Zonotopes, toric arrangements, labeled graphs, and the arithmetic Tutte polynomial (joint work with Michele D'Adderio)

Luca Moci

Università di Roma 1

Joint session of SLC 67 - IICA 17

Bertinoro, September, 20 2011

$$\lambda = \sum_{i=1}^h x_i a_i \qquad x_i \in \mathbb{N}.$$

(Since we want this number to be finite, we require that all the *a_i* lie on the same side of a hyperplane).

Fixed X, this is a function of λ , which we denote by $\mathcal{P}_X(\lambda)$ and we call the (vector) partition function.

・ 何 ト ・ ヨ ト ・ ヨ ト

$$\lambda = \sum_{i=1}^h x_i a_i \qquad x_i \in \mathbb{N}.$$

(Since we want this number to be finite, we require that all the a_i lie on the same side of a hyperplane).

Fixed X, this is a function of λ , which we denote by $\mathcal{P}_X(\lambda)$ and we call the (vector) partition function.

(人間) システン ステン・ ラ

$$\lambda = \sum_{i=1}^h x_i a_i \qquad x_i \in \mathbb{N}.$$

(Since we want this number to be finite, we require that all the a_i lie on the same side of a hyperplane).

Fixed X, this is a function of λ , which we denote by $\mathcal{P}_X(\lambda)$ and we call the (vector) partition function.

米部 とくほと 不良とう 厚

$$\lambda = \sum_{i=1}^h x_i a_i \qquad x_i \in \mathbb{N}.$$

(Since we want this number to be finite, we require that all the a_i lie on the same side of a hyperplane).

Fixed X, this is a function of λ , which we denote by $\mathcal{P}_X(\lambda)$ and we call the (vector) partition function.

米部 とくほと 不良とう 厚

Let $n = 1, X = \{20, 50, 100\}$. Then we have the equation

 $20x + 50y + 100z = \lambda, \qquad x, y, z \ge 0$

defining a variable triangle $P_X(\lambda)$ in \mathbb{R}^3 , obtained by intersecting the

positive octant of \mathbb{R}^3 with a plane.

(本語) (本語) (本語) (二語)

Example $X = \{20, 50, 100\}$

Let $n = 1, X = \{20, 50, 100\}$. Then we have the equation

$$20x + 50y + 100z = \lambda, \qquad x, y, z \ge 0$$

defining a variable triangle $P_X(\lambda)$ in \mathbb{R}^3 , obtained by intersecting the

positive octant of \mathbb{R}^3 with a plane.

 $\mathcal{P}_X(\lambda)$ is the number of integer points in $P_X(\lambda)$. On every coset of 100 $\mathbb{Z} \subseteq \mathbb{Z}$, $\mathcal{P}_X(\lambda)$ is a polynomial

Example $X = \{20, 50, 100\}$

Let $n = 1, X = \{20, 50, 100\}$. Then we have the equation

$$20x + 50y + 100z = \lambda, \qquad x, y, z \ge 0$$

defining a variable triangle $P_X(\lambda)$ in \mathbb{R}^3 , obtained by intersecting the

Example $X = \{20, 50, 100\}$

Let $n = 1, X = \{20, 50, 100\}$. Then we have the equation

$$20x + 50y + 100z = \lambda, \qquad x, y, z \ge 0$$

defining a variable triangle $P_X(\lambda)$ in \mathbb{R}^3 , obtained by intersecting the

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_X(\lambda)$.

The partition function $\mathcal{P}_X(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

 $S_X(\underline{\lambda}) = vol(P_X(\underline{\lambda})).$

Facts (Dahmen and Micchelli):

(1) S_X is piecewise polynomial; its local pieces span a space D(X) of polynomials, defined by nice differential equations.

(2) \mathcal{P}_X is piecewise quasipolynomial; its local pieces span a space DM(X) of quasipolynomials, defined by nice difference equations.

(A function $q:\mathbb{Z}^n
ightarrow\mathbb{C}$ is a quasipolynomial if there is a finite index

subgroup of \mathbb{Z}^n such that the restriction of q to every coset is polynomial).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_X(\lambda)$.

The partition function $\mathcal{P}_X(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

 $\mathcal{S}_X(\underline{\lambda}) = \operatorname{vol}(P_X(\underline{\lambda})).$

Facts (Dahmen and Micchelli):

(1) S_X is piecewise polynomial; its local pieces span a space D(X) of polynomials, defined by nice differential equations.

(2) \mathcal{P}_X is piecewise quasipolynomial; its local pieces span a space DM(X) of quasipolynomials, defined by nice difference equations.

(A function $q:\mathbb{Z}^n
ightarrow\mathbb{C}$ is a quasipolynomial if there is a finite index

subgroup of \mathbb{Z}^n such that the restriction of q to every coset is polynomial).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_X(\lambda)$.

The partition function $\mathcal{P}_X(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

 $\mathcal{S}_X(\underline{\lambda}) = \operatorname{vol}(P_X(\underline{\lambda})).$

Facts (Dahmen and Micchelli):

(1) S_X is piecewise polynomial; its local pieces span a space D(X) of polynomials, defined by nice differential equations.

(2) \mathcal{P}_X is piecewise quasipolynomial; its local pieces span a space DM(X) of quasipolynomials, defined by nice difference equations. (A function $q : \mathbb{Z}^n \to \mathbb{C}$ is a quasipolynomial if there is a finite index subgroup of \mathbb{Z}^n such that the restriction of q to every coset is polynomial).

◆ロト ◆昼 ▶ ◆ 思 ▶ ◆ 臣 ● のへの

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_X(\lambda)$.

The partition function $\mathcal{P}_X(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

 $\mathcal{S}_X(\underline{\lambda}) = \operatorname{vol}(P_X(\underline{\lambda})).$

Facts (Dahmen and Micchelli):

(1) S_X is piecewise polynomial; its local pieces span a space D(X) of polynomials, defined by nice differential equations.

(2) \mathcal{P}_X is piecewise quasipolynomial; its local pieces span a space DM(X) of quasipolynomials, defined by nice difference equations.

(A function $q: \mathbb{Z}^n \to \mathbb{C}$ is a quasipolynomial if there is a finite index

subgroup of \mathbb{Z}^n such that the restriction of q to every coset is polynomial).

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_X(\lambda)$.

The partition function $\mathcal{P}_X(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

 $\mathcal{S}_X(\underline{\lambda}) = \operatorname{vol}(P_X(\underline{\lambda})).$

Facts (Dahmen and Micchelli):

(1) S_X is piecewise polynomial; its local pieces span a space D(X) of polynomials, defined by nice differential equations.

(2) \mathcal{P}_X is piecewise quasipolynomial; its local pieces span a space DM(X) of quasipolynomials, defined by nice difference equations.

(A function $q : \mathbb{Z}^n \to \mathbb{C}$ is a quasipolynomial if there is a finite index subgroup of \mathbb{Z}^n such that the restriction of q to every coset is polynomial).

(*理) (*注) (*注) (注)

$$\mathcal{LS}_X = \prod_{i=1}^h \frac{1}{a_i} \qquad \mathcal{LP}_X = \prod_{i=1}^h \frac{1}{1 - e^{2\pi i a_i}}$$

where we view every a_i as a linear functional on the dual space.

Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for S_X and \mathcal{P}_X . Notice that LS_X is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_X .

Similarly, $L\mathcal{P}_X$ is defined on the complement of a toric arrangement \mathcal{T}_X .

・ロト ・得ト ・ヨト ・ヨト 三日

$$\mathcal{LS}_X = \prod_{i=1}^h rac{1}{a_i} \qquad \mathcal{LP}_X = \prod_{i=1}^h rac{1}{1 - e^{2\pi i a_i}}$$

where we view every a_i as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for S_X and \mathcal{P}_X .

Notice that LS_X is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_X .

Similarly, \mathcal{LP}_X is defined on the complement of a toric arrangement \mathcal{T}_X .

・ロト ・得ト ・ヨト ・ヨト 三日

$$\mathcal{LS}_X = \prod_{i=1}^h rac{1}{a_i} \qquad \mathcal{LP}_X = \prod_{i=1}^h rac{1}{1 - e^{2\pi i a_i}}$$

where we view every a_i as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for S_X and \mathcal{P}_X . Notice that LS_X is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_X .

Similarly, \mathcal{LP}_X is defined on the complement of a toric arrangement \mathcal{T}_X .

イロト 不得下 イヨト イヨト 三日

$$\mathcal{LS}_X = \prod_{i=1}^h rac{1}{a_i}$$
 $\mathcal{LP}_X = \prod_{i=1}^h rac{1}{1 - e^{2\pi i a_i}}$

where we view every a_i as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for S_X and \mathcal{P}_X . Notice that LS_X is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_X .

Similarly, $L\mathcal{P}_X$ is defined on the complement of a toric arrangement \mathcal{T}_X .

イロト 不得下 イヨト イヨト 三日

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

 $X = \{(2,0), (0,3), (-1,1)\} \subset \mathbb{Z}^2.$

We associate to X three objects:

In a finite hyperplane arrangement \mathcal{H}_X given in V by the equations

2x = 0, 3y = 0, -x + y = 0;

② a periodic hyperplane arrangement \mathcal{A}_X given in in V by the conditions

 $2x \in \mathbb{Z}, 3y \in \mathbb{Z}, -x + y \in \mathbb{Z};$

3) a toric arrangement \mathcal{T}_X given in \mathcal{T} by the equations:

 $t^2 = 1, s^3 = 1, t^{-1}s = 1.$

イロン イロン イヨン イヨン 三日

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

 $X = \{(2,0), (0,3), (-1,1)\} \subset \mathbb{Z}^2.$

We associate to X three objects:

 $lacksymbol{0}$ a finite hyperplane arrangement \mathcal{H}_X given in V by the equations

2x = 0, 3y = 0, -x + y = 0;

② a periodic hyperplane arrangement \mathcal{A}_X given in in V by the conditions

 $2x \in \mathbb{Z}, \ 3y \in \mathbb{Z}, \ -x + y \in \mathbb{Z};$

(a) a toric arrangement \mathcal{T}_X given in \mathcal{T} by the equations:

 $t^2 = 1, s^3 = 1, t^{-1}s = 1.$

イロン イロン イヨン イヨン 三日

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

 $X = \{(2,0), (0,3), (-1,1)\} \subset \mathbb{Z}^2.$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H}_X given in V by the equations

$$2x = 0, 3y = 0, -x + y = 0;$$

② a periodic hyperplane arrangement \mathcal{A}_X given in in V by the conditions

 $2x \in \mathbb{Z}, 3y \in \mathbb{Z}, -x + y \in \mathbb{Z};$

(a) a toric arrangement T_X given in T by the equations:

$$t^2 = 1, s^3 = 1, t^{-1}s = 1.$$

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

 $X = \{(2,0), (0,3), (-1,1)\} \subset \mathbb{Z}^2.$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H}_X given in V by the equations

$$2x = 0, \ 3y = 0, \ -x + y = 0;$$

2) a periodic hyperplane arrangement \mathcal{A}_X given in in V by the conditions

$$2x \in \mathbb{Z}, \ 3y \in \mathbb{Z}, \ -x + y \in \mathbb{Z};$$

) a toric arrangement \mathcal{T}_X given in \mathcal{T} by the equations:

$$t^2 = 1, s^3 = 1, t^{-1}s = 1.$$

- 本間 と 本 ヨ と 本 ヨ と 二 ヨ

Take $V = \mathbb{C}^2$ with coordinates (x, y), $T = \mathbb{C}^{*2}$ with coordinates (t, s), and

 $X = \{(2,0), (0,3), (-1,1)\} \subset \mathbb{Z}^2.$

We associate to X three objects:

() a finite hyperplane arrangement \mathcal{H}_X given in V by the equations

$$2x = 0, \ 3y = 0, \ -x + y = 0;$$

2) a periodic hyperplane arrangement \mathcal{A}_X given in in V by the conditions

$$2x \in \mathbb{Z}, 3y \in \mathbb{Z}, -x + y \in \mathbb{Z};$$

③ a toric arrangement T_X given in T by the equations:

$$t^2 = 1, s^3 = 1, t^{-1}s = 1.$$

(本部) (本語) (本語) (二語)

Let us look again at the previous example $X = \{(2,0), (0,3), (1,-1)\}$.

toric arrangement hyperplane arrangement

If we replace (0,3) by (0,1) or (0,5), we get the same \mathcal{H}_X , but a different

 \mathcal{T}_X . Then \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_X with their discrete counterparts (e.g. partition functions).

・ 何 ト ・ ヨ ト ・ ヨ ト

Let us look again at the previous example $X = \{(2,0), (0,3), (1,-1)\}$.

toric arrangement hyperplane arrangement

If we replace (0, 3) by (0, 1) or (0, 5), we get the same \mathcal{H}_X , but a different \mathcal{T}_X . Then \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_X with their discrete counterparts (e.g. partition functions).

・ 何 ト ・ ヨ ト ・ ヨ ト

Let us look again at the previous example $X = \{(2,0), (0,3), (1,-1)\}$.

toric arrangement hyperplane arrangement

If we replace (0,3) by (0,1) or (0,5), we get the same \mathcal{H}_X , but a different \mathcal{T}_X . Then \mathcal{H}_X depends only on the linear algebra of X, whereas \mathcal{T}_X also depends on its arithmetics.

In fact \mathcal{H}_X is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_X with their discrete counterparts (e.g. partition functions).

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **()** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- (2) the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- (a) the Hilbert series of D(X) is $T_X(1, y)$.

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

・ 同 ト ・ ヨ ト ・ ヨ ト

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- In the number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- (a) the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- (a) the Hilbert series of D(X) is $T_X(1, y)$.

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

米部 とくぼう くぼう 三頭

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **1** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- The Poincaré polynomial of the complement in Cⁿ is qⁿT_X(^{q+1}/_q,0)
 The Hilbert series of D(X) is T_X(1,y).

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

- 本間 と えき と えき とうき

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **1** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- the Poincaré polynomial of the complement in Cⁿ is qⁿT_X(^{q+1}/_q, 0)
 the Hilbert series of D(X) is T_X(1, y).

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- **1** The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- 2 the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- Solution the Hilbert series of D(X) is $T_X(1, y)$.

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

(本間) (本語) (本語) (語)

$$T_X(x,y) \doteq \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

This polynomial embodies a lot of information on \mathcal{H}_X and D(X):

- The number of regions of the complement in \mathbb{R}^n is $T_X(2,0)$;
- 2 the Poincaré polynomial of the complement in \mathbb{C}^n is $q^n T_X(\frac{q+1}{q}, 0)$
- the Hilbert series of D(X) is $T_X(1, y)$.

(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

- * @ * * ミ * * ミ * - 三

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}]$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.)

• The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(rac{2q+1}{q}, 0)$;

If $M_X(1, y)$ is the Hilbert series of DM(X)

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.

1 The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(rac{2q+1}{q}, 0)$;

If $M_X(1, y)$ is the Hilbert series of DM(X)

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.

• The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

(a) the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(rac{2q+1}{q},0);$

• $M_X(1, y)$ is the Hilbert series of DM(X)

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.)

1 The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

② the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(rac{2q+1}{q},0)$;

3 $M_X(1, y)$ is the Hilbert series of DM(X)
Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.)

• The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;

3 the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(\frac{2q+1}{q}, 0)$;

M_X(1, y) is the Hilbert series of DM(X)

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_X and DM(X).

Let be $X \subset \mathbb{Z}^n$. For every $A \subseteq X$ let us define $m(A) \doteq [\mathbb{Z}^n \cap \langle A \rangle_{\mathbb{Q}} : \langle A \rangle_{\mathbb{Z}}].$

Then we define an arithmetic Tutte polynomial $M_X(x, y)$:

$$M(x,y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

Theorem (M.)

- The number of regions of the complement in \mathbb{S}_1^n is $M_X(1,0)$;
- **2** the Poincaré polynomial of the complem. in $(\mathbb{C}^*)^n$ is $q^n M_X(\frac{2q+1}{q}, 0)$;
- $M_X(1, y)$ is the Hilbert series of DM(X)

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$\mathcal{Z}(X) \doteq \left\{ \sum_{a_i \in X} t_i a_i, 0 \leq t_i \leq 1
ight\}.$$

In our example $X = \{(2,0), (0,3), (1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$\mathcal{Z}(X) \doteq \left\{ \sum_{a_i \in X} t_i a_i, 0 \leq t_i \leq 1
ight\}.$$

In our example $X = \{(2,0), (0,3), (1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$\mathcal{Z}(X) \doteq \left\{ \sum_{a_i \in X} t_i a_i, 0 \leq t_i \leq 1
ight\}.$$

In our example $X = \{(2,0), (0,3), (1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

Theorem (M.-D'Adderio)

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- M_X(2,1) is the number of integer points in $\mathcal{Z}(X)$;
- (a) $M_X(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
- M_X(x,1) is the number of integer points in Z(X) ε, collected according to a suitable stratification.

In the second secon

< 67 ▶

Theorem (M.-D'Adderio)

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
- (a) $M_X(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
- M_X(x,1) is the number of integer points in Z(X) ε, collected according to a suitable stratification.

In the second secon

< 67 ▶

Theorem (M.-D'Adderio)

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
- **③** $M_X(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
- M_X(x,1) is the number of integer points in Z(X) ε, collected according to a suitable stratification.

In the second secon

< 67 ▶

Theorem (M.-D'Adderio)

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
- **③** $M_X(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
- M_X(x,1) is the number of integer points in Z(X) ε, collected according to a suitable stratification.

In a gⁿM_X(1+1/q,1) equals the Ehrhart polynomial of Z(X)(i.e. the number of integer points in qZ(X), q ∈ N).

< 177 ▶

Theorem (M.-D'Adderio)

- $M_X(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
- **2** $M_X(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
- **3** $M_X(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
- $M_X(x,1)$ is the number of integer points in $\mathcal{Z}(X) \varepsilon$, collected according to a suitable stratification.
- qⁿM_X(1+1/q,1) equals the Ehrhart polynomial of Z(X)(i.e. the number of integer points in qZ(X), q ∈ N).

< 行

This requires to extend its definition to the case of a list X in a finitely generated abelian group G.

The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.

So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

イロト イポト イヨト イヨト

This requires to extend its definition to the case of a list X in a finitely generated abelian group G.

The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.

So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

This requires to extend its definition to the case of a list X in a finitely generated abelian group G.

The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most

general deletion-contraction invariant of a graph.

So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

<ロ> (四) (四) (三) (三) (三) (三)

This requires to extend its definition to the case of a list X in a finitely generated abelian group G.

The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.

So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

This requires to extend its definition to the case of a list X in a finitely generated abelian group G.

The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.

So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

・ロン ・聞と ・ヨン ・ヨン … ヨ

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$. For example, let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$, $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the regular edges,

 $D := \{\{v_3, v_4\}\} \text{ the } dotted edges, \text{ so that}$

 $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$ let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$,

 $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

イロト イポト イヨト イヨト 二日

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$.

For example, let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$ $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the regular edges, $D := \{\{v_3, v_4\}\}$ the dotted edges, so that $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$ let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$, $\ell(\{v_3, v_4\}) = 6$ be the labels.

イロト イポト イヨト イヨト 二日

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$.

For example, let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$, $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the *regular edges*, $D := \{\{v_3, v_4\}\}$ the *dotted edges*, so that $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$ let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$, $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

(비) (비) (비) (비) (비)

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$.

For example, let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$, $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the *regular edges*, $D := \{\{v_3, v_4\}\}$ the *dotted edges*, so that $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$ let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$, $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$.

For example, let
$$(\mathcal{G}, \ell)$$
, where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$,
 $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the *regular edges*,
 $D := \{\{v_3, v_4\}\}$ the *dotted edges*, so that
 $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$
let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$,
 $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

・ 何 ト ・ ヨ ト ・ ヨ ト

Oriented labelled graphs

Graph $\mathcal{G} := (V, E)$ with a map $\ell : E \mapsto \mathbb{Z}_{>0}$ and a partition $E = R \sqcup D$.

For example, let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$, $R := \{(v_1, v_2), (v_3, v_2), (v_2, v_4)\}$ the *regular edges*, $D := \{(v_3, v_4)\}$ the *dotted edges*, so that $E = R \cup D = \{(v_1, v_2), (v_3, v_2), (v_2, v_4), (v_3, v_4)\};$ let $\ell((v_1, v_2)) = 1$, $\ell((v_3, v_2)) = 2$, $\ell((v_2, v_4)) = 3$, $\ell((v_3, v_4)) = 6$ be the *labels*.

Deletion and contraction

Deletion and contraction

Deletion of $\{v_2, v_3\}$.

Contraction of $\{v_2, v_3\}$.

★聞▶ ★ 周▶ ★ 周▶

큰

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible.

- A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:
- (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
- (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic *q*-colorings of (\mathcal{G},ℓ) .

When $D=\emptyset$ and $\ell\equiv 1$ we get the classical chromatic polynomial.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:

- (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
- (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G},ℓ) .

When $D=\emptyset$ and $\ell\equiv 1$ we get the classical chromatic polynomial.

(ロ) (四) (同) (同) (同) 二回

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:

- (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
- (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic *q*-colorings of (\mathcal{G},ℓ) .

When $D=\emptyset$ and $\ell\equiv 1$ we get the classical chromatic polynomial.

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:

- (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
- (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic *q*-colorings of (\mathcal{G},ℓ) .

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:

(1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic *q*-colorings of (\mathcal{G},ℓ) .

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial. We have:

$$2c(v_1) \neq 2c(v_2), \ 3c(v_1) \neq 3c(v_2)$$

$$2c(v_2) = 2c(v_3).$$

We can color v_1 in q ways, then v_2 in q - 3 - 2 + 1 ways, then v_3 in 2 ways, so $\chi_{\mathcal{G},\ell}(q) = 2q(q-4) = 2q^2 - 8q$.

(日) (四) (王) (王) (王)

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:

(1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (proper) arithmetic *q*-colorings of (\mathcal{G},ℓ) .

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial. We have:

$$2c(v_1) \neq 2c(v_2), \ 3c(v_1) \neq 3c(v_2)$$
 $v_1 = \frac{2}{3 \ v_2} - \frac{2}{3 \ v_3}$

 $2c(v_2) = 2c(v_3).$ We can color v_1 in q ways, then v_2 in q - 3 - 2 + 1 ways, then v_3 in 2 ways, so $\chi_{\mathcal{G},\ell}(q) = 2q(q-4) = 2q^2 - 8q.$

ヘロン 不聞と 不良と 不良と 一度

$$(1) orall v \in V, \ \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

$$(1)\forall v \in V, \sum_{\substack{e^+ = v \\ e \in E_{\theta}}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \\ e \in E_{\theta}}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

・何ト ・ヨト ・ヨト

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that:

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

・何ト ・ヨト ・ヨト

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that:

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

(周) (三) (三)

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial. The equation 2x - 3y = 0 has qsolutions, but 4 of them are not nowhere zero. We have that $\chi^*_{\mathcal{G},\ell}(q) = 2(q-4) = 2q-8$.

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

The equation 2x - 3y = 0 has qsolutions, but 4 of them are not nowhere zero.

 V_1 V_2 V_2 V_3

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all e ∈ R_θ, w(e) ≠ 0 ∈ Z/qZ.
The arithmetic flow polynomial χ^{*}_{G,ℓ}(q) of (G, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of (G_θ, ℓ) (it doesn't depend on θ).
When D = Ø and ℓ ≡ 1 we get the classical flow polynomial. The equation 2x - 3y = 0 has q solutions, but 4 of them are not nowhere zero.

We have that $\chi^*_{\mathcal{G},\ell}(q)=2(q-4)=2q-8.$
Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that:

$$(1) orall v \in V, \; \sum_{\substack{e^+ = v \ e \in E_ heta}} \ell(e) \cdot w(e) - \sum_{\substack{e^- = v \ e \in E_ heta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$$

(2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$.

The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $(\mathcal{G}_{\theta},\ell)$ (it doesn't depend on θ). When $D = \emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

The equation 2x - 3y = 0 has q solutions, but 4 of them are not

nowhere zero.

We have that $\chi^*_{\mathcal{G},\ell}(q) = 2(q-4) = 2q-8$.

$$\bigvee_{V_1 \quad 3 \quad V_2}^2 \bigvee_{V_2}^2 - \bigvee_{V_3}^2$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.

To each edge $e = (\mathit{v}_i, \mathit{v}_i) \in E_ heta$ we associate the element of \mathbb{Z}^n

 $x_e \doteq (0, \ldots, 0, \ell(e), 0, \ldots, 0, -\ell(e), 0, \ldots).$

Then we look at the image of the list X_R in the group $G := \mathbb{Z}^n / \langle X_D \rangle$ We denote by $M_{\mathcal{G},\ell}(x, y)$ the associated arithmetic Tutte polynomial.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.

To each edge $e = (v_i, v_j) \in E_\theta$ we associate the element of \mathbb{Z}^n

$$x_e \doteq (0, \ldots, 0, \ell(e), 0, \ldots, 0, -\ell(e), 0, \ldots).$$

Then we look at the image of the list X_R in the group $G := \mathbb{Z}^n / \langle X_D \rangle$ We denote by $M_{\mathcal{G},\ell}(x,y)$ the associated arithmetic Tutte polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.

To each edge $e = (v_i, v_j) \in E_\theta$ we associate the element of \mathbb{Z}^n

$$x_e \doteq (0, \dots, 0, \ell(e), 0, \dots, 0, -\ell(e), 0, \dots).$$

Then we look at the image of the list X_R in the group $G := \mathbb{Z}^n / \langle X_D \rangle$ We denote by $M_{\mathcal{G},\ell}(x, y)$ the associated arithmetic Tutte polynomial.

(人間) システン ステン・ ラ

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.

To each edge $e = (v_i, v_j) \in E_{\theta}$ we associate the element of \mathbb{Z}^n

$$x_e \doteq (0, \dots, 0, \ell(e), 0, \dots, 0, -\ell(e), 0, \dots).$$

Then we look at the image of the list X_R in the group $G := \mathbb{Z}^n / \langle X_D \rangle$ We denote by $M_{\mathcal{G},\ell}(x,y)$ the associated arithmetic Tutte polynomial.

We have $X_R = \{(1, -1, 0, 0), (0, -2, 2, 0), (0, 3, 0, -3)\} \subseteq \mathbb{Z}^4$ and $X_D = \{(0, 0, 6, -6)\} \subseteq \mathbb{Z}^4$, so $G := \mathbb{Z}^4 / \langle (0, 0, 6, -6) \rangle$. In this case $M_{G,\ell}(x, y) = 6x^2 + 18x + 6xy$.

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.

To each edge $e = (v_i, v_j) \in E_{ heta}$ we associate the element of \mathbb{Z}^n

$$x_e \doteq (0, \ldots, 0, \ell(e), 0, \ldots, 0, -\ell(e), 0, \ldots).$$

Then we look at the image of the list X_R in the group $G := \mathbb{Z}^n / \langle X_D \rangle$ We denote by $M_{\mathcal{G},\ell}(x,y)$ the associated arithmetic Tutte polynomial.

We have $X_R = \{(1, -1, 0, 0), (0, -2, 2, 0), (0, 3, 0, -3)\} \subseteq \mathbb{Z}^4$ and $X_D = \{(0, 0, 6, -6)\} \subseteq \mathbb{Z}^4$, so $G := \mathbb{Z}^4 / \langle (0, 0, 6, -6) \rangle$. In this case $M_{\mathcal{G},\ell}(x, y) = 6x^2 + 18x + 6xy$.

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

•
$$\chi_{\mathcal{G},\ell}(q) = (-1)^{|\overline{V}|-k} q^k M_{\mathcal{G},\ell}(1-q,0).$$

• $\chi^*_{\mathcal{G},\ell}(q) = (-1)^{|R|-|\overline{V}|+k} q^{|D|-|V|+|\overline{V}|} M_{\mathcal{G},\ell}(0,1-q).$

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

イロト イ団ト イヨト イヨト 二臣

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

$$\begin{array}{l} \bullet \quad \chi_{\mathcal{G},\ell}(q) = (-1)^{|\overline{V}|-k} q^k M_{\mathcal{G},\ell}(1-q,0). \\ \\ \bullet \quad \chi_{\mathcal{G},\ell}^*(q) = (-1)^{|R|-|\overline{V}|+k} q^{|D|-|V|+|\overline{V}|} M_{\mathcal{G},\ell}(0,1-q). \end{array}$$

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

イロト イ理ト イヨト イヨト 二臣

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

・ロト ・聞 ト ・ 思 ト ・ 思 ト …

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

・ロン ・聞と ・ヨン ・ヨン … ヨ

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

・ロン ・聞と ・ヨン ・ヨン … ヨ

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

イロン イロン イヨン イヨン 三日

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

$$\begin{split} M_{\mathcal{G},\ell}(x,y) &= 2x + 6 + 2y, \text{ and therefore} \\ \chi_{\mathcal{G},\ell}(q) &= 2q^2 - 8q, \ \chi^*_{\mathcal{G},\ell}(q) = 2q - 8. \end{split}$$

Let $\overline{\mathcal{G}} = (\overline{V}, \overline{E})$ be the graph obtained from $\mathcal{G} = (V, E = R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

When $D = \emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

•
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0).$$

• $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q).$

$$\begin{split} M_{\mathcal{G},\ell}(x,y) &= 2x + 6 + 2y, \text{ and therefore} \\ \chi_{\mathcal{G},\ell}(q) &= 2q^2 - 8q, \ \chi^*_{\mathcal{G},\ell}(q) = 2q - 8. \end{split}$$