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Symmetric group

Symmetric group

Given [n] := {1, . . . , n} we define:

Sn := {π : [n] → [n] : π is a bijection}

the symmetric group.
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Symmetric group

Symmetric group

Given [n] := {1, . . . , n} we define:

Sn := {π : [n] → [n] : π is a bijection}

the symmetric group.

Given an element v ∈ Sn we write v in disjoint cycle form or in the
line notation.
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Symmetric group

Example:

v = (1, 2)(3, 4) is the disjoint cycle form.

v = 2143 is the line notation, meaning that

v (1) = 2, v (2) = 1, v (3) = 4, v (4) = 3
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Symmetric group

Example:

v = (1, 2)(3, 4) is the disjoint cycle form.

v = 2143 is the line notation, meaning that

v (1) = 2, v (2) = 1, v (3) = 4, v (4) = 3

Observation: Sn with the set of generators

S := {(i , i + 1) : i ∈ [n − 1]}

is a Coxeter group.
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Symmetric group

With the set of generators, we can define the length function. For a
generic Coxeter group W and an element v ∈ W the length of v is
the minimum numbers of generators necessary to express v .
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Symmetric group

With the set of generators, we can define the length function. For a
generic Coxeter group W and an element v ∈ W the length of v is
the minimum numbers of generators necessary to express v .

In the symmetric group the length function is:

l(v ) := |{(i , j) ∈ [n]2 : i < j , v (i) > v (j)}|

Example: Given v = 2143 then l(v ) = 2
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Symmetric group

With the set of generators, we can define the length function. For a
generic Coxeter group W and an element v ∈ W the length of v is
the minimum numbers of generators necessary to express v .

In the symmetric group the length function is:

l(v ) := |{(i , j) ∈ [n]2 : i < j , v (i) > v (j)}|

Example: Given v = 2143 then l(v ) = 2

Observation: Given u, v ∈ Sn for brevity we denote:

l(u, v ) := l(v )− l(u)
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Symmetric group

In the sequel, we use the following set:
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Symmetric group

In the sequel, we use the following set:

the set of reflections:

T := {(i , j) ∈ Sn : i , j ∈ [n], i < j}
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Symmetric group

In the sequel, we use the following set:

the set of reflections:

T := {(i , j) ∈ Sn : i , j ∈ [n], i < j}

given v ∈ Sn the right descent set

DR(v ) := {i ∈ [n] : v (i) > v (i + 1)}
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Symmetric group

Given a Coxeter group, and in particular, for the symmetric group we
can define a partial order
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Symmetric group

Given a Coxeter group, and in particular, for the symmetric group we
can define a partial order

Definition

Given u, v ∈ Sn we say that u ≤ v if ∃t1, . . . , tr ∈ T (r ≥ 0) such
that:

ut1 · · · tr = v

and
l(u) < l(ut1) < . . . < l(ut1 · · · tr) = l(v )

this order is called Bruhat order.
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Symmetric group

Given u, v ∈ Sn we say that u is covered by v , and denote this by
u ⊳ v , if u ≤ v and l(u, v ) = 1.
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Symmetric group

Given u, v ∈ Sn we say that u is covered by v , and denote this by
u ⊳ v , if u ≤ v and l(u, v ) = 1.

Given u, v ∈ Sn with u ≤ v we consider the interval:

[u, v ] := {z ∈ Sn : u ≤ z ≤ v}
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Symmetric group

Given u, v ∈ Sn we say that u is covered by v , and denote this by
u ⊳ v , if u ≤ v and l(u, v ) = 1.

Given u, v ∈ Sn with u ≤ v we consider the interval:

[u, v ] := {z ∈ Sn : u ≤ z ≤ v}

Given an interval [u, v ] its Hasse diagram is the graph G = (V ,E )
where:

V := [u, v ]

E := {{x , y} ∈ V 2 : x ⊳ y}
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Symmetric group

Example In the figure we show the Hasse diagram of S4

Figure: [1234, 4321]
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Symmetric group

In my work I consider the coatom and atom sets. Given an interval
[u, v ] we define:

c(u, v ) := {z ∈ [u, v ] : z ⊳ v}

a(u, v ) := {z ∈ [u, v ] : u ⊳ z}
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Symmetric group

In my work I consider the coatom and atom sets. Given an interval
[u, v ] we define:

c(u, v ) := {z ∈ [u, v ] : z ⊳ v}

a(u, v ) := {z ∈ [u, v ] : u ⊳ z}

Finally I use also the following rank generating function:

ru,v(q) :=

l(u,v)∑

i=0

riq
i

where ri := |{z ∈ [u, v ] : l(u, z) = i}|
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Kazhdan-Lustig polynomias

Kazhdan-Lusztig polynomials

In their fundamental paper [Representations of Coxeter groups
and Hecke algebras], Kazhdan and Lusztig defined, for every
Coxeter group W a family of polynomials indexed by a pair of
elements of W .

These polynomials are intimately related to the Bruhat order of W
and depend on the descendent set of an elements.

There are several way to introduce these polynomials, here we use
the best for our purpose. So by Definition-Theorem we define first
the R-polynomials and then we use these we define the
Kazhdan-Lusztig polynomials.
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Kazhdan-Lustig polynomias

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials {Ru,v(q)}u,v∈W ⊆ Z[q] such
that:

Ru,v(q) = 0 if u � v .

Ru,v(q) = 1 if u = v .

If s ∈ DR(v ) then:

Ru,v (q) =

{
Rus,vs if s ∈ DR(u)
qRus,vs(q) + (q − 1)Ru,vs(q) if s /∈ DR(u)
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Kazhdan-Lustig polynomias

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials {Pu,v(q)}u,v∈W ⊆ Z[q] (that
we call Kazhdan-Lusztig polynomial) such that:

Pu,v(q) = 0 if u ≤ v .

Pu,v(q) = 1 if u = v .

deg(Pu,v(q)) ≤
l(u,v)−1

2
if u < v

Se u ≤ v then:

ql(v)−l(u)Pu,v (
1

q
) =

∑

a∈[u,v ]

Ru,a(q)Pa,v (q)
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Kazhdan-Lustig polynomias

We are interested about the top coefficients of Kazhdan-Lusztig
polynomials.
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Kazhdan-Lustig polynomias

We are interested about the top coefficients of Kazhdan-Lusztig
polynomials.

Definition (Top coefficient function)

Given W a Coxeter group, u, v ∈ W with u ≤ v :

µ(u, v ) :=

{
[q

l(v)−l(u)−1
2 ]Pu,v if l(u, v ) ≡ 1mod2

0 otherwise

where with [qi ]Pu,v we denote the coefficient of qi in Pu,v .
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Special matchings

Special matchings

Given P a poset and G := (V ,E ) its Hasse diagram, then we say
that the function

M : V → V

is a special matching if:

M is an involution such that {v ,M(v )} ∈ E for all v ∈ V .

x ⊳ y ⇒ M(x) ≤ M(y ) for all x , y ∈ V such that M(x) 6= y
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Special matchings

Example: the dot line in the following Figure is a special matching of
[41256378, 41562738].
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Special matchings

the last special matching condition (x ⊳ y ⇒ M(x) ≤ M(y )) imply in
particular that:
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Special matchings

the last special matching condition (x ⊳ y ⇒ M(x) ≤ M(y )) imply in
particular that:
Observation: if x ⊳ y
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Special matchings

the last special matching condition (x ⊳ y ⇒ M(x) ≤ M(y )) imply in
particular that:
Observation: if x ⊳ y and M(x) ⊲ x

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 18 /

46



Special matchings

the last special matching condition (x ⊳ y ⇒ M(x) ≤ M(y )) imply in
particular that:
Observation: if x ⊳ y and M(x) ⊲ x then M(y ) ⊲ y and M(y ) ⊲M(x).
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Special matchings

Observation: Dually if x ⊳ y and M(y ) ⊳ y imply M(x) ⊳ x and
M(x) ⊳M(y ).
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Special matchings

There is a Proposition very important in my work

Proposition (Coatom’s condition)

Given u, v ∈ Sn with u ≤ v then:

|c(u, v )| − 1 > |c(u, v ′)| ∀v ′ ⊳ v

⇓

[u, v ] doesn’t have a special matching

We show this Proposition by an example
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Special matchings

Example:

In this example the previous proposition is true.
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Special matchings

Example:

In this example the previous proposition is true.
If we choose M(v ) = a then we must have that:

M(b) ⊳ a,M(c) ⊳ a,M(d) ⊳ a
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Special matchings

Note that is also true

Proposition (Atoms condition)

Given u, v ∈ Sn with u ≤ v then:

|a(u, v )| − 1 > |a(u′, v )| ∀u ⊳ u′

⇓

[u, v ] doesn’t have a special matching
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Main Conjecture

Main motivations
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Main Conjecture

Main motivations

When does a poset have a special matching?

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 24 /

46



Main Conjecture

Main motivations

When does a poset have a special matching?

There is some connection between special matching and
Kazhdan-Lusztig polynomials
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Main Conjecture

Main motivations

When does a poset have a special matching?

There is some connection between special matching and
Kazhdan-Lusztig polynomials

Can we use the connection between special matching and
Kazhdan-Lusztig polynomials to prove the combinatorial
invariance?

Conjecture (Lusztig 1980, Dyer 1987)

Given u, v ∈ W and x , y ∈ W
′

then:

[u, v ] ∼= [x , y ] ⇒ Pu,v = Px ,y

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 24 /

46



Main Conjecture

Recalling that an interval [u, v ] (with u, v ∈ Sn) is irreducible if
doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such that

[u, v ] ∼= [x , y ]× [z , t]
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Main Conjecture

Recalling that an interval [u, v ] (with u, v ∈ Sn) is irreducible if
doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such that

[u, v ] ∼= [x , y ]× [z , t]

then we can show the Conjecture:

Conjecture (Brenti)

Given u, v ∈ Sn with [u, v ] irreducible, l(u, v ) > 1 and l(u, v ) odd
then:

[u, v ] has a special matching ⇔ µ(u, v ) = 0
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Main Conjecture

Recalling that an interval [u, v ] (with u, v ∈ Sn) is irreducible if
doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such that

[u, v ] ∼= [x , y ]× [z , t]

then we can show the Conjecture:

Conjecture (Brenti)

Given u, v ∈ Sn with [u, v ] irreducible, l(u, v ) > 1 and l(u, v ) odd
then:

[u, v ] has a special matching ⇔ µ(u, v ) = 0

This Conjecture is due to Brenti in [Kazhdan-Lusztig polynomials:
history, problems, and combinatorial invariance] and is verified
for 1 ≤ l(u, v ) ≤ 5.
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Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 26 /

46



Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Pu,v(q) = 1 + 4q + 4q2 and so µ(u, v ) = 0
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Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Pu,v(q) = 1 + 4q + 4q2 and so µ(u, v ) = 0

The poset [u, v ] is irreducible. In fact using the following result
due to Stanley in [Enumerative Combinatorics]:

if doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such
that ru,v(q) = rx ,y(q)rz ,t(q) then [u, v ] is irreducible
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Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Pu,v(q) = 1 + 4q + 4q2 and so µ(u, v ) = 0

The poset [u, v ] is irreducible. In fact using the following result
due to Stanley in [Enumerative Combinatorics]:

if doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such
that ru,v(q) = rx ,y(q)rz ,t(q) then [u, v ] is irreducible

I compute the rank generating function:

ru,v (q) = (1 + q)(1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6)
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Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Pu,v(q) = 1 + 4q + 4q2 and so µ(u, v ) = 0

The poset [u, v ] is irreducible. In fact using the following result
due to Stanley in [Enumerative Combinatorics]:

if doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such
that ru,v(q) = rx ,y(q)rz ,t(q) then [u, v ] is irreducible

I compute the rank generating function:

ru,v (q) = (1 + q)(1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6)

I prove that doesn’t exixts a pair of permutation in z , t ∈ Sm

(with m ≤ 7) such that :

rz ,t(q) = 1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6
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Main Conjecture

Observation: for l(u, v ) = 7 the direction ”⇐” is no true.
Given u = 231564 , v = 562341 we have that:

Pu,v(q) = 1 + 4q + 4q2 and so µ(u, v ) = 0

The poset [u, v ] is irreducible. In fact using the following result
due to Stanley in [Enumerative Combinatorics]:

if doesn’t exixts x , y ∈ Sm and z , t ∈ Sp (with m, p ≤ n) such
that ru,v(q) = rx ,y(q)rz ,t(q) then [u, v ] is irreducible

I compute the rank generating function:

ru,v (q) = (1 + q)(1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6)

I prove that doesn’t exixts a pair of permutation in z , t ∈ Sm

(with m ≤ 7) such that :

rz ,t(q) = 1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 26 /

46



Main Conjecture

Figure: [231564, 562341] , |c(u, v)| − 1 > |c(u, v ′)| for all v ′ ⊳ v
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Main Conjecture

So we study this new Conjecture

Conjecture (Bosca)

Given u, v ∈ W with l(u, v ) > 1 then:

[u, v ] has a special matching ⇒ µ(u, v ) = 0
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Main Conjecture

Main results

In my work I study the previous Conjecture for some classes of
coxeter group and elements. The step of the prove are the following:
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Main Conjecture

Main results

In my work I study the previous Conjecture for some classes of
coxeter group and elements. The step of the prove are the following:

Take u, v ∈ Sn such that µ(u, v ) 6= 0.
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Main Conjecture

Main results

In my work I study the previous Conjecture for some classes of
coxeter group and elements. The step of the prove are the following:

Take u, v ∈ Sn such that µ(u, v ) 6= 0.

show that [u, v ] doesn’t have a special matching using the fact
that |c(u, v )| − 1 > |c(u, v ′)| for all v ′ ⊳ v .

show that [u, v ] doesn’t have a special matching using the fact
that |a(u, v )| − 1 > |a(u′, v )| for all u ⊳ u′.

Bosca Corrado On the top coefficients of Kazhdan-Lusztig polynomials
September 20, 2011 29 /

46



Main Conjecture

We consider now the permutations u, v ∈ Sn such that u ≤ v and
DR(v ) ⊆ {1, n − 1}. By the following theorem:

Theorem (B. Shapiro, M. Shapiro, A. Vainshtein)

Given u, v ∈ Sn be such that u ≤ v and DR(v ) ⊆ {1, n− 1}. Then

Pu,v (q) = (1 + q)r

where r := |{j ∈ [v (n) + 1, v (1)− 2] :
∑j

i=1 u(i) =
(
j+1
2

)
}|

by an isomorprhism between poset and other combinatorial
constructions I have prove that:
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Main Conjecture

Proposition (Bosca)

Given u, v ∈ Sn with u ≤ v and DR(v ) ⊆ {1, n− 1}. All pair such
that µ(u, v ) 6= 0 and [u, v ] ≇ [e,w ] (for some w ∈ Sn) up to
isomorphism are of the type:

v = n, 2, . . . , n − 1, 1

u = i , 1, . . . , î , . . . ĵ , . . . , n, j

and j − i = n − 3.
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Main Conjecture

Proposition (Bosca)

Given u, v ∈ Sn with u ≤ v and DR(v ) ⊆ {1, n− 1}. All pair such
that µ(u, v ) 6= 0 and [u, v ] ≇ [e,w ] (for some w ∈ Sn) up to
isomorphism are of the type:

v = n, 2, . . . , n − 1, 1

u = i , 1, . . . , î , . . . ĵ , . . . , n, j

and j − i = n − 3.

By this theorem and the Coatoms condition I can conclude that:

Theorem (Bosca)

Given u, v ∈ Sn , u ≤ v and DR(v ) ⊆ {1, n − 1} be such that
µ(u, v ) 6= 0. Then [u, v ] doesn’t have a special matching.
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Main Conjecture

Example:

Figure: [4123576, 7124563] ∼= [21354, 52341]
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Main Conjecture

Grasmannian permutation

I study the conjecture also for permutation in the following set:

SS\{(i ,i+1)}
n = {x ∈ Sn : x(1) < . . . < x(i) and x(i + 1) < . . . < x(n)}

and for this permutations we consider the following partition

Λv := (v (i)− i , . . . , v (1)− 1)

and its diagram

{(i , j) ∈ N : 1 ≤ i ≤ k, 1 ≤ j ≤ λi}
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Main Conjecture

Example: Given v = 2461357 ∈ S
S\{(3,4)}
n then:

Λv = (v (3)− 3, v (2)− 2, v (1)− 1) = (3, 2, 1)

and its diagram (Russian notation):
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Main Conjecture

In my work I consider pair of permutations u, v ∈ S
S\{(i ,i+1)}
n such

that the diagram of the following partition:

Λ := Λv − Λu = (vi − ui , . . . , v1 − u1)

is a Dyck cbs. A diagram is a Dyck cbs if:

is connected .

no contains 2× 2 square.

no cells in the diagram have the level strictly less than the
rightmost and leftmost cells.

Example: the following are three example of no Dyck cbs
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Using the following Corollary:

Corollary (Lascoux)

Given u, v ∈ S
S\{(i ,i+1)}
n then:

Λ = Λv − Λu is a Dyck cbs ⇔ µ(u, v ) 6= 0

and other combinatorial constructions and isomorphism between
poset I can state that:

Proposition (Bosca)

Given u, v ∈ S
S\{(i ,i+1)}
n with u ≤ v . Then (up to isomorphism)

µ(u, v ) 6= 0 if and only if:

v = v (1), v (2), . . . v (i−1), n, 1, . . . v̂ (1), . . . , v̂(2), . . . , v̂(i−1) . . . , n−1

u = 1, v (1), v (2), . . .n − 1, 2, . . . v̂(1), . . . , v̂(2), . . . , v̂(i − 1), . . . , n
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Theorem (Bosca)

Given u, v ∈ S
S\{(i ,i+1)}
n be such that µ(u, v ) 6= 0 then [u, v ] doesn’t

have a special matching

Example: Given u = 145236 and v = 456123 in S
(S\(3,4))
6 we have

that the poset [u, v ] doesn’t have special matching.
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Boolean elements

In this part of my work I extend my Conjecture for linear Coxeter
group

Definition

A Coxeter system (W , {s1, . . . , sn}) is called linear if:

(sisj)
r = e for r ≥ 3 if |i − j | = 1.

sisj = sj si if 1 < |i − j | < n − 1.

W is called strictly linear if also s1sn = sns1 .
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Recalling that given v ∈ W :

v = s1 · · · sk

is called reduced expression of v if l(v ) = k.
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Recalling that given v ∈ W :

v = s1 · · · sk

is called reduced expression of v if l(v ) = k.
We use the work of Marietti in [Parabolic Kazhdan-Lusztig and
R-polynomials for Boolean elements in the symmetric group]
and we consider this pair of elements:
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Recalling that given v ∈ W :

v = s1 · · · sk

is called reduced expression of v if l(v ) = k.
We use the work of Marietti in [Parabolic Kazhdan-Lusztig and
R-polynomials for Boolean elements in the symmetric group]
and we consider this pair of elements:

Boolean reflection: elements t ∈ W such that there t admits
a reduced expressions:

t = s1 · · · sn−1snsn−1 · · · s1
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Main Conjecture

Recalling that given v ∈ W :

v = s1 · · · sk

is called reduced expression of v if l(v ) = k.
We use the work of Marietti in [Parabolic Kazhdan-Lusztig and
R-polynomials for Boolean elements in the symmetric group]
and we consider this pair of elements:

Boolean reflection: elements t ∈ W such that there t admits
a reduced expressions:

t = s1 · · · sn−1snsn−1 · · · s1

Boolean elements: v ∈ W such that smaller than a Boolean
reflection.
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Given v Boolean element we define:

Vh := the number of occurrences of sh in a reduced expression of v

Then we can use

Theorem (Marietti)

Given u, v Boolean elements in W with u ≤ v . Then:

Pu,v(q) = (1 + q)b

where:
b = |{k ∈ [n] : Vk = Vk+1 = 2,Uk+1 = 0}|
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Proposition (Bosca)

Given (W , {s1, . . . , sn}) be a linear Coxeter system and

v = si · · · sj−2sj−1sj−2 · · · si

be a Boolean reflection and u ≤ v . Then µ(u, v ) 6= 0 if and only if:

u = si · · · sk−1ŝk ŝk+1 · · · ŝk+r sk+r+1 · · · sj−1 · · · ŝk+r · · · ŝk+1sk · · · si
(1)

for some i ≤ k ≤ j − 2 and 0 ≤ r ≤ j − k − 2.

and so conlude that:

Theorem (Bosca)

Given (W , {s1, . . . , sn}) be a linear Coxeter system, v be a boolean
reflection and u ≤ v be such that µ(u, v ) 6= 0. Then [u, v ] doesn’t
have special matching.
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Example: Given the following poset:

[s1s5s2s1, s1s2s3s4s5s4s3s2s1]
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