67th Séminaire Lotharingien de Combinatoire XVII Incontro Italiano di Combinatoria Algebrica

SCHUR-WEYL DUALITY FOR THE ROOK MONOID - COMBINATORIAL ASPECTS

Inês Legatheaux Martins
joint work with Carlos André

Bertinoro, September 19th 2011
UNIVERSITY OF LISBON - CELC

Motivation

Let n and m be positive integers. Let S_{n} be the symmetric group on $[n]=\{1, \ldots, n\}$.

Let $V \cong \mathbb{C}^{m}$ be an m-dimensional vector space over \mathbb{C} with basis $\left\{e_{1}, \cdots, e_{m}\right\}$.

There is a right action of $\mathbb{C}\left[S_{n}\right]$ on $\otimes^{n} V$ given by place permutation

$$
\left(v_{1} \otimes \cdots \otimes v_{n}\right) \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}
$$

where $\sigma \in S_{n}$ and $v_{1}, \cdots, v_{n} \in V$.
Let λ be a partition of n and let χ^{λ} be the irreducible character of S_{n} corresponding to λ.

For $v_{1}, \cdots, v_{n} \in V$, set $v^{\otimes}=v_{1} \otimes \cdots \otimes v_{n}$.
Let π_{λ} be the linear operator of $\otimes^{n} V$ given by

$$
\pi_{\lambda}\left(v^{\otimes}\right)=\frac{\chi^{\lambda}(1)}{n!} \sum_{\sigma \in S_{n}} \chi^{\lambda}(\sigma)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

Let $v_{1}, \cdots v_{n} \in V$, and $v^{\otimes}=v_{1} \otimes \cdots \otimes v_{n}$. The image $\pi_{\lambda}\left(\otimes^{n} V\right)$ is a symmetry class of tensors and $\pi_{\lambda}\left(v^{\otimes}\right)$ is called a symmetrized tensor.

Classic problems are to determine necessary and sufficient conditions for the annulment and equality of symmetrized tensors [C. Gamas; J. Dias da Silva]. For example,

Theorem 1 (Gamas, 1988) Let λ be a partition of n and let v_{1}, \cdots, v_{n} be vectors in V. Then

$$
\pi_{\lambda}\left(v_{1} \otimes \cdots \otimes v_{n}\right) \neq 0
$$

if and only if there is a tableau T of shape λ whose columns index linearly independent subsets of $\left\{v_{1}, \cdots, v_{n}\right\}$.

Schur-Weyl Duality and Berget’s approach

Let $G=G L_{m}(\mathbb{C}) . \quad G$ acts diagonally on $\otimes^{n} V$ via, for $g \in G$ and $v_{1}, \cdots, v_{n} \in V$,

$$
g\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g\left(v_{1}\right) \otimes \cdots \otimes g\left(v_{n}\right) .
$$

This action centralizes the right action of $\mathbb{C}\left[S_{n}\right]$ on $\otimes^{n} V$ by place permutation. We have

Theorem 2 (Schur-Weyl Duality)

$$
\mathbb{C}\left[S_{n}\right] \cong \operatorname{End}_{\mathbb{C}[G]}\left(\otimes^{n} V\right)
$$

and

$$
\mathbb{C}[G] \cong E n d_{\mathbb{C}\left[S_{n}\right]}\left(\otimes^{n} V\right)
$$

The Rook Monoid

Definition 1 The rook monoid R_{n} is the set of all partial permutations of $[n]$ endowed with the usual composition of partial functions.

Equivalently, R_{n} is the set of all $n \times n$ matrices that contain at most one entry equal to 1 in each column and row and zeros elsewhere, under matrix multiplication.

Example Let $\sigma \in R_{5}$ be

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & - & 1 & 4 & -
\end{array}\right)
$$

The element σ can be represented as

$$
\sigma=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Problems

(i) Is it possible to define the notion of partial symmetry classes of tensors if we replace the action of S_{n} on $\otimes^{n} V$ by a suitable action of the rook monoid R_{n} on some tensor space?
(ii) What can we say about the annulment or equality of partially symmetrized tensors?
(iii) What combinatorics are involved in those problems (in particular, with relation with Matroid Theory)?

Representation theory of $\mathbb{C}\left[R_{n}\right]$
Theorem 3 (Munn, 1957) For $1 \leq r \leq n$, let $A_{r}=\mathcal{M}_{\binom{n}{r}}\left(\mathbb{C}\left[S_{r}\right]\right)$ be the \mathbb{C}-algebra of all matrices with rows and columns indexed by subsets $I, J \subseteq[n]$ of size r and entries in $\mathbb{C}\left[S_{r}\right]$. For $r=0$, let $A_{0} \cong \mathbb{C}$. Then

$$
\mathbb{C}\left[R_{n}\right] \cong \bigoplus_{r=0}^{n} \mathcal{M}_{\binom{n}{r}}\left(\mathbb{C}\left[S_{r}\right]\right)
$$

In particular, $\mathbb{C}\left[R_{n}\right]$ is a semisimple algebra.
Theorem 4 (Munn, 1957) Let $0 \leq r \leq n$. For each partition λ of r, let ρ^{λ} be the irreducible representation of $\mathbb{C}\left[S_{r}\right]$ corresponding to λ. The set
$\left\{\rho^{\lambda^{*}}: \lambda\right.$ is a partition of $\left.r, r=0,1, \cdots n\right\}$
is a full set of inequivalent irreducible representations of R_{n}.

Schur-Weyl duality for R_{n} and $G L_{m}(\mathbb{C})$

Let $V \cong \mathbb{C}^{m}$ be an m-dimensional vector space over \mathbb{C} and $U=V \oplus \mathbb{C}$.

Theorem 5 (Solomon, 2002) Let $G L_{m}(\mathbb{C})$ act on $\otimes^{n} U$ by fixing \mathbb{C} and $\phi: R_{n} \mapsto \operatorname{End}_{\mathbb{C}}\left(\otimes^{n} U\right)$ defined by the right action of R_{n} over $\otimes^{n} U$. If $m \geq n$, then

$$
\mathbb{C}\left[R_{n}\right] \cong \operatorname{End}_{\mathbb{C}\left[G L_{m}(\mathbb{C})\right]}\left(\otimes^{n} U\right)
$$

A naive application

Let λ be a partition of r, where $1 \leq r \leq n$. The primitive central idempotent of R_{n} corresponding to λ is given by

$$
e_{\lambda}^{*}=\frac{\chi^{\lambda}\left(1_{r}\right)}{r!} \sum_{\substack{K \subseteq[n] \\|K|=r \mid K \subseteq=r}} \sum_{X \subseteq K} \sum_{\tau \in S_{r}}(-1)^{|K|-|X|} \chi^{\lambda}(\tau)\left(p_{K} \tau p_{K}^{-1}\right)_{\mid X}
$$

Polynomial representations of $G L_{m}(\mathbb{C})$

Let $V \cong \mathbb{C}^{m}$ be an m-dimensional vector space over \mathbb{C} and

$$
U=V \oplus \mathbb{C} e_{\infty}
$$

with basis $\left\{e_{1}, \cdots, e_{m}, e_{\infty}\right\}$ over \mathbb{C}.

For every $X \subseteq[n]$, set

$$
\Gamma_{X}(m)=\{\alpha: X \mapsto[m]\}
$$

and $\Gamma(m)=\bigcup_{X \subseteq[n]} \Gamma_{X}(m)$.
Example Let $m=7$ and $n=5$.

$$
\text { If } \begin{aligned}
X & =\{1,3,5\} \subseteq[5], \text { then } \\
\alpha & =(\alpha(1), \alpha(3), \alpha(5))=(7,2,2) \in \Gamma_{X}(7) .
\end{aligned}
$$

Polynomial representations of $G L_{m}(\mathbb{C})$

For $X \subseteq[n]$, let $\alpha \in \Gamma_{X}(m), \alpha: X \mapsto[m]$. the element $e_{\alpha}^{\otimes} \in \otimes^{n} U$ will be defined by

$$
e_{\alpha}^{\otimes}=e_{\beta(1)} \otimes \cdots \otimes e_{\beta(n)}
$$

where $\beta:[n] \mapsto[m] \in \Gamma_{[n]}(m)$ and $\beta(i)=\alpha(i)$ if $i \in X$ and $e_{\beta(i)}=e_{\infty}$ if $i \notin X$.

Example As in the previous example, let $m=7, n=5$ and $X=\{1,3,5\} \subseteq[5]$. As before

$$
\alpha=(\alpha(1), \alpha(3), \alpha(5))=(7,2,2) \in \Gamma_{X}(7) .
$$

Then, the element $e_{\alpha}^{\otimes} \in \otimes^{5} U$ is given by

$$
e_{\alpha}^{\otimes}=e_{7} \otimes e_{\infty} \otimes e_{2} \otimes e_{\infty} \otimes e_{2} .
$$

The set $\left\{e_{\alpha}^{\otimes}: \alpha \in \Gamma(m)\right\}$ is a \mathbb{C}-basis of $\otimes^{n} U$.

Polynomial representations of $G L_{m}(\mathbb{C})$

Let $G=G L_{m}(\mathbb{C})$. U can be regarded has a $\mathbb{C}[G]$-module with, for any $j=1, \cdots, m$ and $g \in G$,

$$
\text { g.e } e_{j}=\sum_{i=1}^{m} c_{i, j}(g) e_{i} \text { and } g \cdot e_{\infty}=e_{\infty}
$$

where $c_{i, j}: G \mapsto \mathbb{C}$ is given by $c_{i, j}(g)=g_{i, j}$.
G acts diagonally on $\otimes^{n} U$ via

$$
g\left(u_{1} \otimes \cdots \otimes u_{n}\right)=g\left(u_{1}\right) \otimes \cdots \otimes g\left(u_{n}\right),
$$

for $g \in G$ and $u_{1}, \cdots, u_{n} \in U$.

Equivalently, let $X=\left\{x_{1}, \cdots, x_{r}\right\} \subseteq[n], \beta \in$ $\Gamma_{X}(m), e_{\beta}^{\otimes} \in \otimes^{n} U$ is the corresponding basis element and $g \in G$, then

$$
g \cdot e_{\beta}^{\otimes}=\sum_{\alpha \in \Gamma_{X}(m)} c_{\alpha, \beta}(g) e_{\alpha}^{\otimes}
$$

where $c_{\alpha, \beta}(g)=c_{\alpha\left(x_{1}\right), \beta\left(x_{1}\right)}(g) \cdots c_{\alpha\left(x_{r}\right), \beta\left(x_{r}\right)}(g)$.

The Schur Algebra

$\mathcal{A}=\mathcal{A}_{n}(m)=<c_{\alpha, \beta}: \alpha, \beta \in \Gamma_{X}(m), X \subseteq[n]>$ is the \mathbb{C}-space generated be all the monomial functions $c_{\alpha, \beta}: G \mapsto \mathbb{C}$.

The Schur algebra \mathcal{S} is the dual \mathbb{C}-space of \mathcal{A}

$$
\mathcal{S}=\mathcal{A}^{*}=\operatorname{Hom}_{\mathbb{C}}(\mathcal{A} ; \mathbb{C})
$$

\mathcal{S} is a finite-dimensional associative \mathbb{C}-algebra.

Every $\mathbb{C}[G]$-module whose coefficient space lies in \mathcal{A} can be viewed as a \mathcal{S}-module.

Therefore, $\otimes^{n} U$ has the structure of a left \mathcal{S}-module. For any $\xi \in \mathcal{S}, X \subseteq[n]$ and $\beta \in \Gamma_{X}(m)$, we define

$$
\xi \cdot e_{\beta}^{\otimes}=\sum_{\alpha \in \Gamma_{X}(m)} \xi\left(c_{\alpha, \beta}\right) e_{\alpha}^{\otimes}
$$

Let $\mathcal{R}_{n}=\bigoplus_{r=0}^{n} \mathcal{M}_{\binom{n}{r}}\left(\mathbb{C}\left[S_{r}\right]\right)$ be the \mathbb{C}-algebra of matrices referred to in theorem 3.

It is possible to define an appropriate right \mathcal{R}_{n}-action on $\otimes^{n} U$ that commutes with the above left \mathcal{S}-action. Since $\mathcal{R}_{n} \cong \mathbb{C}\left[R_{n}\right]$ as \mathbb{C}-algebras, we have

Theorem 6 (Schur-Weyl Duality) Let $m \geq$ n. The representation $\rho: \mathcal{S} \mapsto E n d_{\mathbb{C}}\left(\otimes^{n} U\right)$ afforded by the left action of \mathcal{S} on $\otimes^{n} U$ induces an isomorphism of \mathbb{C}-algebras

$$
\mathcal{S} \cong E n d_{\mathbb{C}\left[R_{n}\right]}\left(\otimes^{n} U\right)
$$

An application

Let $0 \leq r \leq n$ and let λ be a partition of r. Consider the linear operator of $\otimes^{n} U$ associated with $\lambda, \pi_{\lambda}^{*} \in E n d_{\mathcal{S}}\left(\otimes^{n} U\right)$.

Let $u_{1}, \cdots, u_{n} \in U$ and $u^{\otimes}=u_{1} \otimes \cdots \otimes u_{n} \in \otimes^{n} U$. $\mathcal{S}\left(u^{\otimes}\right)$ is the \mathcal{S}-submodule of $\otimes^{n} U$ generated by u^{\otimes},
$\mathcal{R}\left(u^{\otimes}\right)$ is the $\mathbb{C}\left[R_{n}\right]$-submodule of $\otimes^{n} U$ generated by u^{\otimes}.

Proposition 1 Let $0 \leq r \leq n$ and let λ be a partition of r. The following are equivalent
(i) The multiciplicity of λ is positive in $\mathcal{S}\left(u^{\otimes}\right)$;
(ii) The multiciplicity of λ is positive in $\mathcal{R}\left(u^{\otimes}\right)$;
(iii) $\pi_{\lambda}^{*}\left(u^{\otimes}\right) \neq 0$.

Further directions

Let $0 \leq r \leq n$ and let λ be a partition of r. A λ_{r}^{n}-tableau is a Ferrers diagram of shape λ filled with r distinct entries from the set $\{1,2, \cdots, n\}$.

In 2002, C. Grood showed that the irreducible $\mathbb{C}\left[R_{n}\right]$-modules can be realized in terms of λ_{r}^{n}-tableaux.

Using Schur algebras, we expect to provide a combinatorial condition for the annulment of a partial symmetrized tensor $\pi_{\lambda}^{*}\left(u^{\otimes}\right)$ analog to Gama's condition.

We also expect to study and solve open problems related to the linear matroid determined by a finite collection of vectors $u=\left\{u_{1}, \cdots, u_{n}\right\}$, where $u_{i} \in U$.

References

A. Berget, A short proof of Gama's theorem, Linear Algebra and its Applications, 430 (2009) 791-794.
A. Berget, Equality of symmetrized tensors and the coordinate ring of the flag variety, submetido.
H. da Cruz, J. A. Dias da Silva, Equality of immanantal decomposable tensors, Linear Algebra and its Applications, 395 (2005) 95-119.
H. da Cruz, J. A. Dias da Silva, Equality of immanantal decomposable tensors, Linear Algebra and its Applications, 401 (2005) 29-46.
J. A. Dias da Silva, New conditions for equality of decomposable symmetrized tensors, Linear

Algebra and its Applications 245 (1996) 353372.
C. Gamas, Conditions for a symmetrized decomposable tensor to be zero, Linear Algebra and its Applications 108 (1988) 83-119.
J. A. Green, Polynomial Representations of GLn, Springer-Verlag, New York, 1980.
C. Grood, A Specht module analog for the rook monoid, Electronic Journal of Combinatorics 9 (2002), Research Paper 2.
M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
M. Malandro, D. Rockmore, Fast Fourier transforms for the rook monoid (2007).
W. D. Munn, The characters of the symmetric inverse semigroup, Mathematical Proceedings of the Cambridge Philosophical Society 53 (1957) 13-18.
W. D. Munn, Matrix representations of semigroups Mathematical Proceedings of the Cambridge Philosophical Society 53 (1957) 5-12.
L. Solomon, Representations of the rook monoid, Journal of Algebra 256 (2002) 309-342.

