. Theory Ser. A 113 (7) (2006) 13321350.
F. Incitti, More on the combinatorial invariance of KazhdanLusztig polynomials, J. Combin. Theory Ser. A 114 (2007) 461482.
© D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
© V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varietes in $S_{/(n) / B}$, Proc. Indian Acad. Sci. Math. Sci. 100 (1990) 45-52.

R A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan-Lusztig pour les grassmanniennes, Astérisque 87-88 (1981), 249-266. Enumerative Combinatorics , vol.1, Wadsworth and Brooks/Cole, Monterey, CA, 1986.

Fi M. Marietti, Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group, European Journal of Combinatorics, 31(2010), 908-924

B B. Shapiro, M. Shapiro, A. Vainshtein, Kazhdan-Lusztig polynomials for certain varieties of incomplete flags, Discrete Math. 180 (1998), 345-355.

圊 R. P. Stanley, Enumerative Combinatorics, vol.1, Wadsworth and Brooks/Cole, Monterey, CA, 1986.

