On the top coefficients of Kazhdan-Lusztig polynomials

Bosca Corrado

Universitá degli studi di Roma "La Sapienza"

September 20, 2011

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

September 20, 2011

1 / 46

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Notations and preliminaries

- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings

1 E 1

2 / 46

< A > < 3

Notations and preliminaries

- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings
- Conjecture, results and some considerations
 - Motivations
 - Main Conjecture
 - Main results

Notations and preliminaries

- The symmetric group and Bruhat order
- Kazhdan-Lusztig polynomials
- Special matchings
- Conjecture, results and some considerations
 - Motivations
 - Main Conjecture
 - Main results

Symmetric group

Given $[n] := \{1, \ldots, n\}$ we define:

$$S_n := \{\pi : [n]
ightarrow [n] : \pi \text{ is a bijection} \}$$

the symmetric group.

(人間) システン イラン

Symmetric group

Given $[n] := \{1, ..., n\}$ we define:

$$S_n := \{\pi : [n] \to [n] : \pi \text{ is a bijection}\}$$

the symmetric group.

Given an element $v \in S_n$ we write v in disjoint cycle form or in the line notation.

- 4 同 6 4 日 6 4 日 6

Example:

- v = (1,2)(3,4) is the disjoint cycle form.
- v = 2143 is the line notation, meaning that

$$v(1) = 2, v(2) = 1, v(3) = 4, v(4) = 3$$

A 1

Example:

•
$$v = (1,2)(3,4)$$
 is the disjoint cycle form.

• v = 2143 is the line notation, meaning that

$$v(1) = 2, v(2) = 1, v(3) = 4, v(4) = 3$$

Observation: S_n with the set of generators

$$S := \{(i, i+1) : i \in [n-1]\}$$

is a Coxeter group.

4 / 46

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

In the symmetric group the length function is:

$$I(\mathbf{v}) := |\{(i,j) \in [n]^2 : i < j, \mathbf{v}(i) > \mathbf{v}(j)\}|$$

Example: Given v = 2143 then l(v) = 2

With the set of generators, we can define the length function. For a generic Coxeter group W and an element $v \in W$ the length of v is the minimum numbers of generators necessary to express v.

In the symmetric group the length function is:

$$I(\mathbf{v}) := |\{(i,j) \in [n]^2 : i < j, \mathbf{v}(i) > \mathbf{v}(j)\}|$$

Example: Given v = 2143 then l(v) = 2

Observation: Given $u, v \in S_n$ for brevity we denote:

$$l(u,v) := l(v) - l(u)$$

In the sequel, we use the following set:

3

< 🗇 🕨

In the sequel, we use the following set:

• the set of reflections:

$$T := \{ (i,j) \in S_n : i,j \in [n], i < j \}$$

-

- 47 ►

In the sequel, we use the following set:

• the set of reflections:

$$T := \{(i,j) \in S_n : i, j \in [n], i < j\}$$

• given $v \in S_n$ the right descent set

$$D_R(v) := \{i \in [n] : v(i) > v(i+1)\}$$

Bosca Corrado

18 N

Given a Coxeter group, and in particular, for the symmetric group we can define a partial order

< 177 ▶

Given a Coxeter group, and in particular, for the symmetric group we can define a partial order

Definition

Given $u, v \in S_n$ we say that $u \leq v$ if $\exists t_1, \ldots, t_r \in T$ $(r \geq 0)$ such that:

$$ut_1\cdots t_r=v$$

and

$$l(u) < l(ut_1) < \ldots < l(ut_1 \cdots t_r) = l(v)$$

this order is called Bruhat order.

Given $u, v \in S_n$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and l(u, v) = 1.

A 1

Given $u, v \in S_n$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and l(u, v) = 1.

Given $u, v \in S_n$ with $u \leq v$ we consider the interval:

$$[u,v] := \{z \in S_n : u \le z \le v\}$$

Given $u, v \in S_n$ we say that u is covered by v, and denote this by $u \triangleleft v$, if $u \leq v$ and l(u, v) = 1.

Given $u, v \in S_n$ with $u \leq v$ we consider the interval:

$$[u,v] := \{z \in S_n : u \le z \le v\}$$

Given an interval [u, v] its Hasse diagram is the graph G = (V, E) where:

Example In the figure we show the Hasse diagram of S_4

Figure: [1234, 4321]

On the top coefficients of Kazhdan-Lusztig polynomials

3

9 / 46

- 4 同 6 4 日 6 4 日 6

In my work I consider the coatom and atom sets. Given an interval [u, v] we define:

$$c(u, v) := \{z \in [u, v] : z \triangleleft v\}$$
$$a(u, v) := \{z \in [u, v] : u \triangleleft z\}$$

In my work I consider the coatom and atom sets. Given an interval [u, v] we define:

$$c(u, v) := \{z \in [u, v] : z \triangleleft v\}$$
$$a(u, v) := \{z \in [u, v] : u \triangleleft z\}$$

Finally I use also the following rank generating function:

$$r_{u,v}(q) := \sum_{i=0}^{l(u,v)} r_i q^i$$

where $r_i := |\{z \in [u, v] : l(u, z) = i\}|$

Kazhdan-Lusztig polynomials

In their fundamental paper [Representations of Coxeter groups and Hecke algebras], Kazhdan and Lusztig defined, for every Coxeter group W a family of polynomials indexed by a pair of elements of W.

These polynomials are intimately related to the Bruhat order of W and depend on the descendent set of an elements.

There are several way to introduce these polynomials, here we use the best for our purpose. So by Definition-Theorem we define first the R-polynomials and then we use these we define the Kazhdan-Lusztig polynomials.

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials $\{R_{u,v}(q)\}_{u,v\in W} \subseteq \mathbb{Z}[q]$ such that:

•
$$R_{u,v}(q) = 0$$
 if $u \nleq v$.

•
$$R_{u,v}(q) = 1$$
 if $u = v$.

• If $s \in D_R(v)$ then:

$$egin{aligned} R_{u,v}(q) &= \left\{ egin{aligned} R_{us,vs} & ext{if } s \in D_R(u) \ q R_{us,vs}(q) + (q-1) R_{u,vs}(q) & ext{if } s \notin D_R(u) \end{aligned}
ight. \end{aligned}$$

Theorem (Kazhdan-Lusztig)

There is a unique family of polynomials $\{P_{u,v}(q)\}_{u,v\in W} \subseteq \mathbb{Z}[q]$ (that we call Kazhdan-Lusztig polynomial) such that:

•
$$P_{u,v}(q) = 0 \text{ if } u \le v.$$

• $P_{u,v}(q) = 1 \text{ if } u = v.$
• $deg(P_{u,v}(q)) \le \frac{l(u,v)-1}{2} \text{ if } u < v$
• $Se \ u \le v \text{ then:}$

$$q^{l(v)-l(u)}P_{u,v}(rac{1}{q}) = \sum_{a\in[u,v]} R_{u,a}(q)P_{a,v}(q)$$

September 20, 2

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

We are interested about the top coefficients of Kazhdan-Lusztig polynomials.

On the top coefficients of Kazhdan-Lusztig polynomials

We are interested about the top coefficients of Kazhdan-Lusztig polynomials.

Definition (Top coefficient function)

Given W a Coxeter group, $u, v \in W$ with $u \leq v$:

$$\overline{\mu}(u,v) := \begin{cases} [q^{\frac{l(v)-l(u)-1}{2}}]P_{u,v} & \text{if } l(u,v) \equiv 1 \mod 2\\ 0 & \text{otherwise} \end{cases}$$

where with $[q^i]P_{u,v}$ we denote the coefficient of q^i in $P_{u,v}$.

Bosca Corrado

Special matchings

Given P a poset and G := (V, E) its Hasse diagram, then we say that the function

$$M: V \to V$$

is a special matching if:

- *M* is an involution such that $\{v, M(v)\} \in E$ for all $v \in V$.
- $x \triangleleft y \Rightarrow M(x) \leq M(y)$ for all $x, y \in V$ such that $M(x) \neq y$

Example: the dot line in the following Figure is a special matching of [41256378, 41562738].

On the top coefficients of Kazhdan-Lusztig polynomials

< 17 ▶

September 20, 2011

46

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that: **Observation:** if $x \triangleleft y$

- 47 ►

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:

Observation: if $x \triangleleft y$ and $M(x) \triangleright x$

the last special matching condition $(x \triangleleft y \Rightarrow M(x) \leq M(y))$ imply in particular that:

<u>Observation</u>: if $x \triangleleft y$ and $M(x) \triangleright x$ then $M(y) \triangleright y$ and $M(y) \triangleright M(x)$.

<u>Observation</u>: Dually if $x \triangleleft y$ and $M(y) \triangleleft y$ imply $M(x) \triangleleft x$ and $M(x) \triangleleft M(y)$.

A ₽

There is a Proposition very important in my work

Proposition (Coatom's condition) Given $u, v \in S_n$ with $u \le v$ then:

$$|c(u,v)|-1>|c(u,v')| \ orall v' riangle v$$

[u, v] doesn't have a special matching

We show this Proposition by an example
Example:

In this example the previous proposition is true.

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

< /⊒> <

September 20, 2011

46

Example:

In this example the previous proposition is true. If we choose M(v) = a then we must have that:

$$M(b) \triangleleft a, M(c) \triangleleft a, M(d) \triangleleft a$$

Note that is also true

Proposition (Atoms condition) Given $u, v \in S_n$ with $u \le v$ then: $|a(u, v)| - 1 > |a(u', v)| \quad \forall u \triangleleft u'$ \downarrow [u, v] doesn't have a special matching

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

24 46

• When does a poset have a special matching?

< 4 P + <

- When does a poset have a special matching?
- There is some connection between special matching and Kazhdan-Lusztig polynomials

- When does a poset have a special matching?
- There is some connection between special matching and Kazhdan-Lusztig polynomials
- Can we use the connection between special matching and Kazhdan-Lusztig polynomials to prove the combinatorial invariance?
- Conjecture (Lusztig 1980, Dyer 1987)

Given $u, v \in W$ and $x, y \in W'$ then:

$$[u, v] \cong [x, y] \Rightarrow P_{u, v} = P_{x, y}$$

Recalling that an interval [u, v] (with $u, v \in S_n$) is irreducible if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that

 $[u,v]\cong[x,y]\times[z,t]$

Recalling that an interval [u, v] (with $u, v \in S_n$) is irreducible if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that

$$[u,v]\cong[x,y]\times[z,t]$$

then we can show the Conjecture:

Conjecture (Brenti)

Given $u, v \in S_n$ with [u, v] irreducible, l(u, v) > 1 and l(u, v) odd then:

[u, v] has a special matching $\Leftrightarrow \overline{\mu}(u, v) = 0$

Recalling that an interval [u, v] (with $u, v \in S_n$) is irreducible if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that

$$[u,v]\cong[x,y]\times[z,t]$$

then we can show the Conjecture:

Conjecture (Brenti)

Given $u, v \in S_n$ with [u, v] irreducible, l(u, v) > 1 and l(u, v) odd then:

$$[u, v]$$
 has a special matching $\Leftrightarrow \overline{\mu}(u, v) = 0$

This Conjecture is due to Brenti in **[Kazhdan-Lusztig polynomials:** history, problems, and combinatorial invariance] and is verified for $1 \le l(u, v) \le 5$.

Main Conjecture

<u>Observation</u>: for l(u, v) = 7 the direction " \Leftarrow " is no true. Given u = 231564, v = 562341 we have that:

• $P_{u,v}(q) = 1 + 4q + 4q^2$ and so $\overline{\mu}(u,v) = 0$

•
$$P_{u,v}(q) = 1 + 4q + 4q^2$$
 and so $\overline{\mu}(u,v) = 0$

• The poset [*u*, *v*] is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:

if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that $r_{u,v}(q) = r_{x,y}(q)r_{z,t}(q)$ then [u, v] is irreducible

•
$$P_{u,v}(q) = 1 + 4q + 4q^2$$
 and so $\overline{\mu}(u, v) = 0$

• The poset [*u*, *v*] is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:

if doesn't exists $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that $r_{u,v}(q) = r_{x,y}(q)r_{z,t}(q)$ then [u, v] is irreducible

I compute the rank generating function:

$$r_{u,v}(q) = (1+q)(1+5q+13q^2+20q^3+19q^4+8q^5+q^6)$$

•
$$P_{u,v}(q) = 1 + 4q + 4q^2$$
 and so $\overline{\mu}(u, v) = 0$

• The poset [*u*, *v*] is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:

if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that $r_{u,v}(q) = r_{x,y}(q)r_{z,t}(q)$ then [u, v] is irreducible

I compute the rank generating function:

$$r_{u,v}(q) = (1+q)(1+5q+13q^2+20q^3+19q^4+8q^5+q^6)$$

I prove that doesn't exixts a pair of permutation in $z, t \in S_m$ (with $m \leq 7$) such that :

$$r_{z,t}(q) = 1 + 5q + 13q^2 + 20q^3 + 19q^4 + 8q^5 + q^6$$

•
$$P_{u,v}(q) = 1 + 4q + 4q^2$$
 and so $\overline{\mu}(u, v) = 0$

• The poset [*u*, *v*] is irreducible. In fact using the following result due to Stanley in [Enumerative Combinatorics]:

if doesn't exixts $x, y \in S_m$ and $z, t \in S_p$ (with $m, p \le n$) such that $r_{u,v}(q) = r_{x,y}(q)r_{z,t}(q)$ then [u, v] is irreducible

I compute the rank generating function:

$$r_{u,v}(q) = (1+q)(1+5q+13q^2+20q^3+19q^4+8q^5+q^6)$$

I prove that doesn't exixts a pair of permutation in $z, t \in S_m$ (with $m \leq 7$) such that :

$$r_{z,t}(q) = 1 + 5q + 13q^2 + 20q^3 + 19q^4 + 8q^5 + q^6$$

Figure: [231564, 562341] , |c(u,v)|-1>|c(u,v')| for all $v' \triangleleft v$

So we study this new Conjecture Conjecture (Bosca)

Given $u, v \in W$ with l(u, v) > 1 then:

[u, v] has a special matching $\Rightarrow \overline{\mu}(u, v) = 0$

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

• Take $u, v \in S_n$ such that $\overline{\mu}(u, v) \neq 0$.

Main results

In my work I study the previous Conjecture for some classes of coxeter group and elements. The step of the prove are the following:

- Take $u, v \in S_n$ such that $\overline{\mu}(u, v) \neq 0$.
- show that [u, v] doesn't have a special matching using the fact that |c(u, v)| −1 > |c(u, v')| for all v' ⊲ v.
- show that [u, v] doesn't have a special matching using the fact that |a(u, v)| − 1 > |a(u', v)| for all u ⊲ u'.

We consider now the permutations $u, v \in S_n$ such that $u \leq v$ and $D_R(v) \subseteq \{1, n-1\}$. By the following theorem:

Theorem (B. Shapiro, M. Shapiro, A. Vainshtein)

Given $u, v \in S_n$ be such that $u \leq v$ and $D_R(v) \subseteq \{1, n-1\}$. Then

$$P_{u,v}(q) = (1+q)^{t}$$

where
$$r:=|\{j\in [v(n)+1,v(1)-2]:\sum_{i=1}^{j}u(i)={j+1\choose 2}\}|$$

by an isomorphism between poset and other combinatorial constructions I have prove that:

Proposition (Bosca)

Given $u, v \in S_n$ with $u \leq v$ and $D_R(v) \subseteq \{1, n-1\}$. All pair such that $\overline{\mu}(u, v) \neq 0$ and $[u, v] \ncong [e, w]$ (for some $w \in S_n$) up to isomorphism are of the type:

$$v = n, 2, \dots, n-1, 1$$

 $u = i, 1, \dots, \hat{i}, \dots, \hat{j}, \dots, n, J$

and j - i = n - 3.

Proposition (Bosca)

Given $u, v \in S_n$ with $u \leq v$ and $D_R(v) \subseteq \{1, n-1\}$. All pair such that $\overline{\mu}(u, v) \neq 0$ and $[u, v] \ncong [e, w]$ (for some $w \in S_n$) up to isomorphism are of the type:

$$v = n, 2, \dots, n-1, 1$$

 $u = i, 1, \dots, \hat{i}, \dots, \hat{j}, \dots, n, j$

and j - i = n - 3.

By this theorem and the Coatoms condition I can conclude that:

Theorem (Bosca)

Given $u, v \in S_n$, $u \leq v$ and $D_R(v) \subseteq \{1, n-1\}$ be such that $\overline{\mu}(u, v) \neq 0$. Then [u, v] doesn't have a special matching.

Example:

Figure: $[4123576, 7124563] \cong [21354, 52341]$

September 20, 2011

32 46

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

Grasmannian permutation

I study the conjecture also for permutation in the following set:

$$S_n^{S \setminus \{(i,i+1)\}} = \{ x \in S_n : x(1) < \ldots < x(i) \text{ and } x(i+1) < \ldots < x(n) \}$$

and for this permutations we consider the following partition

$$\Lambda_{\mathsf{v}} := (\mathsf{v}(i) - i, \ldots, \mathsf{v}(1) - 1)$$

and its diagram

$$\{(i,j)\in\mathbb{N}:1\leq i\leq k,1\leq j\leq\lambda_i\}$$

Example: Given $v = 2461357 \in S_n^{S \setminus \{(3,4)\}}$ then:

$$\Lambda_{\nu} = (\nu(3) - 3, \nu(2) - 2, \nu(1) - 1) = (3, 2, 1)$$

and its diagram (Russian notation):

On the top coefficients of Kazhdan-Lusztig polynomials

Main Conjecture

In my work I consider pair of permutations $u, v \in S_n^{S \setminus \{(i,i+1)\}}$ such that the diagram of the following partition:

$$\Lambda := \Lambda_v - \Lambda_u = (v_i - u_i, \ldots, v_1 - u_1)$$

is a Dyck cbs. A diagram is a Dyck cbs if:

- is connected .
- no contains 2×2 square.
- no cells in the diagram have the level strictly less than the rightmost and leftmost cells.

Example: the following are three example of no Dyck cbs

On the top coefficients of Kazhdan-Lusztig polynomials

Using the following Corollary:

Corollary (Lascoux)

Given $u, v \in S_n^{S \setminus \{(i,i+1)\}}$ then:

$$\Lambda = \Lambda_v - \Lambda_u$$
 is a Dyck $cbs \Leftrightarrow \overline{\mu}(u, v) \neq 0$

and other combinatorial constructions and isomorphism between poset I can state that:

Proposition (Bosca)

Given $u, v \in S_n^{S \setminus \{(i,i+1)\}}$ with $u \leq v$. Then (up to isomorphism) $\overline{\mu}(u, v) \neq 0$ if and only if:

$$\mathbf{v} = \mathbf{v}(1), \mathbf{v}(2), \ldots \mathbf{v}(i-1), n, 1, \ldots \widehat{\mathbf{v}}(1), \ldots, \widehat{\mathbf{v}}(2), \ldots, \widehat{\mathbf{v}}(i-1) \ldots, n-1$$

$$u = 1, v(1), v(2), \ldots n - 1, 2, \ldots \widehat{v}(1), \ldots, \widehat{v}(2), \ldots, \widehat{v}(i-1), \ldots, n$$

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

37 / 46

Theorem (Bosca)

Given $u, v \in S_n^{S \setminus \{(i,i+1)\}}$ be such that $\overline{\mu}(u, v) \neq 0$ then [u, v] doesn't have a special matching

Example: Given u = 145236 and v = 456123 in $S_6^{(S \setminus (3,4))}$ we have that the poset [u, v] doesn't have special matching.

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

Boolean elements

In this part of my work I extend my Conjecture for linear Coxeter group

Definition

A Coxeter system $(W, \{s_1, \ldots, s_n\})$ is called linear if:

•
$$(s_i s_j)^r = e$$
 for $r \ge 3$ if $|i-j| = 1$.

•
$$s_i s_j = s_j s_i$$
 if $1 < |i - j| < n - 1$.

W is called strictly linear if also $s_1s_n = s_ns_1$.

$$v = s_1 \cdots s_k$$

is called reduced expression of v if l(v) = k.

$$v = s_1 \cdots s_k$$

is called reduced expression of v if l(v) = k.

We use the work of Marietti in [Parabolic Kazhdan-Lusztig and **R-polynomials for Boolean elements in the symmetric group**] and we consider this pair of elements:

$$v = s_1 \cdots s_k$$

is called reduced expression of v if l(v) = k.

We use the work of Marietti in [Parabolic Kazhdan-Lusztig and **R-polynomials for Boolean elements in the symmetric group**] and we consider this pair of elements:

● **Boolean reflection:** elements *t* ∈ *W* such that there *t* admits a reduced expressions:

$$t = s_1 \cdots s_{n-1} s_n s_{n-1} \cdots s_1$$

$$v = s_1 \cdots s_k$$

is called reduced expression of v if l(v) = k.

We use the work of Marietti in [Parabolic Kazhdan-Lusztig and **R-polynomials for Boolean elements in the symmetric group**] and we consider this pair of elements:

 Boolean reflection: elements t ∈ W such that there t admits a reduced expressions:

$$t = s_1 \cdots s_{n-1} s_n s_{n-1} \cdots s_1$$

Boolean elements: v ∈ W such that smaller than a Boolean reflection.

Bosca Corrado
Given v Boolean element we define:

 $V_h :=$ the number of occurrences of s_h in a reduced expression of v

Then we can use

Theorem (Marietti)

Given u, v Boolean elements in W with $u \leq v$. Then:

$$\mathsf{P}_{u,v}(q) = (1+q)^b$$

where:

$$b = |\{k \in [n] : V_k = V_{k+1} = 2, U_{k+1} = 0\}|$$

September 20,

Proposition (Bosca) Given $(W, \{s_1, \ldots, s_n\})$ be a linear Coxeter system and $v = s_i \cdots s_{i-2} s_{i-1} s_{j-2} \cdots s_i$ be a Boolean reflection and $u \leq v$. Then $\overline{\mu}(u, v) \neq 0$ if and only if: $u = s_i \cdots s_{k-1} \widehat{s}_k \widehat{s}_{k+1} \cdots \widehat{s}_{k+r} s_{k+r+1} \cdots s_{i-1} \cdots \widehat{s}_{k+r} \cdots \widehat{s}_{k+1} s_k \cdots s_i$ for some i < k < j - 2 and 0 < r < j - k - 2. and so conlude that:

Theorem (Bosca)

Given $(W, \{s_1, \ldots, s_n\})$ be a linear Coxeter system, v be a boolean reflection and $u \leq v$ be such that $\overline{\mu}(u, v) \neq 0$. Then [u, v] doesn't have special matching.

(1)

Example: Given the following poset:

 $[s_1s_5s_2s_1, s_1s_2s_3s_4s_5s_4s_3s_2s_1]$

Bosca Corrado

On the top coefficients of Kazhdan-Lusztig polynomials

Bibliography

- A. Björner, F. Brenti, *Combinatorics of Coxeter Groups*, Graduate Texts in Mathematics, **231**, Springer-Verlag, New York, 2005.
- F. Brenti Kazhdan-Lusztig and R-polynomials from combinatorial point of view, Discrete Math., 193 (1998), 93-116. Discrete Mathematics Editor's Choice for 1998.
- F. Brenti, Kazhdan-Lusztig polynomials: history, problems, and combinatorial invariance, Sém. Lothar. Combin. 49 (2002), Art. B49b, 30 pp. (electronic).
- A. Hultman, Combinatorial complexes, Bruhat intervals and reflection distances, Ph.D. Thesis, KTH Stockholm, Sweden, 2003.

September 20, 20

- J.E. Humphreys, *Reflection groups and Coxeter groups*. Cambridge Studies in Advanced Mathematics. 29. Cambridge University Press, Cambridge, 1990.
- F. Incitti, On the combinatorial invariance of KazhdanLusztig polynomials, J. Combin. Theory Ser. A 113 (7) (2006) 13321350.
- F. Incitti, More on the combinatorial invariance of KazhdanLusztig polynomials, J. Combin. Theory Ser. A 114 (2007) 461482.
- D. Kazhdan, G. Lusztig, *Representations of Coxeter groups and Hecke algebras, Invent. Math.* **53** (1979), 165–184.

- V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varietes in S_{I(n)/B}, Proc. Indian Acad. Sci. Math. Sci. 100 (1990) 45-52.
- A. Lascoux, M.-P. Schützenberger, *Polynômes de Kazhdan-Lusztig pour les grassmanniennes*, Astérisque 87-88 (1981), 249-266. *Enumerative Combinatorics*, vol.1, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
- M. Marietti, *Parabolic Kazhdan-Lusztig and R-polynomials for Boolean elements in the symmetric group*, European Journal of Combinatorics, 31(2010), 908-924

- B. Shapiro, M. Shapiro, A. Vainshtein, *Kazhdan-Lusztig* polynomials for certain varieties of incomplete flags, Discrete Math. **180** (1998), 345–355.
- R. P. Stanley, *Enumerative Combinatorics*, vol.1, Wadsworth and Brooks/Cole, Monterey, CA, 1986.

September 20. 2