Skew polynomial rings, Gröbner bases and the letterplace embedding of the free associative algebra

Roberto La Scala, Viktor Levandovskyy

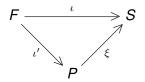
Università di Bari (Italy), RWTH Aachen (Germany)

arXiv:1009.4152

SLC 67 - IICA XVII, Bertinoro

La Scala, Levandovskyy (Università di Ba

Letterplace embedding



æ

ヘロア ヘロア ヘビア ヘビア

- $X = \{x_0, x_1, \ldots\}$ a finite or countable set;
- $K\langle X \rangle$ the free associative algebra generated by *X*;
- K[X] the polynomial ring with commuting variables in X.

Trivial

- To relate commutative structures (ideals, modules, etc) to non-commutative ones is easy.
- *K*⟨*X*⟩ → *K*[*X*] surjective homomorphism of algebras. To work modulo commutators [*x_i*, *x_j*].

Problem

- Is it possible to relate non-commutative structures to commutative ones?
- Apparently impossible: no algebra homomorphism $\mathcal{K}[X] \to \mathcal{K}\langle X \rangle$.
- But ... there is one way.

-

Kickoff

- $\mathbb{N}^* = \{1, 2, \ldots\}$ set of positive integers;
- $P = K[X \times \mathbb{N}^*]$ the polynomial ring in the variables $x_i(j) = (x_i, j)$.
- Doubilet, Rota & Stein (1974): $\iota' : F = K\langle X \rangle \rightarrow P$ such that $x_{i_1} \cdots x_{i_d} \mapsto x_{i_1}(1) \cdots x_{i_d}(d)$ is an injective *K*-linear map (infact \mathbb{S}_d -modules homomorphism for each degree *d*).
- Drawback: this is not algebra homomorphism.

Goal

- Extend P to a new algebra S and transform ι' into an algebra embedding ι : F → S.
- S is generated by all commutative variables x_i(j) except for a single new variable s satisfying the identity sx_i(j) = x_i(j + 1)s.

Σ -invariant ideals

- *P* a *K*-algebra, $\Sigma \subset \operatorname{End}_{K}(P)$ a submonoid.
- An ideal $I \subset P$ is Σ -invariant if $\varphi(I) \subset I$ for all $\varphi \in \Sigma$.
- $G \subset I$ is a Σ -basis of I if $\Sigma(G)$ is a basis of I.
- *I* may be not finitely generated as an ideal (say *P* not Noetherian), but finitely generated as Σ-invariant ideal (Σ infinite monoid).

Applications

- The ring of partial difference polynomials:
- $\Sigma = \langle \sigma_1, \ldots, \sigma_r \rangle \approx \mathbb{N}^r$, *P* the polynomial ring in the variables $\sigma^{\alpha}(u_i)$ where $u_i = u_i(t_1, \ldots, t_r)$ are functions and $\sigma^{\alpha} = \prod_k \sigma_k^{\alpha_k}$ are shift operators $u_i \mapsto u_i(t_1 + \alpha_1 h, \ldots, t_r + \alpha_r h)$.
- Algebraic statistic, e.g. Gaussian two-factor model:
- $P = K[x_{ij} \mid i, j \in \mathbb{N}]$, $Inc(\mathbb{N}) = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ strictly increasing}\}$, $\Sigma = \{x_{ij} \mapsto x_{f(i)f(j)} \mid f \in Inc(\mathbb{N})\}.$
- Representation/Invariant theory, PI-algebras and T-ideals, etc

Skew monoid rings

- To encode the action of P and Σ over ideals as a single left module structure defined by an appropriate ring extending P.
- S = P ★ Σ the skew monoid ring that is the free P-module with (left) basis Σ and multiplication defined by the identity σf = σ(f)σ for all σ ∈ Σ, f ∈ P.
- *I* is a Σ-invariant ideal of *P* if and only if *I* ⊂ *P* is a left *S*-submodule.
- Left Noetherianity of S implies I is finitely Σ -generated.

- A - B - M-

Skew letterplace algebra

- $P = K[X \times \mathbb{N}^*], \sigma : P \to P$ such that $x_i(j) \mapsto x_i(j+1),$ $\Sigma = \langle \sigma \rangle \subset \operatorname{End}_{\mathcal{K}}(P).$
- *P* domain, σ injective implies $S = P \star \Sigma$ domain.
- σ of infinite order implies S = P[s; σ] skew polynomial ring (Ore extension where σ-derivation is zero).
- We identify σ with variable s and denote $\sigma(f) = s \cdot f$.
- Element of *S* are $\sum_{i} f_i s^i$ with $f_i \in P$. Multiplication ruled by the identity $sf = (s \cdot f)s$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Skew letterplace embedding

- $\iota : F \to S$ algebra homomorphism such that $x_i \mapsto x_i(1)s$.
- ι is embedding since words $w = x_{i_1} \cdots x_{i_d}$ maps to monomials $x_{i_1}(1) \cdots x_{i_d}(d) s^d = \iota'(w) s^d$.
- ι is homogeneous map w.r.t. grading $S = \bigoplus_i S_i$ where $S_i = Ps^i$.

Following Doubilet & al., we call *P* the **letterplace algebra** and hence S, ι the **skew letterplace algebra** and **skew letterplace embedding**.

Ideal (and bases) correspondences

- We introduce 3 correspondences between the ideals of the rings *F*, *S* and *P* able to **transfer Gröbner bases computations** from one ring to another.
- F → S: between (graded) ideals of F and S is an extension-contraction process due to the embedding *ι*.
- P → S: between (graded Σ-invariant) ideals of P and S is due to a suitable grading for P that maps into the natural grading of S (S_i = Psⁱ) by a new embedding ξ : P → S. This correspondence works in a more general context that the letterplace one.
- F → P: between ideals of F and P which is essentially the composition of the above ones. This mapping appeared already in & Levandovskyy, J. Symbolic Comput., 44 (2009).

< ロ > < 同 > < 回 > < 回 > < 回 > <

From F to S: ideals

- *F* = *K*⟨*X*⟩ isomorphic to a graded subring *R* ⊂ *S* implies that graded two-sided ideals *I* ⊂ *F* ≈ *R* can be **extended** to graded two-sided ideals of *J* ⊂ *S*.
- Such extension process behaves well that is *J* ∩ *R* = *ι*(*I*). Hence, extension-contraction defines a **one-to-one correspondence** between all graded ideals of *I* ⊂ *F* and some class of ideals *J* ⊂ *S*.
- We call J skew letterplace analogue of I.

Problem

- There exists some correspondence between skew letterplace analogues in *S* and some class of ideals of *P*?
- Note: π : S → P such that sⁱ → 1 is a left S-module epimorphism. Left ideals of S maps into Σ-invariant ideals of P.
- What about a right inverse $P \rightarrow S$?

・ロット (雪) (山) (山)

General setting

- *P* polynomial ring with a countable set of variables, σ : *P* → *P* injective (infinite order) sending monomials into monomials.
- Denote $\hat{\mathbb{N}} = \{-\infty\} \cup \mathbb{N}$. Then $(\hat{\mathbb{N}}, \max, +)$ is a commutative idempotent semiring (or commutative dioid, max-plus algebra, etc)
- Assume P endowed also with a weight function that is w : Mon(P) → N̂ such that for all monomials m, n:

•
$$w(1) = -\infty; w(mn) = max(w(m), w(n));$$

•
$$w(\sigma^i(m)) = i + w(m)$$
.

Examples

• $P = K[X \times \mathbb{N}]$ with $\sigma : x_i(j) \mapsto x_i(j+1)$. One has the weight function $w(x_i(j)) = j$.

• Note: *P* is both the letterplace algebra and the **ring of ordinary difference polynomials** where $x_i(0) = u_i = u_i(t)$ are univariate functions and $x_i(j) = \sigma^j(u_i)$.

w-grading of P

- Weight function implies a grading P = ⊕_{i∈Ñ} P_i of the algebra P defined by the monoid (Ñ, max).
- Such grading is compatible with the action of Σ = ⟨σ⟩ that is σⁱP_j ⊂ P_{i+j}.

The right inverse of $\boldsymbol{\pi}$

• Extend Σ with the endomorphism $\sigma^{-\infty} : x_i \mapsto 0$.

•
$$\hat{\Sigma} = \{\sigma^{-\infty}\} \cup \Sigma, \, \hat{S} = P \star \hat{\Sigma}.$$

- Recall: $\pi : \hat{S} \to P, s^i \mapsto 1$ is a left \hat{S} -module epimorphism.
- Weight function implies existence of mapping ξ : P → Ŝ such that f → fsⁱ for all f ∈ P_i.
- ξ is an injective $\hat{\Sigma}$ -equivariant map such that $\pi\xi = id$.

From P to S: ideals

- To avoid the use of extended ring \hat{S} we restrict to ideals $J \neq P$.
- Let $J \neq P$ a w-graded Σ -invariant ideal of P.
- Denote J^S the graded two-sided ideal generated by $\xi(J) \subset S$.
- Then π(J^S) = J that is there is a one-to-one correspondence between all w-graded Σ-invariant ideals J ⊊ P and some class of graded ideals J^S ⊂ S.
- We call J^S the **skew analogue** of J.

Note: the correspondence is given in a general setting, not only for the letterplace context.

From F to P: ideals

- $P = K[X \times \mathbb{N}^*], \sigma : x_i(j) \mapsto x_i(j+1), w(x_i(j)) = j.$
- Recall: $\iota' = \pi \iota : F = K\langle X \rangle \to P$ s.t. $x_{i_1} \cdots x_{i_d} \mapsto x_{i_1}(1) \cdots x_{i_d}(d)$.
- Let $I \neq F$ be a graded two-sided ideal of F.
- Denote I^{P} the w-graded Σ -invariant ideal which is Σ -generated by $\iota'(I) \subset P$.
- Since ι = ξι' (THE DIAGRAM) one has that (I^P)^S coincides with the extension of ι(I) ⊂ R to S that is the skew letteplace analogue of I.
- Composing previous correspondences, one obtains a one-to-one correspondence between all graded two-sided ideals *I* ⊊ *F* and some class of w-graded Σ-invariant ideals *I*^P ⊊ *P*.
- We call *I*^{*P*} the **letterplace analogue** of *I*.

-

New goals

- To develop of a Gröbner bases theory for (graded) two-sided ideals of S = P * Σ.
- To develop of a Gröbner Σ-bases theory for (w-graded) Σ-invariant ideals of *P*.
- To understand how such generating sets maps into the ideal correspondences we found.

Applications

- **Unification** of commutative and non-commutative Gröbner bases theory (graded case) under a more general theory.
- Commutative CAS **gain new abilities** to compute with non-commutative expressions (Hecke algebras, enveloping algebras, etc) and also with (non-linear) difference equations (approximation of differential equations, combinatorics, etc).

< ロ > < 同 > < 回 > < 回 >

General setting

- *P* = *K*[*x*₀, *x*₁, ...] polynomial ring in a countable number of variables endowed with monomial ordering ≺.
- $\sigma: P \rightarrow P$ algebra endomorphism of infinite order such that:
- $\sigma(x_i)$ are monomials; $gcd(\sigma(x_i), \sigma(x_j)) = 1$ for $i \neq j$;
- $m \prec n$ implies $\sigma(m) \prec \sigma(n)$ for all monomials m, n.
- It follows that $\operatorname{Im}(\sigma(f)) = \sigma(\operatorname{Im}(f))$ and $\operatorname{spoly}(\sigma(f), \sigma(g)) = \sigma(\operatorname{spoly}(f, g))$ for all $f, g \in P$.

Not only maps sending variables into variables, but also for instance the endomorphism $x_i \mapsto x_i^d$ (Weispfenning) fits this setting. A similar setting appeared in Brouwer & Draisma, Math. Comp. 80, (2011)

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Monomial orderings of S

- $\operatorname{Mon}(S) = \{ms^i \mid m \in \operatorname{Mon}(P), i \ge 0\}.$
- Mon(*S*) is closed under multiplication: $(ms^i)(ns^j) = m(s^i \cdot n)s^{i+j}$.
- As usual, monomial orderings are well-orderings of Mon(*S*) compatible with multiplication.
- A monomial ordering for S is for instance defined: msⁱ ≺ ns^j if and only if i < j or i = j and m ≺ n.
- Note: this is also a monomial ordering for *S* as **free** *P***-module**.

Homogeneous Gröbner bases

- J a graded (two-sided) ideal of S, G ⊂ J a set of homogeneous elements.
- G is a (Gröbner) basis of J if and only if ΣGΣ is a (Gröbner) basis of J as P-submodule of S.
- Homogeneity simplifies two-sided generation: $fs^{i}(gs^{j})hs^{k} = f(s^{i+j} \cdot h) s^{i}(gs^{j})s^{k}$ for all $f, g, h \in P$.

Reduce computations by symmetry

- To compute a homogeneous Gröbner basis *G* in the ring *S* is equivalent to compute a Gröbner basis *G'* = Σ*G*Σ in the free *P*-module *S* (module Buchberger algorithm) and then extract *G* from *G'*.
- Since spoly(*sfs*, *sgs*) = *s*spoly(*f*, *g*)*s* for all *f*, *g* ∈ *S*, many S-polynomial computations are clearly redundant.
- Then, we give a criterion that reduces computations up to two-sided action defined by Σ.

Σ -criterion in S

 G ⊂ S is a homogeneous Gröbner basis if and only if the S-polynomials spoly(f, sⁱgs^j) and spoly(fsⁱ, s^jg) have a Gröbner representation with respect to ΣGΣ for any f, g ∈ G and i, j ≥ 0.

Note: auto S-polynomials arise as $spoly(gs^i, s^ig)$ for all *i*.

-

The polynomial ring P has an infinite number of variables and the free P-module S has infinite rank. No hope of termination?

Truncated termination in S

- Let $J \subset S$ be a graded ideal, H a homogeneous basis of J.
- Assume $H_d = \{f \in H \mid \deg_s(f) \le d\}$ is a finite set for some d.
- Then, there exists a homogeneous Gröbner basis G ⊂ J such that G_d is also finite that is d-truncated Buchberger algorithm terminates.
- In particular, **membership problem** has algorithmic solution for finitely generated graded ideals of the ring *S*.
- Proof: If $\Sigma_d = \{s^i\}_{i \leq d}$ then $H'_d = \Sigma_d H_d \Sigma_d$ is also a finite set. Define $P^{(d)}$ the polynomial ring in the finite number of variables occurring in elements of H'_d and put $S^{(d)} = \bigoplus_{i \leq d} P^{(d)} s^i$. The termination of *d*-truncated Buchberger algorithm for $H'_d \subset S^{(d)}$ is provided by Noetherianity of the ring $P^{(d)}$ and free $P^{(d)}$ -module $S^{(d)}$ of finite rank.

・ロット (雪) (ヨ) (ヨ)

In the same general setting, we have Gröbner basis theory for (w-graded) Σ -invariant ideals of *P*.

Gröbner ∑-bases

- Let $I \subset P$ be a Σ -invariant ideal.
- Define G a Gröbner Σ-basis of *I* if lm(G) is a Σ-basis of LM(I) = ⟨lm(I)⟩. In other words, Σ · G is a Gröbner basis of *I*.

Such bases are called "equivariant Gröbner bases" in Brouwer & Draisma. Owing to $\operatorname{spoly}(s \cdot f, s \cdot g) = s \cdot \operatorname{spoly}(f, g)$ for any $f, g \in P$, one has

Σ -criterion in P

G ⊂ P is a Gröbner basis if and only if the S-polynomial spoly(f, sⁱ ⋅ g) has a Gröbner representation with respect to Σ ⋅ G for any f, g ∈ G and i ≥ 0.

Note: auto S-polynomials arise as $spoly(g, s^i \cdot g)$ for all *i*.

Algorithm: SIGMAGBASIS

Input: *H*, a Σ -basis of a Σ -invariant ideal $I \subset P$. Output: *G*, a Gröbner Σ -basis of *I*.

```
G := H;
B := \{(f, g) \mid f, g \in G\};
while B \neq \emptyset do
   choose (f, g) \in B;
   B := B \setminus \{(f, g)\};
   for all i > 0
       h := \mathsf{REDUCE}(\mathsf{spoly}(f, s^i \cdot g), \Sigma \cdot G);
       if h \neq 0 then
          P := P \cup \{(h, g), (g, h), (h, h) \mid g \in G\};
          G := G \cup \{h\};
return G.
```

A > < = > < = >

No termination is provided in general. This is, for instance one, of main problems for computing with difference ideals. Nevertheless, weight functions provide some termination.

Truncated termination in P

- Let *I* ⊂ *P* be a w-graded Σ-invariant ideal, *H* be a w-homogeneous Σ-basis of *I*.
- Assume $H_d = \{f \in H \mid w(f) \le d\}$ is a finite set for some d.
- Then, there exists a *w*-homogeneous Gröbner Σ-basis G ⊂ I such that G_d is also finite that is *d*-truncated Buchberger algorithm terminates.
- In particular, membership problem has algorithmic solution for finitely generated w-graded Σ-invariant ideals of *P*.
- We argue in a similar way as for termination in *S*. Note that $w(s^i \cdot f) = i + w(f) \le d$ implies that $i \le d$.

-

In fact, truncated termination results for *P* and *S* are **equivalent** under skew ideal correspondence.

From P to S: GBs

- Let *I* ⊊ *P* be a w-graded Σ-invariant ideal and denote *J* = *I*^S its skew analogue.
- Recall: *J* ⊂ *S* is the graded two-sided ideal generated by ξ(*I*), where ξ : *f* → *fsⁱ* for all *f* ∈ *P_i*.
- Let $G \subset I$ be a subset of w-homogeneous elements. Then $\xi(G) \subset J$ is also a subset of homogeneous elements.
- G is a (Gröbner) Σ-basis of *I* if and only if ξ(G) is a (Gröbner) basis of *J*.

Back to letterplace context

- $P = K[X \times \mathbb{N}^*], \sigma : x_i(j) \mapsto x_i(j+1), w(x_i(j)) = j$, etc.
- For all words $w = x_{i_1} \cdots x_{i_d} \in Mon(F)$ one has $\iota(w) = \iota'(w)s^d = x_{i_1}(1) \cdots x_{i_d}(d)s^d \in Mon(S)$.
- The set Mon(R) of such elements is a submonoid of Mon(S).
- Then, monomial orderings of *S* can be restricted to $R \approx F$.
- The ring *P* (and hence *S*) is endowed with a multigrading.
- If m = x_{i₁}(j₁) ··· x_{i₀}(j₀) ∈ Mon(P) we define ∂(m) = (µ_k)_{k∈ℕ*} where µ_k is the number of times the integer k occurs in j₁,..., j₀.
- A homogeneous element *fs^d* ∈ S belongs to the subring R if and only if f is multi-homogeneous and ∂(f) = 1^d = (1,...,1,0,...).

< ロ > < 同 > < 回 > < 回 > < 回 > <

From F to S: GBs

- Let *I* ⊂ *R* be a graded two-sided ideal and denote *J* ⊂ *S* the extension of *I*.
- Let G ⊂ J be a subset of multi-homogeneous elements. Then G ∩ R ⊂ I is also a subset of homogeneous elements.
- If G is a (Gröbner) basis of J then $G \cap R$ is a (Gröbner) basis of I.

Composing this result with the skew GB correspondence one obtains finally

< 同 > < 三 > < 三 >

From F to P: GBs

- Denote $V = \pi(R) \subset P$, left *R*-module isomorphic to *R* (inverse ξ).
- Let *I* ⊊ *F* be a graded two-sided ideal and denote *J* ⊊ *P* its letterplace analogue.
- Let G ⊂ J be a set of w-homogeneous elements. Then
 G ∩ V ⊂ ι'(I) is also a subset of homogeneous elements.
- If G is a (Gröbner) Σ-basis of J then ι'⁻¹(G ∩ V) is a (Gröbner) basis of I.

This last result and corresponding algorithm appeared in - & Levandovskyy, J. Symbolic Comput., 44 (2009).

Algorithm: FREEGBASIS

Input: *H*, a homogeneous basis of a graded two-sided ideal $I \subsetneq F$. Output: *G*, a homogeneous Gröbner basis of *I*.

```
G := \iota'(H);
B := \{(f, g) \mid f, g \in G\};
while B \neq \emptyset do
   choose (f, g) \in B;
   B := B \setminus \{(f, g)\};
   for all i \ge 0 such that spoly(f, s^i \cdot g) \in V
       h := \mathsf{REDUCE}(\mathsf{spoly}(f, s^i \cdot q), \Sigma \cdot G);
       if h \neq 0 then
           P := P \cup \{(h, g), (g, h), (h, h) \mid g \in G\};
           G := G \cup \{h\};
return \iota'^{-1}(G).
```

As usual, termination is provided via truncation up to some degree.

Algorithmic unification

- FREEGBASIS is a variation of the algorithm SIGMAGBASIS: we just added a new criterion spoly(*f*, *sⁱ* ⋅ *g*) ∈ *V*.
- In this general algorithmic scheme one obtains computation of Gröbner bases for (ordinary) difference ideals and for graded two-sided ideals of the free associative algebra.
- Such scheme is based on polynomials rings in **commutative variables** and therefore it can be implemented in any commutative computer algebra system.
- The essential difference with usual commutative Gröbner bases computations is the use of the Σ-criterion and V-criterion reducing the number of S-polynomials to be considered.
- Termination of truncated computations can be obtained via suitable gradings.

Examples of the encoding of difference and non-commutative ideals in $P = K[X \times \mathbb{N}]$:

Lorentz attractor

$$D \cdot x_1(0) - A(x_2(0) - x_1(0)), D \cdot x_2(0) - x_1(0)(B - x_3(0)) + x_2(0), D \cdot x_3(0) - x_1(0)x_2(0) + Cx_3(0),$$

where
$$D = \Delta - \frac{1}{2}\Delta^2 + \frac{1}{3}\Delta^3 + ...$$
 and $\Delta \cdot x_i(0) = x_i(1) - x_i(0)$,
 $\Delta^2 \cdot x_i(0) = x_i(2) - 2x_i(1) + x_i(0)$, etc.

Hecke algebra of the symmetric group S_n

$$x_i(1)x_{i+1}(2)x_i(3) - x_{i+1}(1)x_i(2)x_{i+1}(3),$$

 $x_i(1)x_j(2) - x_j(1)x_i(2)$ for $|i - j| \ge 2,$
 $x_i(1)x_i(2) - (q - 1)x_i(1) - q.$

La Scala, Levandovskyy (Università di Bai

э

<ロ> <同> <同> < 同> < 同>

Implementation & experiments

- We developed an implementation of the algorithm FREEGBASIS in the computer algebra system **Singular**.
- See www.singular.uni-kl.de/Manual/latest and search for letterplace.
- Implementation is still in progress.
- Comparisons with the best implementations of non-commutative Gröbner bases (classic algorithm) are very encouraging.

Miscellanea

Example	Berg	GBNP	Sing	#In	#Out
nilp3-6	0:01	0:07	0:01	192	110
nilp3-10	0:23	1:49	0:03	192	110
nilp4-6	1:22	1:12	0:14	2500	891
nilp4-7	1:24	7:32	1:40	2500	1238
nilp4s-8	13:52	1h:14:54	0:57†	1200	1415
nilp4s-9	5h:50:26	40h:23:19	1:32†	1200	1415
metab5-10	0:20	13:58††	0:22	360	76
metab5-11	27:23	14:42 [†]	1:11	360	113
metab5s-10	0:32	1h:42:43 ^{††}	0:34	45	76
metab5s-11	27:33	25:27 [†]	2:05	45	113
tri4-7	0:48	18h [†]	0:08	12240	672
tri4s-7	0:40	3:37	0:07	3060	672
ufn3-6	0:31	1:43	0:23	125	1065
ufn3-8	2:18	9:33	2:20	125	1763
ufn3-10	5:24	20:37	3:25 [†]	125	2446

La Scala, Levandovskyy (Università di Bai

<ロ> <回> <回> <回> < 回</p>

31 / 34

æ

Examples on Serre's relations

Example	Berg	GBNP	SING	#In	#Out
ser-f4-15	16:05	1h:25:48	0:08	9	43
ser-e6-12	0:49	5:39	0:07	20	76
ser-e6-13	2:36	14:52	0:14	20	79
ser-hall-10	0:04	7:82	0:01	5	33
ser-hall-15	1h:03:21	4h:06:00	1:58	5	112
ser-ehall2-12	0:56	3:44	0:37	5	126
ser-eha112-13	1h:12:50	34:53	4:08	5	174

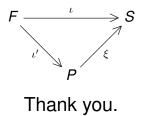
- ₹ 🖬 🕨

Future developments

- Extend theory and methods to finitely generated free commutative semigroups Σ = (σ₁,..., σ_r) to cover partial difference ideals (in progress).
- Extend letterplace approach to non-graded ideals of K(X) via (de)homogeneization techniques (in progress).
- Consider endomorphism semigroups defined by Inc(ℕ) for applications to algebraic statistic.
- Develop all algorithms related to Gröbner bases computations (free resolutions, Hilbert functions, ideal decomposition etc) in the general context of Σ-invariant ideals and modules.

Implementing all of this.

-



La Scala, Levandovskyy (Università di Bai

Letterplace embedding

SLC 67 - IICA XVII, Bertinoro 34 / 34