67th Séminaire Lotharingien de Combinatoire -XVII Incontro Italiano di Combinatoria Algebrica

SCHUR-WEYL DUALITY FOR THE ROOK MONOID - COMBINATORIAL ASPECTS

Inês Legatheaux Martins

joint work with Carlos André

Bertinoro, September 19th 2011 UNIVERSITY OF LISBON - CELC

Motivation

Let *n* and *m* be positive integers. Let S_n be the symmetric group on $[n] = \{1, \ldots, n\}$.

Let $V \cong \mathbb{C}^m$ be an *m*-dimensional vector space over \mathbb{C} with basis $\{e_1, \cdots, e_m\}$.

There is a right action of $\mathbb{C}[S_n]$ on $\otimes^n V$ given by place permutation

 $(v_1 \otimes \cdots \otimes v_n) \sigma = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)},$ where $\sigma \in S_n$ and $v_1, \cdots, v_n \in V.$

Let λ be a partition of n and let χ^{λ} be the irreducible character of S_n corresponding to λ .

For
$$v_1, \cdots, v_n \in V$$
, set $v^{\otimes} = v_1 \otimes \cdots \otimes v_n$.

Let π_{λ} be the linear operator of $\otimes^n V$ given by

$$\pi_{\lambda}(v^{\otimes}) = \frac{\chi^{\lambda}(1)}{n!} \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma)(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}).$$

Let $v_1, \dots v_n \in V$, and $v^{\otimes} = v_1 \otimes \dots \otimes v_n$. The image $\pi_{\lambda}(\otimes^n V)$ is a symmetry class of tensors and $\pi_{\lambda}(v^{\otimes})$ is called a symmetrized tensor.

Classic problems are to determine necessary and sufficient conditions for the annulment and equality of symmetrized tensors [C. Gamas; J. Dias da Silva]. For example,

Theorem 1 (Gamas, 1988) Let λ be a partition of n and let v_1, \dots, v_n be vectors in V. Then

 $\pi_{\lambda}(v_1\otimes\cdots\otimes v_n)\neq 0$

if and only if there is a tableau T of shape λ whose columns index linearly independent subsets of $\{v_1, \dots, v_n\}$.

Schur-Weyl Duality and Berget's approach

Let $G = GL_m(\mathbb{C})$. G acts diagonally on $\otimes^n V$ via, for $g \in G$ and $v_1, \dots, v_n \in V$,

$$g(v_1 \otimes \cdots \otimes v_n) = g(v_1) \otimes \cdots \otimes g(v_n).$$

This action centralizes the right action of $\mathbb{C}[S_n]$ on $\otimes^n V$ by place permutation. We have

Theorem 2 (Schur-Weyl Duality)

$$\mathbb{C}[S_n] \cong End_{\mathbb{C}[G]}(\otimes^n V)$$

and

$$\mathbb{C}[G] \cong End_{\mathbb{C}[S_n]}(\otimes^n V).$$

The Rook Monoid

Definition 1 The rook monoid R_n is the set of all partial permutations of [n] endowed with the usual composition of partial functions.

Equivalently, R_n is the set of all $n \times n$ matrices that contain at most one entry equal to 1 in each column and row and zeros elsewhere, under matrix multiplication.

Example Let $\sigma \in R_5$ be

The element σ can be represented as

Problems

- (*i*) Is it possible to define the notion of partial symmetry classes of tensors if we replace the action of S_n on $\otimes^n V$ by a suitable action of the rook monoid R_n on some tensor space?
- (*ii*) What can we say about the annulment or equality of partially symmetrized tensors?
- (*iii*) What combinatorics are involved in those problems (in particular, with relation with Matroid Theory)?

Representation theory of $\mathbb{C}[R_n]$

Theorem 3 (Munn, 1957) For $1 \leq r \leq n$, let $A_r = \mathcal{M}_{\binom{n}{r}}(\mathbb{C}[S_r])$ be the \mathbb{C} -algebra of all matrices with rows and columns indexed by subsets $I, J \subseteq [n]$ of size r and entries in $\mathbb{C}[S_r]$. For r = 0, let $A_0 \cong \mathbb{C}$. Then

$$\mathbb{C}[R_n] \cong \bigoplus_{r=0}^n \mathcal{M}_{\binom{n}{r}}(\mathbb{C}[S_r]).$$

In particular, $\mathbb{C}[R_n]$ is a semisimple algebra.

Theorem 4 (Munn, 1957) Let $0 \leq r \leq n$. For each partition λ of r, let ρ^{λ} be the irreducible representation of $\mathbb{C}[S_r]$ corresponding to λ . The set

 $\{\rho^{\lambda^*}: \lambda \text{ is a partition of } r, r = 0, 1, \dots n\}$ is a full set of inequivalent irreducible representations of R_n .

Schur-Weyl duality for R_n and $GL_m(\mathbb{C})$

Let $V \cong \mathbb{C}^m$ be an *m*-dimensional vector space over \mathbb{C} and $U = V \oplus \mathbb{C}$.

Theorem 5 (Solomon, 2002) Let $GL_m(\mathbb{C})$ act on $\otimes^n U$ by fixing \mathbb{C} and $\phi : R_n \mapsto End_{\mathbb{C}}(\otimes^n U)$ defined by the right action of R_n over $\otimes^n U$. If $m \ge n$, then

$$\mathbb{C}[R_n] \cong End_{\mathbb{C}[GL_m(\mathbb{C})]}(\otimes^n U).$$

A naive application

Let λ be a partition of r, where $1 \le r \le n$. The primitive central idempotent of R_n corresponding to λ is given by

$$e_{\lambda}^{*} = \frac{\chi^{\lambda}(1_{r})}{r!} \sum_{\substack{K \subseteq [n] \\ |K| = r}} \sum_{\substack{X \subseteq K \\ \tau \in S_{r}}} \sum_{\tau \in S_{r}} (-1)^{|K| - |X|} \chi^{\lambda}(\tau) (p_{K}\tau p_{K}^{-1})_{|X|}$$

7

Polynomial representations of $GL_m(\mathbb{C})$

Let $V \cong \mathbb{C}^m$ be an m-dimensional vector space over $\mathbb C$ and

$$U = V \oplus \mathbb{C}e_{\infty}$$

with basis $\{e_1, \cdots, e_m, e_\infty\}$ over \mathbb{C} .

For every
$$X \subseteq [n]$$
, set
 $\Gamma_X(m) = \{ \alpha : X \mapsto [m] \}$
and $\Gamma(m) = \bigcup_{X \subseteq [n]} \Gamma_X(m).$

Example Let m = 7 and n = 5.

If
$$X = \{1, 3, 5\} \subseteq [5]$$
, then
 $\alpha = (\alpha(1), \alpha(3), \alpha(5)) = (7, 2, 2) \in \Gamma_X(7).$

Polynomial representations of $GL_m(\mathbb{C})$

For $X \subseteq [n]$, let $\alpha \in \Gamma_X(m)$, $\alpha : X \mapsto [m]$. the element $e_{\alpha}^{\otimes} \in \otimes^n U$ will be defined by

$$e_{\alpha}^{\otimes} = e_{\beta(1)} \otimes \cdots \otimes e_{\beta(n)}$$

where $\beta : [n] \mapsto [m] \in \Gamma_{[n]}(m)$ and $\beta(i) = \alpha(i)$ if $i \in X$ and $e_{\beta(i)} = e_{\infty}$ if $i \notin X$.

Example As in the previous example, let m = 7, n = 5 and $X = \{1, 3, 5\} \subseteq [5]$. As before

$$\alpha = (\alpha(1), \alpha(3), \alpha(5)) = (7, 2, 2) \in \Gamma_X(7).$$

Then, the element $e_{\alpha}^{\otimes} \in \otimes^{5}U$ is given by

$$e_{\alpha}^{\otimes} = e_7 \otimes e_{\infty} \otimes e_2 \otimes e_{\infty} \otimes e_2.$$

The set $\{e_{\alpha}^{\otimes} : \alpha \in \Gamma(m)\}$ is a \mathbb{C} -basis of $\otimes^{n} U$.

Polynomial representations of $GL_m(\mathbb{C})$

Let $G = GL_m(\mathbb{C})$. U can be regarded has a $\mathbb{C}[G]$ -module with, for any $j = 1, \dots, m$ and $g \in G$,

$$g.e_j = \sum_{i=1}^m c_{i,j}(g)e_i$$
 and $g.e_\infty = e_\infty$

where $c_{i,j} : G \mapsto \mathbb{C}$ is given by $c_{i,j}(g) = g_{i,j}$.

G acts diagonally on $\otimes^n U$ via

$$g(u_1 \otimes \cdots \otimes u_n) = g(u_1) \otimes \cdots \otimes g(u_n),$$

for $g \in G$ and $u_1, \cdots, u_n \in U.$

Equivalently, let $X = \{x_1, \dots, x_r\} \subseteq [n], \beta \in \Gamma_X(m), e_\beta^{\otimes} \in \otimes^n U$ is the corresponding basis element and $g \in G$, then

$$g.e_{\beta}^{\otimes} = \sum_{\alpha \in \Gamma_X(m)} c_{\alpha,\beta}(g) e_{\alpha}^{\otimes}$$

where $c_{\alpha,\beta}(g) = c_{\alpha(x_1),\beta(x_1)}(g) \cdots c_{\alpha(x_r),\beta(x_r)}(g)$.

The Schur Algebra

 $\mathcal{A} = \mathcal{A}_n(m) = \langle c_{\alpha,\beta} : \alpha, \beta \in \Gamma_X(m), X \subseteq [n] \rangle$ is the \mathbb{C} -space generated be all the monomial functions $c_{\alpha,\beta} : G \mapsto \mathbb{C}$.

The Schur algebra ${\mathcal S}$ is the dual ${\mathbb C}$ -space of ${\mathcal A}$

$$\mathcal{S} = \mathcal{A}^* = Hom_{\mathbb{C}}(\mathcal{A}; \mathbb{C}).$$

 \mathcal{S} is a finite-dimensional associative \mathbb{C} -algebra.

Every $\mathbb{C}[G]$ -module whose coefficient space lies in \mathcal{A} can be viewed as a \mathcal{S} -module.

Therefore, $\otimes^n U$ has the structure of a left *S*-module. For any $\xi \in S$, $X \subseteq [n]$ and $\beta \in \Gamma_X(m)$, we define

$$\xi . e_{\beta}^{\otimes} = \sum_{\alpha \in \Gamma_X(m)} \xi(c_{\alpha,\beta}) e_{\alpha}^{\otimes}$$

11

Let $\mathcal{R}_n = \bigoplus_{r=0}^n \mathcal{M}_{\binom{n}{r}}(\mathbb{C}[S_r])$ be the \mathbb{C} -algebra of matrices referred to in theorem 3.

It is possible to define an appropriate right \mathcal{R}_n -action on $\otimes^n U$ that commutes with the above left \mathcal{S} -action. Since $\mathcal{R}_n \cong \mathbb{C}[R_n]$ as \mathbb{C} -algebras, we have

Theorem 6 (Schur-Weyl Duality) Let $m \ge n$. The representation $\rho : S \mapsto End_{\mathbb{C}}(\otimes^n U)$ afforded by the left action of S on $\otimes^n U$ induces an isomorphism of \mathbb{C} -algebras

$$\mathcal{S} \cong End_{\mathbb{C}[R_n]}(\otimes^n U).$$

An application

Let $0 \leq r \leq n$ and let λ be a partition of r. Consider the linear operator of $\otimes^n U$ associated with λ , $\pi^*_{\lambda} \in End_{\mathcal{S}}(\otimes^n U)$.

Let $u_1, \cdots, u_n \in U$ and $u^{\otimes} = u_1 \otimes \cdots \otimes u_n \in \otimes^n U$.

 $\mathcal{S}(u^{\otimes})$ is the $\mathcal{S}\text{-submodule}$ of $\otimes^n U$ generated by u^{\otimes} ,

 $\mathcal{R}(u^{\otimes})$ is the $\mathbb{C}[R_n]$ -submodule of $\otimes^n U$ generated by u^{\otimes} .

Proposition 1 Let $0 \le r \le n$ and let λ be a partition of r. The following are equivalent

(i) The multiciplicity of λ is positive in $S(u^{\otimes})$;

(*ii*) The multiciplicity of λ is positive in $\mathcal{R}(u^{\otimes})$;

(*iii*) $\pi^*_{\lambda}(u^{\otimes}) \neq 0$.

Further directions

Let $0 \le r \le n$ and let λ be a partition of r. A λ_r^n -tableau is a Ferrers diagram of shape λ filled with r distinct entries from the set $\{1, 2, \dots, n\}$.

In 2002, C. Grood showed that the irreducible $\mathbb{C}[R_n]$ -modules can be realized in terms of λ_r^n -tableaux.

Using Schur algebras, we expect to provide a combinatorial condition for the annulment of a partial symmetrized tensor $\pi^*_{\lambda}(u^{\otimes})$ analog to Gama's condition.

We also expect to study and solve open problems related to the linear matroid determined by a finite collection of vectors $u = \{u_1, \dots, u_n\}$, where $u_i \in U$.

References

A. Berget, A short proof of Gama's theorem, *Linear Algebra and its Applications*, **430** (2009) 791-794.

A. Berget, Equality of symmetrized tensors and the coordinate ring of the flag variety, *subme-tido*.

H. da Cruz, J. A. Dias da Silva, Equality of immanantal decomposable tensors, *Linear Algebra and its Applications*, **395** (2005) 95-119.

H. da Cruz, J. A. Dias da Silva, Equality of immanantal decomposable tensors, *Linear Algebra and its Applications*, **401** (2005) 29-46.

J. A. Dias da Silva, New conditions for equality of decomposable symmetrized tensors, *Linear*

Algebra and its Applications **245** (1996) 353-372.

C. Gamas, Conditions for a symmetrized decomposable tensor to be zero, *Linear Algebra and its Applications* **108** (1988) 83-119.

J. A. Green, *Polynomial Representations of GLn*, Springer-Verlag, New York, 1980.

C. Grood, A Specht module analog for the rook monoid, *Electronic Journal of Combinatorics* **9** (2002), Research Paper 2.

M. Isaacs, *Character Theory of Finite Groups*, Academic Press, New York, 1976.

M. Malandro, D. Rockmore, Fast Fourier transforms for the rook monoid (2007). W. D. Munn, The characters of the symmetric inverse semigroup, *Mathematical Proceedings of the Cambridge Philosophical Society* **53** (1957) 13-18.

W. D. Munn, Matrix representations of semigroups *Mathematical Proceedings of the Cambridge Philosophical Society* **53** (1957) 5-12.

L. Solomon, Representations of the rook monoid, *Journal of Algebra* **256** (2002) 309-342.