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Four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

F(x, y) = xq(q−1)+xyt

q
F(1, y)F(x, y)+xt

F(x, y)− F(x,0)

y
−x2yt F(x, y)− F(1, y)

x− 1



Four equations

• Where do they ome from?
• Do we really have to solve them?
• Do they have relatives?
• How an we solve... polynomial equations with atalyti variables?



Four equations

• Where do they ome from? enumerative ombinatoris

• Do we really have to solve them?
• Do they have relatives?
• How an we solve... polynomial equations with atalyti variables?



Four equations

• Where do they ome from? enumerative ombinatoris

• Do we really have to solve them? yes

• Do they have relatives?
• How an we solve... polynomial equations with atalyti variables?



Four equations

• Where do they ome from? enumerative ombinatoris

• Do we really have to solve them? yes

• Do they have relatives? yes
• How an we solve... polynomial equations with atalyti variables?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y



Enumerative ombinatoris and generating funtionsLet A be a set of disrete objets equipped with a size:

size : A → N

a 7→ |a|Assume that for all n,
An := {a ∈ A : |a| = n} is �nite.Let a(n) = |An|.Objetive: Determine a(n), or the generating funtion of the objets of A:

A(t) :=
∑

n≥0
a(n)tn

=
∑

a∈A
t|a|.Multivariate enumeration:

A(t;x) :=
∑

n,k≥0
a(n, k)tnxk

Appliations: probability, algebra, omputer siene (analysis of algorithms),statistial physis... and uriosity



Why generating funtions?

A(t) :=
∑

n≥0
a(n)tn

• Enode the sequene a(n)

• Write reurrene relations on a(n) as funtional equations on A(t)

• Use all kinds of tools developped for funtions and funtional equations



Combinatorial onstrutions and operations on series: A ditionary

Constrution Numbers Generating funtionUnion A = B ⊔ C a(n) = b(n) + c(n) A(t) = B(t) + C(t)

Produt A = B × C a(n) = b(0)c(n) + · · ·+ b(n)c(0) A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ|

Example: binary trees A(t) = 1+ tA(t)2

= {ε} ⊔



A hierarhy of formal power series

• The formal power series A(t) is rational if it an be written

A(t) =
P(t)

Q(t)where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebrai if it satis�es a polynomial equation:

P(t, A(t)) = 0.

• The formal power series A(t) is D-�nite if it satis�es a linear di�erentialequation:

Pk(t)A
(k)(t) + · · ·+ P1(t)A

′(t) + P0(t)A(t) = 0.

• The formal power series A(t) is D-algebrai if it satis�es an algebrai-di�erentialequation:

P
(

t, A(k)(t), . . . , A′(t), A(t)
)

= 0for some polynomial P .



Some harms of rational and algebrai series

• Closure properties (+,×, /, derivatives, omposition...)

• �Easy� to handle (partial fration deomposition, Puiseux expansions, elimi-nation, resultants, Gröbner bases...)
• Algebraiity an be guessed from the �rst oe�ients (GFUN)

• The oe�ients an be omputed in a linear number of operations.

• (Almost) automati asymptotis of the oe�ients: in general,

a(n) ∼ κ

Γ(d+1)
µnnd,where κ and µ are algebrai over Q and d ∈ Q \ {−1,−2, . . .}.

• Algebraiity suggests that plane trees are lurking around (f. A(t) = 1+ tA(t)2)



Some harms of D-�nite series

• Closure properties (+, ×, derivatives, omposition with algebrai series...)

• �Easy� to handle (GFUN)
• D-�niteness an be guessed from the �rst oe�ients (GFUN)

• The oe�ients an be omputed in a linear number of operations.

• (Almost) automati asymptotis of the oe�ients
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A loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

• Where is t? F(x) stands for F(t; x)

• Linear (i.e., degree 1) in F

• The divided di�erene
F(x)− F(0)

xis what makes life interesting. We say that the variable x is atalyti: no x, noequation!

• Is F(0) (and F(x)) rational? algebrai? D-�nite?



A loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

• The divided di�erene is taken around x = 1

• Quadrati in F



A loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• Again linear in F , but...
• Two divided di�erenes, w.r.t. x and y: two atalyti variables



A loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

F(x, y) = xq(q − 1) +
xyt

q
F(1, y)F(x, y) + xt

F(x, y)− F(x,0)

y
− x2yt

F(x, y)− F(1, y)

x− 1

• Quadrati in F , two atalyti variables



Outline of the talks

One atalyti variable Several atalyti variables

Linear F (x) = 1+ txF (x) + t F (x)−F (0)
x

F (x, y) = 1+ tyF (x, y)always +t F (x,y)−F (0,y)
x

+ tx F (x,y)−F (x,0)
yalgebrai this one: D-�nite

Non-linear F (x) = 1+ tx2F (x)2 + t xF (x)−F (1)
x−1 F (x, y) = xq(q − 1) + xyt

q
F (1, y)F (x, y)always +xt F (x,y)−F (x,0)

y
− x2yt F (x,y)−F (1,y)

x−1algebrai this one: D-algebrai

In eah ase: a prototype, plus (attempts at) a general approah



I. Linear equations with one atalyti variable

F(x) = 1+ txF(x) + t
F(x)− F(0)

x



Where does it ome from? Walks on a half-line

• Count walks on the half-line N, starting from 0, by their length (variable t)and the position of their endpoint (variable x):

F(t; x) ≡ F(x) =
∑

w
tℓ(w)xe(w)In partiular:

◦ F(t; 0) ≡ F(0) ounts walks ending at 0 (Dyk paths),

◦ F(x)− F(0) those ending at a positive height.

• A step by step onstrution:
position

time
0

F(x) = 1+ txF(x) +
t

x
(F(x)− F(0))

[Knuth, The Art of Computer programming,Vol. 2, 1972℄



Do we really need this equation?Maybe not...
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Do we really need this equation?Maybe not...
F (0) =

F (x) =

+

+

• we an write diretly algebraiequations:
F(0) = 1+ t2F(0)2

F(x) = F(0) + txF(0)F(x)and solve them:

F(x) =
1− 2 tx−

√

1− 4t2

2t
(

t− x+ tx2
)

• or we an use the re�etion prinipleOK... but...



What if the steps are +3 and −2?

• One an still write algebrai equations for F0 ≡ F(0) (and F(x)):











F0 = 1+ L1R1 + L2R2 L1 = L2R1 + L3R2
R1 = L1R2 L2 = L3R1
R2 = tF0 L3 = tF0[Duhon 98, Labelle-Yeh 90...℄



What if the steps are +3 and −2?

• One an still write algebrai equations for F0 ≡ F(0) (and F(x)):











F0 = 1+ L1R1 + L2R2 L1 = L2R1 + L3R2
R1 = L1R2 L2 = L3R1
R2 = tF0 L3 = tF0[Duhon 98, Labelle-Yeh 90...℄

• But the step-by-step approah gives a single easier equation:

F(x) = 1+ tx3F(x) +
t

x2
(F(x)− F0 − xF1)where Fi = [xi]F(x) is the generating funtion of walks ending at position i.



Our prototype has many relatives

• Walks on a half-line with steps +3 and −2
• Walks on a half-line with steps in any presribed �nite set S
• Permutations with no asending sequene of length 3

• Families of olumn-onvex polyominoes [Temperley 56℄, [Fereti-Svrtan 93℄,[MBM 96℄

• Lots and lots of problems that are equivalent to (possibly weighted) 1D walks[Prodinger 04, De Mier-Noy 03℄...

F(x) = 1+ txF(x) + t
F(x)− F(0)

x



Solving our prototype: The kernel method

F(x) = 1+ txF(x) +
t

x
(F(x)− F(0))Equivalently,

(1− t(x+1/x))F(x) = 1− tF(0)/x

• Let X ≡ X(t) be the unique formal power series in t that anels the kernel

1− t(x+1/x):

X(t) =
1−

√

1− 4t2

2t
= t+ t3 +O(t5)

• Eliminate F(x) by setting x = X(t):
0 = 1− tF(0)/X ⇒ F(0) = X/t =

1−
√

1− 4t2

2t2

• In partiular, F(0) (and F(x)) are algebrai[Knuth, The Art of Computer programming, Vol. 2, 1972℄



Our prototype has many relatives

• Walks on a half-line with steps +3 and −2
• Walks on a half-line with steps in any presribed �nite set S
• Permutations with no asending sequene of length 3

• Lots and lots of problems that are equivalent to (possibly weighted) 1Dwalks...The kernel method solves them all and F(x) is always algebrai



Walks with steps +3,−2: The kernel method

(

1− t(x3 +1/x2)
)

F(x) = 1− tF0/x
2 − tF1/x

• There exists two frational series in t, denoted X1,2 ≡ X1,2(t) that anel thekernel 1− t(x3 +1/x2). Equivalently,
X2

i = t(X5
i +1)Their expansions an be omputed using Gfun (Maple)

• Eliminate F(x) by setting x = Xi(t):
0 = 1− tF0/X

2
i − tF1/Xi for i = 1,2

• We have two equations with two unknowns F0 and F1. Solving for F0 gives

F0 = −X1X2

t
• If needed, the elimination of X1 and X2 gives

F0 = 1+ 2 t5F0
5 − t5F0

6 + t5F0
7 + t10F0

10.



The roots of the kernel: the Newton-Puiseux theoremLet L be an algebraially losed �eld of harateristi 0. Let K(t;x) ∈ L[t, x],of degree d in x. For instane,

K(t;x) = x2 − t(1 + x5) (d = 5)

• The equation (in x) K(t;x) = 0 has d roots, whih are Puiseux series in t :

X =
∑

n≥n0

ant
n/q, n0 ∈ Z, q ∈ N \ {0}.

• The number of roots that are �nite at t = 0 (that is, suh that n0 ≥ 0) is

d0 = degK(0; x) (d0 = 2).



Example: walks with steps +3,−2

• The equation x2 − t(1 + x5) = 0 has 5 roots, 2 of whih are �nite at t = 0 :

X1 =
√
t + 1

2

√
t
6

+ 9
8

√
t
11

+ O(
√
t
15

)

X2 = −
√
t + 1

2

√
t
6 − 9

8

√
t
11

+ O(
√
t
15

)and

X3,4,5 =
1

z
− z3

3
− z8

3
+O(z14)where z is one of the 3 ubi roots of t.

• GFun, ommand �algeqtoseries�



A generi example: Walks on a half-line

• S ⊂ Z: the (�nite) set of allowed steps. Denote a = maxS and −b = minS.

• Proposition: Let K(t;x) = xb



1− t
∑

j∈S
xj



 .

It is a polynomial in x of degree a+b. Exatly, b of its roots, say X1, X2, . . . , Xb,are �nite at t = 0.The generating funtion of walks on the half-line N starting and ending at 0 is:

F0 =
(−1)b+1

t

b
∏

i=1

Xi

• Corollary: F0 is algebrai of degree (at most) (a+b
b

)



Some referenes

• Knuth's historial example
◦ The Art of Computer programming, Vol. 2, Setion 2.2.1, Ex. 4, 1972

• Walks on a half-line
◦ Linear reurrenes with onstant oe�ients: the multivariate ase, MBM& Petkov²ek, Disrete Math. 225 (2000)
◦ Generating funtions for generating trees, Banderier, MBM, Denise, Fla-jolet, Gardy, Gouyou-Beauhamps, Disrete Mathematis 246 (2002)

◦ Basi analyti ombinatoris of direted lattie paths, Banderier & Flajo-let, Theoret. Comput. Si. 281 (2002)



II. Polynomial equationswith one atalyti variable

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1



Where does it ome from? Rooted planar maps

=

There are �nitely many maps with n edges
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Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fae.
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Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fae.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0
Fd(t)

(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati equation with one atalyti variable, x



Do we really need this equation?Maybe... From
F(x) = 1+ tx2F(x)2 + t

xF(x)− F(1)

x− 1
,Tutte and Brown derived

F(t; 1) =
(1− 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2 · 3n
n(n+1)

(2n

n

)

tn.

But it took more than 10 years to �nd a ombinatorial explanation of thisformula [Cori-Vauquelin 81℄ Moreover...



Our prototype has many relatives

• All kinds of maps (with presribed degrees, non-separable, of higher genus,with hard partiles...)[Tutte, Brown, Bender & Can�eld, Gao, Wanless &Wormald, MBM-Jehanne...℄

F(x) = 1+ txF(x)3 + tx(2F(x) + F(1))
F(x)− F(1)

x− 1

+tx
F(x)− F(1)− (x− 1)F ′(1)

(x− 1)2

• Two-stak sortable permutations [Zeilberger 92℄
• Intervals in the Tamari latties [Chapoton 06℄, [mbm, Fusy, Préville-Ratelle11℄

• ...



Polynomial equations with one atalyti variable [MBM-Jehanne 05℄

• General frameworkAssume
P(F(x), F1, . . . , Fk, t, x) = 0 (1)where F(x) ≡ F(t; x) is a series in t with polynomial oe�ients in x, and

Fi ≡ Fi(t) is (for instane) the oe�ient of xi−1 in F(t; x).

• Results1. The solution of every well-founded equation of this type is algebrai.2. A pratial strategy allows to solve spei� examples (that is, to derivefrom (1) an algebrai equation for F(x), or F1, . . . , Fk).
⊳ ⊳ ⋄ ⊲ ⊲

(Inludes and generalizes the kernel method and Brown's quadrati method.)



The general strategy: prinipleAssume
P(F(x), F1, . . . , Fk, t, x) = 0where P(x0, x1, . . . , xk, xk+1, xk+2) is a polynomial with oe�ients in K,

F(x) is a series in t with oe�ients in K[x],and Fi a series in t with oe�ients in K for all i.For all series X ≡ X(t) suh that� the series F(X) ≡ F(t;X) is well-de�ned� ∂P
∂x0

(F(X), F1, . . . , Fk, t, X) = 0,one has

∂P

∂xk+2
(F(X), F1, . . . , Fk, t,X) = 0.(And of ourse

P(F(X), F1, . . . , Fk, t,X) = 0.)



The general strategy: prinipleAssume
P(F(x), F1, . . . , Fk, t, x) = 0 (2)where P(x0, x1, . . . , xk, xk+1, xk+2) is a polynomial with oe�ients in K,

F(x) is a series in t with oe�ients in K[x],and Fi a series in t with oe�ients in K for all i.For all series X ≡ X(t) suh that� the series F(X) ≡ F(t, X) is well-de�ned� ∂P
∂x0

(F(X), F1, . . . , Fk, t, X) = 0,one has

∂P

∂xk+2
(F(X), F1, . . . , Fk, t,X) = 0.Proof: di�erentiate (2) with respet to x

F ′(x)
∂P

∂x0
(F(x), F1, . . . , Fk, t, x) +

∂P

∂xk+2
(F(x), F1, . . . , Fk, t, x) = 0.



The general strategy: hope

• There exist k series X1, . . . , Xk suh that

∂P

∂x0
(F(Xi), F1, . . . , Fk, t,Xi) = 0.

In this ase, for eah Xi,
∂P

∂xk+2
(F(Xi), F1, . . . , Fk, t, Xi) = 0and

P(F(Xi), F1, . . . , Fk, t,Xi) = 0.

• This system of 3k polynomial equations in 3k unknowns F1, . . . , Fk, X1, . . . , Xk,

F(X1), . . . , F(Xk) implies (together with the fat that the Xi are distint) thealgebraiity of the Fi.



The linear ase: reovering the kernel method

• Assume
P(F(x), F1, . . . , Fk, t, x) = K(t;x)F(x) +Q(F1, . . . , Fk, t, x) = 0for some polynomial Q.
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• Then ∂P
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The linear ase: reovering the kernel method

• Assume
P(F(x), F1, . . . , Fk, t, x) = K(t;x)F(x) +Q(F1, . . . , Fk, t, x) = 0for some polynomial Q.

• Then ∂P
∂x0

(F(Xi), F1, . . . , Fk, t,Xi) = 0 reads

K(t;Xi) = 0.

• Combined with P(F(Xi), F1, . . . , Fk, t, Xi) = 0, this implies

Q(F1, . . . , Fk, t, Xi) = 0for 1 ≤ i ≤ k: we have a system of 2k polynomial equations in 2k unknowns

F1, . . . , Fk, X1, . . . , Xk.

• The equations ∂P
∂xk+2

(F(Xi), F1, . . . , Fk, t,Xi) = 0 are not needed unless we areinterested in the series F(Xi).



Solution of our prototype

• Planar maps [Tutte 68℄
F(x) = 1+ tx2F(x)2 + t

xF(x)− F(1)

x− 1

⇒ P(F(x), F1, t, x) = 0 with F1 = F(1)

• Existene of X

∂P

∂x0
(F(X), F1, t,X) = 0 ⇔ 1 = 2tX2F(X) +

tX

X − 1

⇔ X = 1+ 2tX2(X − 1)F(X) + tX.

⇒ There exists one series X(t) suh that
∂P

∂x0
(F(X), F1, t, X) = 0,

∂P

∂x3
(F(X), F1, t,X) = 0, P(F(X), F1, t, X) = 0.



• Elimination of F(X) and X

27t2F2
1 + F1 − 1− 18tF1 +16t = 0Equivalently,

F1 = F(t; 1) =
(1− 12t)3/2 − 1+ 18 t

54t2
=

∑

n≥0

2 · 3n
n(n+1)

(2n

n

)

tn



Polynomial equations with one atalyti variable

Thm. Let Q be a polynomial in k + 3 variables. Let F(t; x) ≡ F(x) be theunique formal power series in t (with polynomial oe�ients in x) suh that

F(x) = F0(x) + t Q

(

F(x),∆F(x),∆(2)F(x), . . . ,∆(k)F(x), t, x

)

,where F0(x) ∈ C[x],
∆(i)F(x) =

F(x)− F1 − xF2 − · · · − xi−1Fi

xiand Fi is the oe�ient of xi−1 in F(x).

The above method works and F(x) is algebrai (as well as all the Fi's).

⊳ ⊳ ⋄ ⊲ ⊲

[MBM-Jehanne 05℄



Example: the hard-partile model on planar maps

t

◦ F(x) = 1+G(x) + tx2F(x)2 +
tx (xF(x)− F(1))

x− 1

• G(x) = txF(x) + txF(x)G(x) +
tx (G(x)−G(1))

x− 1Proposition: Let T ≡ T(t) be the unique series with onstant term 0 suh that

T(1− 2T)(1− 3T +3T2) = t.Then

t2F(1) = T2(1− 7T +16T2 + T − 15T3 +4T4).

[MBM-Jehanne 05℄



A generi example: intervals in the m-Tamari latties

An m-ballot path of size n:� starts at (0,0),� ends at (mn, n),� never goes below the line {x = my}.

Examples: m = 1 m = 2

[mbm, Fusy, Préville-Ratelle 11℄



m = 1: The (usual) Tamari lattie Tn
Covering relation:

T1

T2

T3

≺

a

b

S
a

T3

T2

T1

S

b

[Huang-Tamari 72℄



m = 1: The (usual) Tamari lattie Tn
Covering relation:

T1

T2

T3

≺

a

b

S
a

T3

T2

T1

S

b

[Huang-Tamari 72℄



The m-Tamari lattie T (m)
n

Covering relation:
≺ab b

a

S S

[Bergeron 10℄Proposition: De�nes a lattie



The m-Tamari lattie T (m)
n

m = 1, n = 4 m = 2, n = 3



Bergeron's onjeture (2010)

Conjeture: Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamarilattie T (m)
n is

f
(m)
n =

m+1

n(mn+1)

(n(m+1)2 +m

n− 1

)

• Related to the study of oinvariant spaes of polynomials in 3 sets of variables
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Bergeron's onjeture

Conjeture: Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamarilattie T (m)
n is

f
(m)
n =

m+1

n(mn+1)

(n(m+1)2 +m

n− 1

)

• Related to the study of oinvariant spaes of polynomials in 3 sets of variables

• Map-like numbers!
• When m = 1: proved by [Chapoton 06℄

f
(1)
n =

2

n(n+1)

(4n+1

n− 1

)

.This is also the number of 3-onneted planar triangulations on n+3 verties[Tutte 62℄

⇒ Bijetion found by [Bernardi & Bonihon 09℄



Generating funtions

Let I = [P,Q] be a Tamari interval. A ontat of I is a ontat of the lowerpath P with the x-axis.The initial rise of I is the height of the �rst peak of the upper path Q.We denote by F (m)(t;x, y) the generating funtion of m-Tamari intervals, where

t ounts the size, x the number of ontats and y the initial rise.size 66 ontatsinitial rise 1

[mbm, Fusy, Préville-Ratelle 11℄



A funtional equation

Proposition: For m ≥ 1, let F(x, y) ≡ F (m)(t; x, y) be the generating funtionof m-Tamari intervals. Then
F(x, y) = x+ xyt (F(x,1) ·∆)(m) (F(x, y)),where ∆ is the divided di�erene operator

∆S(x) =
S(x)− S(1)

x− 1
,and the power m means that the operator G(x) 7→ F(x) ·∆G(x) is applied mtimes.



Examples1. When m = 1, the equation reads

F(x, y) = x+ xytF(x,1)
F(x, y)− F(1, y)

x− 1
.When y = 1, we obtain a quadrati equation with one atalyti variable:

F(x) = x+ xtF(x)
F(x)− F(1)

x− 1
.

2. When m = 2,

F(x, y) = x+
xyt

x− 1
F(x,1)

(

F(x,1)
F(x, y)− F(1, y)

x− 1
− F(1,1)F ′x(1, y)

)

,When y = 1, we obtain a ubi equation with one atalyti variable:

F(x) = x+
xt

x− 1
F(x)

(

F(x)
F(x)− F(1)

x− 1
− F(1)F ′(1)

)

.



Solution of the funtional equation

Proposition: Let z, u and v be three indeterminates, and set

t = z(1− z)m
2+2m, x =

1+ u

(1 + zu)m+1
, and y =

1+ v

(1 + zv)m+1
.

Then F (m)(t;x, y) beomes a formal power series in z with oe�ients in Q[u, v],and this series is rational. More preisely,
yF (m)(t;x, y) =

(1+ u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1− zuv)(1− z)m+2

(

1+ u

(1 + zu)m+1
− 1 + v

(1 + zv)m+1

)

.

In partiular, yF (m)(t;x, y) is a symmetri series in x and y.Proof: solve for small values of m, guess the general form, and hek!



Bergeron's onjetureThe generating funtion F (m)(t; 1,1) of m-Tamari intervals is

F(t; 1,1) =
1− (m+1)Z

(1− Z)m+2
,with

Z =
t

(1− Z)m
2+2m

.

The Lagrange inversion formula gives the number of intervals of size mn as

f
(m)
n =

m+1

n(mn+1)

((m+1)2n+m

n− 1

)

.

Combinatorial proof?



Some referenes

• Polynomial equations with one atalyti variable, algebrai series and mapenumeration, MBM & Jehanne, J. Combin. Theory Ser. B 96 (2006)

• The number of intervals in the m-Tamari latties, MBM, Fusy & PrévilleRatelle, arxiv 1106.1498 (2011).



III. Linear equations withtwo (or more) atalyti variables

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y



Where does it ome from? Walks in the quarter plane

• Count walks in the quarter plane N2, starting from (0,0), onsisting of stepsN, W and SE, by their length (variable t) and the position of their endpoint(variables x and y):
F(t; x, y) ≡ F(x, y) =

∑

w
tℓ(w)xi(w)yj(w)In partiular:

◦ F(t; 0, y) ≡ F(0, y) ounts walks ending on the y-axis,

◦ F(x, y)− F(0, y) ounts those ending at a positive absissa.

• A step by step onstrution:
j

i

F(x, y) = 1+ tyF(x, y) +
t

x
(F(x, y)− F(0, y))

+
tx

y
(F(x, y)− F(x,0))



Do we really need this equation?

YES!(pas de disussion)



Does it have relatives?

• Walks in the quarter plane taking their steps in any (�nite) S ⊂ Z2[Kreweras 65℄, [Gessel 86℄, MBM, Mishna, Rehnitzer, Rashel, Kurkova, Kauers,Bostan, Zeilberger...
• Permutations with no asending sequene of length 4

• Involutions with no desending sequene of length 5

• Baxter permutations
• Vexillary involutions

• Planar maps equipped with a bipolar orientation [Baxter 01℄
• Planar maps equipped with a spanning tree
• ...



With an arbitrary number of atalyti variables:even more relatives

• Walks in Nd taking their steps in any (�nite) S ⊂ Zd[d = 3: Bostan & Kauers 09℄
F(x) = 1+ t

d
∑

i=1

xiF(x) + t
d
∑

i=1

F(x)− F(x1, . . . , xi−1,0, xi+1, . . . , xd)

xi

• Permutations with no asending sequene of length m [Guibert 95, MBM 09℄

• Involutions with no desending sequene of length m[Guibert 95, Jaggard & Marinel 07, MBM 09℄
B(x) = x1+tx1B(x)+t2x1

m
∑

k=1

xkxk+1
B(x)−B(x1, . . . , xk−1, xk+1, xk+1, . . . , xm)

xk − xk+1

• Young tableaux, plane partitions, viious walkers, osulating walkers...



Some bad news

• We have no general method that solves all suh equations

• The solution is not always D-�nite[MBM-Petkov²ek 03, Mishna-Rehnitzer 09℄

F(x, y) = 1+ txyF(x, y) + ty
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• But it is sometimes D-�nite... [MBM-Mishna 08℄

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• ... or even algebrai [MBM 05, Bostan-Kauers 10℄
F(x, y) = 1+ txyF(x, y) + t

F(x, y)− F(0, y)

x
+ t

F(x, y)− F(x,0)

y



Some bad newsClassi�ation?

• The solution is not always D-�nite[MBM-Petkov²ek 03, Mishna-Rehnitzer 09℄

F(x, y) = 1+ txyF(x, y) + ty
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• But it is sometimes D-�nite... [MBM-Mishna 08℄

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• ... or even algebrai [MBM 05, Bostan-Kauers 10℄
F(x, y) = 1+ txyF(x, y) + t

F(x, y)− F(0, y)

x
+ t

F(x, y)− F(x,0)

y



Some tools

• A key tool is a ertain group assoiated with the kernel of the equation (theoe�ient of F(x, y)) [Fayolle et al. 99℄

• From examples:it seems that F(x, y) is D-�nite if and only if the group is �nite



Walks on the half-line: another solution

• The equation:
(1− t(x+ x̄)) xF(x) = x− F0with x̄ = 1/x.

• The kernel is unhanged when x 7→ x̄. Hene

(1− t(x+ x̄))x̄F(x̄) = x̄− F0

• Eliminate F0 (rather than F(x)) by taking the di�erene:

xF(x)− x̄F(x̄) =
x− x̄

1− t(x+ x̄)

• Extrat the positive powers of x:
xF(x) = [x>0]

x− x̄

1− t(x+ x̄)

• A group of order 2 is generated by x 7→ x̄



Our prototype: Where is the group?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

yThe kernel reads
K(x, y) = 1− ty − t

x
− tx

y

It is a Laurent polynomial in x (and y), of degree 1 and valuation −1.Equivalently, xyK(x, y) is a quadrati polynomial in x (and y)



Our prototype: Where is the group?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

yThe kernel reads
K(x, y) = 1− ty − t

x
− tx

y

Φ

ΨObservation: K(x, y) is left invariant under the rational transformations

Φ : (x, y) 7→
(

y

x
, y

) and Ψ : (x, y) 7→
(

x,
x

y

)

.Moreover,

• Φ and Ψ are involutions

• They generate a (dihedral) group G



Our prototype: Where is the group?

• The transformations Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) generate agroup of order 6:
(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)

with x̄ = 1/x and ȳ = 1/y



Our prototype: the role of the group

• The equation reads
K(x, y) xyF(x, y) = xy− txF(x,0)− tyF(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is
(x, y)

Φ←→(x̄y, y)
Ψ←→(x̄y, x̄)

Φ←→(ȳ, x̄)
Ψ←→(ȳ, xȳ)

Φ←→(x, xȳ)
Ψ←→(x, y).

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)



Our prototype: the role of the group

• The equation reads
K(x, y) xyF(x, y) = xy− txF(x,0)− tyF(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is
(x, y)

Φ←→(x̄y, y)
Ψ←→(x̄y, x̄)

Φ←→(ȳ, x̄)
Ψ←→(ȳ, xȳ)

Φ←→(x, xȳ)
Ψ←→(x, y).

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)

K(x, y) x̄2yF(x̄y, x̄) = x̄2y − tx̄yF(x̄y,0) − tx̄F(0, x̄)
K(x, y) x̄ȳF(ȳ, x̄) = x̄ȳ − tȳF(ȳ,0) − tx̄F(0, x̄)

K(x, y) x2ȳF(x, xȳ) = x2ȳ − tȳF(ȳ,0) − txȳF(0, xȳ)

K(x, y) x2ȳF(x, xȳ) = x2ȳ − txF(x,0) − txȳF(0, xȳ)



Our prototype: the role of the group

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)

K(x, y) x̄2yF(x̄y, x̄) = x̄2y − tx̄yF(x̄y,0) − tx̄F(0, x̄)
· · · = · · ·

K(x, y) x2ȳF(x, xȳ) = x2ȳ − txF(x,0) − txȳF(0, xȳ)

⇒ Form the alternating sum of the equation over all elements of the orbit: thiseliminates all unknown series on the r.h.s.
K(x, y)

(

xyF(x, y)− x̄y2F(x̄y, y) + x̄2yF(x̄y, x̄)

− x̄ȳF(ȳ, x̄) + xȳ2F(ȳ, xȳ)− x2ȳF(x, xȳ)

)

=

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ.The orbit sum



Our prototype: the role of the group

xyF(x, y)− x̄y2F(x̄y, y) + x̄2yF(x̄y, x̄)

− x̄ȳF(ȳ, x̄) + xȳ2F(ȳ, xȳ)− x2ȳF(x, xȳ) =

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)

• Both sides are power series in t, with oe�ients in Q[x, x̄, y, ȳ].

• Extrat the part with positive powers of x and y:
xyF(x, y) = [x>0y>0]

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)is a D-�nite series.[Lipshitz 88℄



But but but...This is just the re�etion priniple! [Gessel-Zeilberger 92℄True. But the re�etion priniple is performed here at the level of power seriesrather than at a ombinatorial level. One an �rst perform on the equationall kinds of hanges of variables, that do not neessarily have a ombinatorialounterpart.



Two possible developments

• Classi�ation of walks with small steps in the quarter plane (S ⊂ {−1,0,1}2)[MBM & Mishna 08℄[Bostan & Kauers 10℄, [Kauers, Koutshan, Zeilberger 09℄[Mishna & Rehnitzer 09℄
• Examples with arbitrarily many atalyti parameters[MBM 10℄



79 models79 models
Walks with small steps in the quarter plane
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Orbit sum 6= 0 Orbit sum= 0(19) (4)
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79 models
Finite group23In�nite groupNot D-�nite?56

Orbit sum 6= 0 Orbit sum= 0(19) D-�nite (4) Algebrai



Orbit sum= 0(4) AlgebraiOrbit sum 6= 0(19) D-�nite

79 models
Finite group23In�nite groupNot D-�nite?56

Half-orbit sum
Gessel's walks
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Involutions avoiding (m+1)m · · ·21 (Case m = 2ℓ+1)Reursive onstrution: insert a yle ontaining the largest value

m = 5

ℓ = 2

This involution avoids 654321. There are 9 admissible ways to insert a 2-yle.For 1 ≤ j ≤ ℓ, keep trak of the size of the smallest NE square ontaining

(2j) · · ·21 (⇒ ℓ atalyti variables u1, . . . , uℓ) [Jaggard-Marinel 07℄

A(u) ≡ A(t;u1, . . . , uℓ) = u1,ℓ + tu1,ℓA(u)

+ t2u1,ℓ

ℓ
∑

k=1

uk,ℓ
A(u)− A(u1, . . . , uk−1uk,1, uk+1, . . . , uℓ)

uk − 1with ui,j = uiui+1 · · ·uj.



Involutions avoiding (m+1) · · ·21 (Case m = 2ℓ+1)

• Set ui = vi/vi+1.Then B(t; v1, . . . , vℓ) := A(t;u1, . . . , uℓ) is a series in t with oe�ients in Q[vi]and

B(v) = v1 + tv1B(v) + t2v1

ℓ
∑

k=1

vkvk+1
B(v)−B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ)

vk − vk+1with vℓ+1 = 1.

• The kernel reads

K(v) = 1− tv1 − t2v1

ℓ
∑

k=1

vkvk+1

vk − vk+1One multiplied by ∏k(vk − vk+1), it is quadrati in eah vk

• Look for the transformation of vk that leaves the kernel unhanged(Note that B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ) is independent from vk)



A hange of variables

• The equation:
B(v) = v1 + tv1B(v) + t2v1

ℓ
∑

k=1

vkvk+1
B(v)−B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ)

vk − vk+1

• The interesting transformations are best visible when setting

vi = 1− t(xi + · · ·+ xℓ)and B(t; v1, . . . , vℓ) = C(t; x1, . . . , xℓ). Then
(1− t− t

∑

xi − t
∑

x̄i)C(x) = 1− t
ℓ
∑

k=1

C(x1, . . . , xk−1 + xk,0, xk+1, . . . , xℓ)

xkwith x̄i = 1/xi.The kernel is invariant by all signed permutations of the xi, i.e., by the hyper-otahedral group Bℓ.



The orbit sum

• The equation:
(1− t− t

∑

xi − t
∑

x̄i)C(x) = 1− t
ℓ
∑

k=1

C(x1, . . . , xk−1 + xk,0, xk+1, . . . , xℓ)

xkwith x̄i = 1/xi.The kernel is invariant by all signed permutations of the xi, i.e., by the hyper-otahedral group Bℓ.
• Multiply by ∏

i x
i
i and form the alternating sum over Bℓ. This eliminates all

C(·) ourring on the r.h.s and gives:
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓC(x1, . . . , xℓ)
)

=
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓ
)

=
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄iThe orbit sum



Coe�ient extration

• We have obtained:
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓC(x1, . . . , xℓ)
)

=
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄i

• Extrat the oe�ient of x11 · · ·xℓℓ: this gives the length generating funtionof (m+1) · · ·21 avoiding involutions as:
C(0, . . . ,0) = [x11 · · ·xℓℓ]

det
(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄i



Coe�ient extration

• Extrat the oe�ient of x11 · · ·xℓℓ: this gives the length generating funtionof (m+1) · · ·21 avoiding involutions as:

C(0, . . . ,0) = [x11 · · ·xℓℓ]
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄ior, if we take the exponential generating funtion:

C̃(0, . . . ,0) = [x11 · · ·xℓℓ] det
(

(x
j
i − x̄

j
i)
)

exp(t+ t
∑

xi + t
∑

x̄i)



Coe�ient extration

• Extrat the oe�ient of x11 · · ·xℓℓ: this gives the length generating funtionof (m+1) · · ·21 avoiding involutions as:

C(0, . . . ,0) = [x11 · · ·xℓℓ]
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄ior, if we take the exponential generating funtion:

C̃(0, . . . ,0) = [x11 · · ·xℓℓ] det
(

(x
j
i − x̄

j
i)
)

exp(t+ t
∑

xi + t
∑

x̄i)

• This deouples the variables xi, and yields
C̃(0, . . . ,0) = exp(t) det

(

J|j−i| − Ji+j

)where

Ji(t) =
∑

n≥0

t2n+i

n!(n+ i)![Gordon 71℄, [Gessel 90℄



Some referenes

• Walks in a quadrant
◦ Walks with small steps in the quarter plane,MBM & Mishna, Contemp. Math. 520 (2010)

◦ The omplete generating funtion for Gessel's walks is algebrai,Bostan & Kauers, Pro. Amer. Math. So. (2010)

◦ Two non-holonomi lattie walks in the quarter plane, Mishna & Reh-nitzer, Theoret. Comput. Si. 410 (2009)
• Permutations with no long dereasing subsequene
◦ Counting permutations with no long monotone subsequene via generatingtrees and the kernel method, MBM, J. Alg. Combin. 33 (2011)

• More permutations

◦ Four lasses of pattern-avoiding permutations under one roof: generatingtrees with two labels, MBM, Eletroni J. Combinatoris 9 (2003)



IV. Polynomial equations withtwo (or more) atalyti variables

F(x, y) = xq(q−1)+xyt

q
F(1, y)F(x, y)+xt

F(x, y)− F(x,0)

y
−x2yt F(x, y)− F(1, y)

x− 1Examples only!



Rooted planar maps

2

5

degree 3

3

• verties

• edges

• and faes



Triangulations

Every fae has degree 3.Loops and multiple edges are allowed.



Enumeration of planar maps

• Equations with one atalyti variables

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

• Algebrai series
Arquès Bauer Bédard Bender Bernardi Bessis Bodirsky Bousquet-MélouBoulatov Bouttier Brézin Brown Can�eld Chauve Cori Di FranesoDuplantier Eynard Fusy Gao Goupil Goulden Guitter t'Hooft Itzykson JaksonJaquard Kazakov Kostov Krikun Labelle Lehman Leroux Liskovets Liu MahìMehta Mullin Parisi Poulalhon Rihmond RobinsonShae�er Shellenberg Strehl Tutte Vainshtein Vauquelin Visentin WalshWanless Wormald Zinn-Justin Zuber Zvonkine...



Maps equipped with an additional strutureIn ombinatoris, but mostly in statistial physisHow many maps equipped with... What is the expetedpartition funtion of...� a spanning tree? � the Ising model?[Mullin 67℄ [Boulatov, Kazakov, MBM, Shae�er,Bouttier et al.℄� a spanning forest?[Bouttier et al., Sportiello et al.℄ � the hard-partile model?[MBM, Shae�er, Jehanne,� a self-avoiding walk? Bouttier et al. 02, 07℄[Duplantier-Kostov 88℄ � the Potts model?� a proper q-olouring? [Eynard-Bonnet 99, Baxter 01,[Tutte 74, Bouttier et al. 02℄ MBM-Bernardi 09, Guionnet et al. 10℄



ColouringsProper
Non-proper (general)

Monohromati edge



The Potts model on planar maps

• Count all q-olourings of some familyM of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.

• In other words,
M(q, ν, t) =

∑

M

ZM(q, ν)te(M)where

ZM(q, ν) =
∑

c:V (M)→{1,2,...,q}
νm(c)

is the Potts partition funtion of M .Example: When M has one edge and two verties, ZM(q, ν) = qν + q(q − 1)

ν i j 6= ii i proper



The Potts model on planar maps

• Count all q-olourings of some familyM of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.
• In partiular,

M(q,0, t) :=
∑

M q−prop. oloured te(M) =
∑

M

χM(q)te(M)

ounts properly oloured maps.



The Potts model on planar maps

• Count all q-olourings of some familyM of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.
• Equivalently, �nd

∑

M∈M
TM(x, y) te(M) = · · ·where TM(x, y) is the Tutte polynomial of M . Connetion:

(x− 1)(y − 1)v(M)TM(x, y) =
∑

q−olourings of M

νm(M)

with q = (x− 1)(y − 1) and ν = y − 1.



Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fae.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0
Fd(t)

(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati equation with one atalyti variable, x



Reursive desription of planar maps: ontrating the root-edgeLet
F(t; y) ≡ F(y) =

∑

M

te(M)ydv(M) =
∑

d≥0
Fd(t)y

d

where e(M) is the number of edges and dv(M) the degree of the root vertex.

F(y) = 1 + ty2F(y)2 + t
∑

d≥0
Fd(t)

(

yd+1 + yd + · · ·+ y
)

= 1 + ty2F(y)2 + ty
yF(y)− F(1)

y − 1

The same equation... (duality)



Coloured planar maps: Forget algebraiity!

Theorem [Tutte 73℄: For planar triangulations,

∑

T

χ′T (1) t
v(T) =

∑

n
(−1)nb(n)tn+2where

b(n) =
2 (3n)!

n!(n+1)!(n+2)!
∼ 27nn−4,and this asymptoti behaviour prevents the series B(t) :=

∑

bntn from beingalgebrai.However, it satis�es a linear di�erential equation.



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variable



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variables



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variablesWHY IS THAT SO?

• The reursive desription of the Potts partition funtion

ZG(q, ν) = ZG\e(q, ν) + (ν − 1)ZG/e(q, ν)alls for a reursive desription of maps by ontration and deletion of edges.

• This is possible if one keeps trak of the degree of the outer fae, and thedegree of the root-vertex.



Equations with two atalyti variables

• Let
M(x, y) ≡M(q, ν, t;x, y) =

1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

• The Potts generating funtion of planar maps satis�es:

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.[Tutte 68℄ This equation has been sleeping for 40 years



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ =∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one atalyti variable y.



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one atalyti variable y.
• When q is generi, the generating funtion of properly q-oloured planartriangulations is di�erentially algebrai:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Adapt this to other equations!

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ =∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited



Our results

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 0,4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)[mbm-Bernardi 09℄ Counting olored planar maps: algebraiity results. Arxiv:0909:1695[mbm-Bernardi 11℄ Counting olored planar maps: di�erential equations



Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial oe�ients in ν, de�ned by

A = t

(

1+ 3 ν A− 3 ν A2 − ν2A3
)2

1− 2A+2 ν2A3 − ν2A4
.Then the Ising generating funtion of planar maps is

M(2, ν, t; 1,1) =
1+ 3 ν A− 3 ν A2 − ν2A3

(

1− 2A+2 ν2A3 − ν2A4
)2

P(ν, A)where

P(ν, A) = ν3A6 +2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1+ 2 ν)A2 − (3 + ν)A+1.

 Asymptotis: Phase transition at νc =
3+
√
5

2 , ritial exponents...



Example: properly 3-oloured planar maps (q = 3, ν = 0)

Let A be the quarti series in t de�ned by

A = t
(1 + 2A)3

(1− 2A3)
.Then the generating funtion of properly 3-oloured planar maps is

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

 Asymptotis: A random loopless planar map with n edges has approximately

(1.42...)n proper 3-olourings



Our results: when q is generi

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)



An expliit system of di�erential equations

Let D(t, v) = qν + (ν − 1)2 − q(ν +1)v +
(

q + t(ν − 1)(q − 4)(q + ν − 1)
)

v2.

• There exists a unique 8-tuple (P1(t), . . . , P4(t), Q1(t), Q2(t), R1(t), R2(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P4(t)v
4 + P3(t)v

3 + P2(t)v
2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +1,

R(t, v) = R2(t)v
2 +R1(t)v + q + ν − 3,with the initial onditions (at t = 0):

P(0, v) = (1− v)2 and Q(0, v) = 1− v.



An expliit system of di�erential equations (ont'd)

• The Potts generating funtion of planar maps, M(1,1) ≡M(q, ν, t; 1,1), sat-is�es
12 t2

(

qν + (ν − 1)2
)

M(q, ν, t; 1,1) =

8 t(q+ν−3)Q1(t)−Q1(t)
2+P2(t)−2Q2(t)−4 t (2− 3 ν − q)−12 t2 (q + ν − 3)2 .

Questions1. Use the struture of
1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,to obtain a single di�erential equation (or an expression?) for M(q, ν, t; 1,1).2. Relate this to ellipti funtions, and to the papers of [Bonnet & Eynard 99℄,and [Guionnet, Jones, Shlyakhtenko & Zinn-Justin 10℄



An analogous system for triangulationsLet D(t, v) = qν2 + (ν − 1) (4(ν − 1) + q) v +
(

qν(ν − 1)(q − 4)t+ (ν − 1)2
)

v2.

• There exists a unique 7-tuple (P1(t), . . . , P3(t), Q1(t), Q2(t), R0(t), R1(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

v2R

∂

∂v

(

v5R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P3(t)v
3 + P2(t)v

2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +2ν,

R(t, v) = R1(t)v +R0(t),with the initial onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 2ν + v.

• Expression of the Potts GF of triangulations in terms of the Pi and Qi



... and for properly q-oloured triangulations (ν = 0)Let D(v) = v +4− q.

• There exists a unique 4-tuple (P1, P2, P3, Q1) of zeries in t with polynomialoe�ients in q suh that
−4t

v

∂

∂v

(

v3

P

)

=
1

Q

∂

∂t

(

Q2

PD

)

.where

P(t, v) = P3(t)v
3 + P2(t) + P1(t)v +1,

Q(t, v) = Q1(t)v +1,with the initial onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 1.

• From the system, one an derive Tutte's di�erential equation,

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Coloured enumeration:bijetions?

Some bijetions exist in speial ases... but most remain to be found



Some existing bijetions

• Maps equipped with a spanning tree (TM(1,1))[Mullin 67℄, [Bernardi 07℄
•Maps equipped with a bipolar orientation ((−1)v(M)χ′M(1))[Felsner-Fusy-Noy-Orden 08℄,[Fusy-Poulalhon-Shae�er 08℄,[Bonihon-mbm-Fusy 08℄
• The Ising model on planar maps (ase q = 2)[MBM-Shae�er 02℄, [Bouttier et al. 07℄

ν

ν
ν



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)A shu�e of two plane trees
(2n

2k

)

CkCn−kwith Ck =
(

2k
k

)

/(k +1) ounts rooted trees with k edges.



Some referenes

• Counting planar maps, oloured or unoloured, MBM, Survey paper for the23rd Bristish Combinatorial Conferene, Exeter, July 2011. London Math.So. Leture Note Ser. 392 (2011)

• Counting olored planar maps: algebraiity results, MBM & Bernardi, J.Combin. Theory ser. B 101 (2011)
• Dihromati sums revisited, Tutte, J. Combin. Theory Ser. B, 66, (1996)



PerspetivesA. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0



PerspetivesA. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0

B. Equations with several atalyti variables
• Prove in a onstrutive manner the algebraiity of Gessel's walks in a quadrant

• Solve more problems of this type (e.g. osulating walkers)
• Prove non-D-�niteness in more ases



PerspetivesA. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0B. Equations with several atalyti variables
• Prove in a onstrutive manner the algebraiity of Gessel's walks in a quadrant

• Solve more problems of this type (e.g. osulating walkers)
• Prove non-D-�niteness in more asesC. Asymptotis

• Work out asymptotis and singularities diretly from equations with atalytivariables?


