Zonotopes, toric arrangements, labeled graphs, and the arithmetic Tutte polynomial
 (joint work with Michele D'Adderio)

Luca Moci

Università di Roma 1
Joint session of SLC 67 - IICA 17
-
Bertinoro, September, 202011

The vector partition function

Let be $X=\left\{a_{1}, \ldots, a_{h}\right\} \subseteq \mathbb{Z}^{n}$.
For every $\lambda \in \mathbb{Z}^{n}$, we define $\mathcal{P}_{X}(\lambda)$ as the number of ways we can write

$$
\lambda=\sum_{i=1}^{h} x_{i} a_{i} \quad x_{i} \in \mathbb{N} .
$$

(Since we want this number to be finite, we require that all the a_{i} lie on the same side of a hyperplane).
Fixed X, this is a function of λ, which we denote by $\mathcal{P}_{\chi}(\lambda)$ and we call the (vector) partition function.

The vector partition function

Let be $X=\left\{a_{1}, \ldots, a_{h}\right\} \subseteq \mathbb{Z}^{n}$.
For every $\lambda \in \mathbb{Z}^{n}$, we define $\mathcal{P}_{X}(\lambda)$ as the number of ways we can write

$$
\lambda=\sum_{i=1}^{h} x_{i} a_{i} \quad x_{i} \in \mathbb{N} .
$$

(Since we want this number to be finite, we require that all the a_{i} lie on the same side of a hyperplane).
Fixed X, this is a function of λ, which we denote by $\mathcal{P}_{X}(\lambda)$ and we call the (vector) partition function.

The vector partition function

Let be $X=\left\{a_{1}, \ldots, a_{h}\right\} \subseteq \mathbb{Z}^{n}$.
For every $\lambda \in \mathbb{Z}^{n}$, we define $\mathcal{P}_{X}(\lambda)$ as the number of ways we can write

$$
\lambda=\sum_{i=1}^{h} x_{i} a_{i} \quad x_{i} \in \mathbb{N} .
$$

(Since we want this number to be finite, we require that all the a_{i} lie on the same side of a hyperplane).
Fixed X, this is a function of λ, which we denote by $\mathcal{P}_{X}(\lambda)$ and we call the (vector) partition function.

The vector partition function

Let be $X=\left\{a_{1}, \ldots, a_{h}\right\} \subseteq \mathbb{Z}^{n}$.
For every $\lambda \in \mathbb{Z}^{n}$, we define $\mathcal{P}_{X}(\lambda)$ as the number of ways we can write

$$
\lambda=\sum_{i=1}^{h} x_{i} a_{i} \quad x_{i} \in \mathbb{N} .
$$

(Since we want this number to be finite, we require that all the a_{i} lie on the same side of a hyperplane).
Fixed X, this is a function of λ, which we denote by $\mathcal{P}_{X}(\lambda)$ and we call the (vector) partition function.

Example $X=\{20,50,100\}$

Let $n=1, X=\{20,50,100\}$. Then we have the equation
$20 x+50 y+100 z=\lambda, \quad x, y, z \geq 0$
defining a variable triangle $P_{X}(\lambda)$ in \mathbb{R}^{3}, obtained by intersecting the positive octant of \mathbb{R}^{3} with a plane.

Example $X=\{20,50,100\}$

Let $n=1, X=\{20,50,100\}$. Then we have the equation

$$
20 x+50 y+100 z=\lambda, \quad x, y, z \geq 0
$$

defining a variable triangle $P_{X}(\lambda)$ in \mathbb{R}^{3}, obtained by intersecting the

positive octant of \mathbb{R}^{3} with a plane.

Example $X=\{20,50,100\}$

Let $n=1, X=\{20,50,100\}$. Then we have the equation

$$
20 x+50 y+100 z=\lambda, \quad x, y, z \geq 0
$$

defining a variable triangle $P_{X}(\lambda)$ in \mathbb{R}^{3}, obtained by intersecting the

positive octant of \mathbb{R}^{3} with a plane. $\mathcal{P}_{X}(\lambda)$ is the number of integer points in $P_{X}(\lambda)$.

Example $X=\{20,50,100\}$

Let $n=1, X=\{20,50,100\}$. Then we have the equation

$$
20 x+50 y+100 z=\lambda, \quad x, y, z \geq 0
$$

defining a variable triangle $P_{X}(\lambda)$ in \mathbb{R}^{3}, obtained by intersecting the

positive octant of \mathbb{R}^{3} with a plane.
$\mathcal{P}_{X}(\lambda)$ is the number of integer points in $P_{X}(\lambda)$.
On every coset of $100 \mathbb{Z} \subseteq \mathbb{Z}, \mathcal{P}_{X}(\lambda)$ is a polynomial.

A variable polytope

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_{X}(\lambda)$.
The partition function $\mathcal{P}_{X}(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

$$
\mathcal{S}_{X}(\underline{\lambda})=\operatorname{vol}\left(P_{X}(\underline{\lambda})\right) .
$$

Facts (Dahmen and Micchelli):
(1) \mathcal{S}_{X} is piecewise polynomial; its local pieces span a space $D(X)$ of polynomials, defined by nice differential equations.
(2) \mathcal{P}_{X} is piecewise quasipolynomial; its local pieces span a space $D M(X)$
of quasipolynomials, defined by nice difference equations.
(A function $q: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ is a quasipolynomial if there is a finite index
subgroup of \mathbb{Z}^{n} such that the restriction of q to every coset is polynomial),

A variable polytope

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_{X}(\lambda)$.
The partition function $\mathcal{P}_{X}(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

$$
\mathcal{S}_{X}(\underline{\lambda})=\operatorname{vol}\left(P_{X}(\underline{\lambda})\right) .
$$

A variable polytope

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_{X}(\lambda)$.
The partition function $\mathcal{P}_{X}(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

$$
\mathcal{S}_{X}(\underline{\lambda})=\operatorname{vol}\left(P_{X}(\underline{\lambda})\right) .
$$

Facts (Dahmen and Micchelli):
(1) \mathcal{S}_{X} is piecewise polynomial; its local pieces span a space $D(X)$ of polynomials, defined by nice differential equations.

A variable polytope

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_{X}(\lambda)$.
The partition function $\mathcal{P}_{X}(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

$$
\mathcal{S}_{X}(\underline{\lambda})=\operatorname{vol}\left(P_{X}(\underline{\lambda})\right) .
$$

Facts (Dahmen and Micchelli):
(1) \mathcal{S}_{X} is piecewise polynomial; its local pieces span a space $D(X)$ of polynomials, defined by nice differential equations.
(2) \mathcal{P}_{X} is piecewise quasipolynomial; its local pieces span a space $D M(X)$ of quasipolynomials, defined by nice difference equations.

A variable polytope

In general, we intersect a subspace with the positive orthant, thus we get a variable polytope $P_{X}(\lambda)$.
The partition function $\mathcal{P}_{X}(\underline{\lambda})$ counts the integer points in this polytope, hence it is related with another function, the multivariate spline, defined as the volume the same polytope:

$$
\mathcal{S}_{X}(\underline{\lambda})=\operatorname{vol}\left(P_{X}(\underline{\lambda})\right) .
$$

Facts (Dahmen and Micchelli):
(1) \mathcal{S}_{X} is piecewise polynomial; its local pieces span a space $D(X)$ of polynomials, defined by nice differential equations.
(2) \mathcal{P}_{X} is piecewise quasipolynomial; its local pieces span a space $D M(X)$ of quasipolynomials, defined by nice difference equations.
(A function $q: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ is a quasipolynomial if there is a finite index subgroup of \mathbb{Z}^{n} such that the restriction of q to every coset is polynomial).

Relation with arrangements

De Concini-Procesi's approach: applying "Laplace transform" L we get

$$
L \mathcal{S}_{X}=\prod_{i=1}^{h} \frac{1}{a_{i}} \quad L \mathcal{P}_{X}=\prod_{i=1}^{h} \frac{1}{1-e^{2 \pi \imath a_{i}}}
$$

where we view every a_{i} as a linear functional on the dual space.
Strategy: develop these expressions as a sum of simpler fractions,
then apply L^{-1} and get formulae for \mathcal{S}_{X} and \mathcal{P}_{X}.
Notice that $L \mathcal{S}_{X}$ is rational function defined on the complement of a
hyperplane arrangement \mathcal{H}_{X}
Similarly, $L \mathcal{P}_{X}$ is defined on the complement of a toric arrangement \mathcal{T}_{X}

Relation with arrangements

De Concini-Procesi's approach: applying "Laplace transform" L we get

$$
L \mathcal{S}_{X}=\prod_{i=1}^{h} \frac{1}{a_{i}} \quad L \mathcal{P}_{X}=\prod_{i=1}^{h} \frac{1}{1-e^{2 \pi \imath a_{i}}}
$$

where we view every a_{i} as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for \mathcal{S}_{X} and \mathcal{P}_{X}.
Notice that $L S_{X}$ is rational function defined on the complement of a
hyperplane arrangement \mathcal{H}_{X}
Similarly, $L \mathcal{P}_{X}$ is defined on the complement of a toric arrangement T_{X}

Relation with arrangements

De Concini-Procesi's approach: applying "Laplace transform" L we get

$$
L \mathcal{S}_{X}=\prod_{i=1}^{h} \frac{1}{a_{i}} \quad L \mathcal{P}_{X}=\prod_{i=1}^{h} \frac{1}{1-e^{2 \pi \imath a_{i}}}
$$

where we view every a_{i} as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for \mathcal{S}_{X} and \mathcal{P}_{X}. Notice that $L \mathcal{S}_{X}$ is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_{X}.
Similarly, $L \mathcal{P}_{X}$ is defined on the complement of a toric arrangement \mathcal{T}_{X}

Relation with arrangements

De Concini-Procesi's approach: applying "Laplace transform" L we get

$$
L \mathcal{S}_{X}=\prod_{i=1}^{h} \frac{1}{a_{i}} \quad L \mathcal{P}_{X}=\prod_{i=1}^{h} \frac{1}{1-e^{2 \pi \imath a_{i}}}
$$

where we view every a_{i} as a linear functional on the dual space. Strategy: develop these expressions as a sum of simpler fractions, then apply L^{-1} and get formulae for \mathcal{S}_{X} and \mathcal{P}_{X}. Notice that $L \mathcal{S}_{X}$ is rational function defined on the complement of a hyperplane arrangement \mathcal{H}_{X}.
Similarly, $L \mathcal{P}_{X}$ is defined on the complement of a toric arrangement \mathcal{T}_{X}.

An example of arrangements

$$
\text { Take } V=\mathbb{C}^{2} \text { with coordinates }(x, y), T=\mathbb{C}^{* 2} \text { with coordinates }(t, s) \text {, }
$$ and

$$
X=\{(2,0),(0,3),(-1,1)\} \subset \mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement $\mathcal{H} \times$ given in V by the equations

$$
2 x=0,3 y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A}_{X} given in in V by the conditions

(3) a toric arrangement \mathcal{T}_{X} given in T by the equations:

An example of arrangements

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(-1,1)\} \subset \mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H}_{X} given in V by the equations

$$
2 x=0,3 y=0
$$

(2) a periodic hyperplane arrangement \mathcal{A}_{X} given in in V by the conditions
(3) a toric arrangement \mathcal{T}_{X} given in T by the equations:

An example of arrangements

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(-1,1)\} \subset \mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H}_{X} given in V by the equations

$$
2 x=0,3 y=0,-x+y=0 ;
$$

(2) a periodic hyperplane arrangement \mathcal{A}_{X} given in in V by the conditions
(3) a toric arrangement \mathcal{T}_{X} given in T by the equations:

An example of arrangements

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(-1,1)\} \subset \mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H}_{X} given in V by the equations

$$
2 x=0,3 y=0,-x+y=0 ;
$$

(2) a periodic hyperplane arrangement \mathcal{A}_{X} given in in V by the conditions

$$
2 x \in \mathbb{Z}, 3 y \in \mathbb{Z},-x+y \in \mathbb{Z}
$$

(3) a toric arrangement \mathcal{T}_{X} given in T by the equations:

An example of arrangements

Take $V=\mathbb{C}^{2}$ with coordinates $(x, y), T=\mathbb{C}^{* 2}$ with coordinates (t, s), and

$$
X=\{(2,0),(0,3),(-1,1)\} \subset \mathbb{Z}^{2}
$$

We associate to X three objects:
(1) a finite hyperplane arrangement \mathcal{H}_{X} given in V by the equations

$$
2 x=0,3 y=0,-x+y=0 ;
$$

(2) a periodic hyperplane arrangement \mathcal{A}_{X} given in in V by the conditions

$$
2 x \in \mathbb{Z}, 3 y \in \mathbb{Z},-x+y \in \mathbb{Z}
$$

(3) a toric arrangement \mathcal{T}_{X} given in T by the equations:

$$
t^{2}=1, s^{3}=1, t^{-1} s=1
$$

Hyperplane vs toric arrangements

Let us look again at the previous example $X=\{(2,0),(0,3),(1,-1)\}$.

toric arrangement

hyperplane arrangement

If we replace $(0,3)$ by $(0,1)$ or $(0,5)$, we get the same \mathcal{H}_{X}, but a different \mathcal{T}_{X}. Then \mathcal{H}_{x} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_{X} with their discrete counterparts (e.g. partition functions).

Hyperplane vs toric arrangements

Let us look again at the previous example $X=\{(2,0),(0,3),(1,-1)\}$.

toric arrangement

hyperplane arrangement

If we replace $(0,3)$ by $(0,1)$ or $(0,5)$, we get the same \mathcal{H}_{X}, but a different \mathcal{T}_{X}. Then \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_{X} with their discrete counterparts (e.g. partition functions)

Hyperplane vs toric arrangements

Let us look again at the previous example $X=\{(2,0),(0,3),(1,-1)\}$.

toric arrangement

hyperplane arrangement

If we replace $(0,3)$ by $(0,1)$ or $(0,5)$, we get the same \mathcal{H}_{X}, but a different \mathcal{T}_{X}. Then \mathcal{H}_{X} depends only on the linear algebra of X, whereas \mathcal{T}_{X} also depends on its arithmetics.
In fact \mathcal{H}_{X} is related to a number of differentiable problems and objects (e.g. splines), \mathcal{T}_{X} with their discrete counterparts (e.g. partition functions).

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the Hilbert series of $D(X)$ is $T_{X}(1, y)$.
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig,

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
© The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the Hilbert series of $D(X)$ is $T_{X}(1, y)$
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig,

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the Hilbert series of $D(X)$ is $T_{X}(1, y)$
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig,

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig,

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the Hilbert series of $D(X)$ is $T_{X}(1, y)$.
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig,

Tutte polynomial

The Tutte polynomial associated to a list of vectors X is

$$
T_{X}(x, y) \doteq \sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

This polynomial embodies a lot of information on \mathcal{H}_{X} and $D(X)$:
(1) The number of regions of the complement in \mathbb{R}^{n} is $T_{X}(2,0)$;
(2) the Poincaré polynomial of the complement in \mathbb{C}^{n} is $q^{n} T_{X}\left(\frac{q+1}{q}, 0\right)$
(3) the Hilbert series of $D(X)$ is $T_{X}(1, y)$.
(Follows from work of Zaslawsky, Orlik and Solomon, De Boor and Hollig, ...)

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

Theorem (M.)

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

- $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

Theorem (M.)

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

- $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

Theorem (M.

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(- $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

Theorem (M.)

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$; (3) $M_{X}(1, y)$ is the Hilbert series of $\mathrm{DM}(X)$

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

Theorem (M.)

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;

Arithmetic Tutte polynomial

Problem

Define a "Tutte polynomial" for \mathcal{T}_{X} and $D M(X)$.
Let be $X \subset \mathbb{Z}^{n}$. For every $A \subseteq X$ let us define

$$
m(A) \doteq\left[\mathbb{Z}^{n} \cap\langle A\rangle_{\mathbb{Q}}:\langle A\rangle_{\mathbb{Z}}\right]
$$

Then we define an arithmetic Tutte polynomial $M_{X}(x, y)$:

$$
M(x, y) \doteq \sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

Theorem (M.)

(1) The number of regions of the complement in $\mathbb{S}_{1}{ }^{n}$ is $M_{X}(1,0)$;
(2) the Poincaré polynomial of the complem. in $\left(\mathbb{C}^{*}\right)^{n}$ is $q^{n} M_{X}\left(\frac{2 q+1}{q}, 0\right)$;
(3) $M_{X}(1, y)$ is the Hilbert series of $D M(X)$

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$
\mathcal{Z}(X) \doteq\left\{\sum_{a_{i} \in X} t_{i} a_{i}, 0 \leq t_{i} \leq 1\right\}
$$

In our example $X=\{(2,0),(0,3),(1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$
\mathcal{Z}(X) \doteq\left\{\sum_{a_{i} \in X} t_{i} a_{i}, 0 \leq t_{i} \leq 1\right\}
$$

In our example $X=\{(2,0),(0,3),(1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

The zonotope

Let $U_{\mathbb{R}}$ be the real vector space spanned by the elements of X. Then we define in $U_{\mathbb{R}}$ the zonotope

$$
\mathcal{Z}(X) \doteq\left\{\sum_{a_{i} \in X} t_{i} a_{i}, 0 \leq t_{i} \leq 1\right\}
$$

In our example $X=\{(2,0),(0,3),(1,-1)\}$, we have:

This convex polytope plays a central role both in the theory of arrangements and in that of partition functions.

The zonotope

Theorem (M.-D'Adderio)

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(3) $M_{X}(2,1)$ is the number of integer points in $\mathcal{Z}(X)$; (3) $M_{X}(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
(0) $M_{X}(x, 1)$ is the number of integer points in $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.
(3) $q^{n} M_{X}(1+1 / q, 1)$ equals the Ehrhart polynomial of $\mathcal{Z}(X)$ (i.e. the number of integer points in $q \mathcal{Z}(X), q \in \mathbb{N})$.

The zonotope

Theorem (M.-D'Adderio)

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
© $M_{X}(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$,
(1) $M_{X}(x, 1)$ is the number of integer points in $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.
(3) $q^{n} M_{X}(1+1 / q, 1)$ equals the Ehrhart polynomial of $\mathcal{Z}(X)$ (i.e. the number of integer points in $q \mathcal{Z}(X), q \in \mathbb{N})$.

The zonotope

Theorem (M.-D'Adderio)

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
(3) $M_{X}(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
(9) $M_{X}(x, 1)$ is the number of integer points in $\mathcal{Z}(X)$ $-\varepsilon$, collected according to a suitable stratification.
(5) $q^{n} M_{X}(1+1 / q, 1)$ equals the Ehrhart polynomial of $\mathbb{Z}(X)$ (i.e. the number of integer points in $q \mathcal{Z}(X), q \in \mathbb{N})$.

The zonotope

Theorem (M.-D'Adderio)

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
(3) $M_{X}(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
(1) $M_{X}(x, 1)$ is the number of integer points in $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.
(3) $q^{n} M_{X}(1+1 / q, 1)$ equals the Ehrhart polynomial of $\mathcal{Z}(X)$ (i.e. the number of integer points in $q \mathcal{Z}(X), q \in \mathbb{N})$.

The zonotope

Theorem (M.-D'Adderio)

(1) $M_{X}(1,1)$ equals the volume of the zonotope $\mathcal{Z}(X)$;
(2) $M_{X}(2,1)$ is the number of integer points in $\mathcal{Z}(X)$;
(3) $M_{X}(0,1)$ is the number of integer points in the interior of $\mathcal{Z}(X)$;
(1) $M_{X}(x, 1)$ is the number of integer points in $\mathcal{Z}(X)-\varepsilon$, collected according to a suitable stratification.
(6) $q^{n} M_{X}(1+1 / q, 1)$ equals the Ehrhart polynomial of $\mathcal{Z}(X)($ i.e. the number of integer points in $q \mathcal{Z}(X), q \in \mathbb{N})$.

Deletion-contraction

Furthermore, the polynomial $M_{X}(x, y)$ satisfies a deletion-contraction formula.
This requires to extend its definition to the case of a list X in a finitely generated abelian group G.
The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph. So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory.

Deletion-contraction

Furthermore, the polynomial $M_{X}(x, y)$ satisfies a deletion-contraction formula.
This requires to extend its definition to the case of a list X in a finitely generated abelian group G.
The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph. So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory.

Deletion-contraction

Furthermore, the polynomial $M_{X}(x, y)$ satisfies a deletion-contraction formula.
This requires to extend its definition to the case of a list X in a finitely generated abelian group G.
The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction.
general deletion-contraction invariant of a graph.
So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory.

Deletion-contraction

Furthermore, the polynomial $M_{X}(x, y)$ satisfies a deletion-contraction formula.
This requires to extend its definition to the case of a list X in a finitely generated abelian group G.
The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.
So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory.

Deletion-contraction

Furthermore, the polynomial $M_{X}(x, y)$ satisfies a deletion-contraction formula.
This requires to extend its definition to the case of a list X in a finitely generated abelian group G.
The classical Tutte polynomial was originally introduced for graphs: many invariants like the chromatic polynomial and the flow polynomial are computed by deletion-contraction. The Tutte polynomial is the most general deletion-contraction invariant of a graph.
So we started wondering if also the arithmetic Tutte polynomial may have applications to graph theory...

Labelled graphs

```
\begin{array} { l } { \text { Graph G} : = ( V , E ) \text { with a map } \ell : E \mapsto \mathbb { Z } _ { > 0 } \text { and a partition } E = } \\ { \text { For example, let } ( \mathcal { G } , \ell ) \text { , where } \mathcal { G } : = ( V , E ) , V : = \{ v _ { 1 } , v _ { 2 } , v _ { 3 } , v _ { 4 } \} \text { , } } \end{array}
R:={{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{4}{}}}\mathrm{ the regular edges,}
D : = \{ \{ v _ { 3 } , v _ { 4 } \} \} \text { the dotted edges, so that}
E=R\cupD={{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{4}{}},{\mp@subsup{v}{3}{},\mp@subsup{v}{4}{}}};
let }\ell({\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}})=1,\ell({\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}})=2,\ell({\mp@subsup{v}{2}{},\mp@subsup{v}{4}{}})=3\mathrm{ ,
\ell ( \{ v _ { 3 } , v _ { 4 } \} ) = 6 \text { be the labels.}
```


Labelled graphs

Graph $\mathcal{G}:=(V, E)$ with a map $\ell: E \mapsto \mathbb{Z}_{>0}$ and a partition $E=R \sqcup D$.
For example, let (\mathcal{G}, ℓ), where $\mathcal{G}:=(V, E), V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $R:=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$ the regular edges, $D:=\left\{\left\{v_{3}, v_{4}\right\}\right\}$ the dotted edges, so that $E=R \cup D=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} ;$ let $\ell\left(\left\{v_{1}, v_{2}\right\}\right)=1, \ell\left(\left\{v_{2}, v_{3}\right\}\right)=2, \ell\left(\left\{v_{2}, v_{4}\right\}\right)=3$, $\ell\left(\left\{v_{3}, v_{4}\right\}\right)=6$ be the labels.

Labelled graphs

Graph $\mathcal{G}:=(V, E)$ with a map $\ell: E \mapsto \mathbb{Z}_{>0}$ and a partition $E=R \sqcup D$.
For example, let (\mathcal{G}, ℓ), where $\mathcal{G}:=(V, E), V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $R:=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$ the regular edges, $D:=\left\{\left\{v_{3}, v_{4}\right\}\right\}$ the dotted edges, so that $E=R \cup D=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} ;$

Labelled graphs

Graph $\mathcal{G}:=(V, E)$ with a map $\ell: E \mapsto \mathbb{Z}_{>0}$ and a partition $E=R \sqcup D$.
For example, let (\mathcal{G}, ℓ), where $\mathcal{G}:=(V, E), V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $R:=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$ the regular edges, $D:=\left\{\left\{v_{3}, v_{4}\right\}\right\}$ the dotted edges, so that $E=R \cup D=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} ;$ let $\ell\left(\left\{v_{1}, v_{2}\right\}\right)=1, \ell\left(\left\{v_{2}, v_{3}\right\}\right)=2, \ell\left(\left\{v_{2}, v_{4}\right\}\right)=3$, $\ell\left(\left\{v_{3}, v_{4}\right\}\right)=6$ be the labels.

Labelled graphs

Graph $\mathcal{G}:=(V, E)$ with a map $\ell: E \mapsto \mathbb{Z}_{>0}$ and a partition $E=R \sqcup D$.

For example, let (\mathcal{G}, ℓ), where $\mathcal{G}:=(V, E), V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $R:=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$ the regular edges,
$D:=\left\{\left\{v_{3}, v_{4}\right\}\right\}$ the dotted edges, so that $E=R \cup D=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\}\right\} ;$ let $\ell\left(\left\{v_{1}, v_{2}\right\}\right)=1, \ell\left(\left\{v_{2}, v_{3}\right\}\right)=2, \ell\left(\left\{v_{2}, v_{4}\right\}\right)=3$, $\ell\left(\left\{v_{3}, v_{4}\right\}\right)=6$ be the labels.

Oriented labelled graphs

Graph $\mathcal{G}:=(V, E)$ with a map $\ell: E \mapsto \mathbb{Z}_{>0}$ and a partition $E=R \sqcup D$.
For example, let (\mathcal{G}, ℓ), where $\mathcal{G}:=(V, E), V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $R:=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{2}, v_{4}\right)\right\}$ the regular edges,
$D:=\left\{\left(v_{3}, v_{4}\right)\right\}$ the dotted edges, so that
$E=R \cup D=\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{4}\right)\right\}$;
let $\ell\left(\left(v_{1}, v_{2}\right)\right)=1, \ell\left(\left(v_{3}, v_{2}\right)\right)=2, \ell\left(\left(v_{2}, v_{4}\right)\right)=3$, $\ell\left(\left(v_{3}, v_{4}\right)\right)=6$ be the labels.

Deletion and contraction

Deletion and contraction

Deletion of $\left\{v_{2}, v_{3}\right\}$.

Contraction of $\left\{v_{2}, v_{3}\right\}$.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$. The arithmetic chromatic polynomial $\chi_{\mathcal{G}, \ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$.
is defined as the
number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G}, \ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ).

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G}, \ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible. A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G}, \ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.
We have:

$$
\begin{gathered}
2 c\left(v_{1}\right) \neq 2 c\left(v_{2}\right), 3 c\left(v_{1}\right) \neq 3 c\left(v_{2}\right) \\
2 c\left(v_{2}\right)=2 c\left(v_{3}\right) .
\end{gathered}
$$

$$
\mathrm{v}_{1} \frac{2}{3 \mathrm{v}_{2}}-\frac{2}{\mathrm{v}_{3}}
$$

We can color v_{1} in q ways, then v_{2} in $q-3-2+1$ ways, then v_{3} in 2 ways, so $\chi_{\mathcal{G}, \ell}(q)=2 q(q-4)=2 q^{2}-8 q$.

Arithmetic colorings

For our results we will consider only positive integers q such that $\ell(e)$ divides q for all $e \in E$. We will call such an integer admissible.
A (proper)arithmetic q-coloring of a labelled graph (\mathcal{G}, ℓ) is a map $c: V \rightarrow \mathbb{Z} / q \mathbb{Z}$ such that:
(1) if $e:=\{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e:=\{u, v\} \in D$, then $\ell(e) \cdot c(u)=\ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G}, \ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (proper) arithmetic q-colorings of (\mathcal{G}, ℓ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical chromatic polynomial.
We have:

$$
\begin{gathered}
2 c\left(v_{1}\right) \neq 2 c\left(v_{2}\right), 3 c\left(v_{1}\right) \neq 3 c\left(v_{2}\right) \\
2 c\left(v_{2}\right)=2 c\left(v_{3}\right)
\end{gathered}
$$

We can color v_{1} in q ways, then v_{2} in $q-3-2+1$ ways, then v_{3} in 2 ways, so $\chi_{\mathcal{G}, \ell}(q)=2 q(q-4)=2 q^{2}-8 q$.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented

 labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $\left(g_{\theta}, \ell\right)$ (it doesn't depend on θ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (G, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of (\mathcal{G}_{0}, ℓ) (it doesn't depend on θ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $\left(\mathcal{G}_{\theta}, \ell\right)$ (it doesn't depend on θ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $\left(\mathcal{G}_{\theta}, \ell\right)$ (it doesn't depend on θ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of $\left(\mathcal{G}_{\theta}, \ell\right)$ (it doesn't depend on θ).

$$
\text { We have that } \chi_{\mathcal{G}, \ell}^{*}(q)=2(q-4)=2 q-8 \text {. }
$$

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of ($\mathcal{G}_{\theta}, \ell$) (it doesn't depend on θ). When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.
solutions, but 4 of them are not
nowhere zero.

$$
\text { We have that } \chi_{g, \ell}(q)=2(q-4)=2 q-8
$$

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of ($\mathcal{G}_{\theta}, \ell$) (it doesn't depend on θ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.
The equation $2 x-3 y=0$ has q solutions, but 4 of them are not nowhere zero.

We have that $\chi_{G, \ell}^{*}(q)=2(q-4)=2 q-8$.

Arithmetic flows

Given an admissible q, a (nowhere zero) arithmetic q-flow on an oriented labelled graph $\left(\mathcal{G}_{\theta}, \ell\right)$ is a map $w: E_{\theta} \rightarrow(\mathbb{Z} / q \mathbb{Z})$ such that:

$$
(1) \forall v \in V, \sum_{\substack{e^{+}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)-\sum_{\substack{e^{-}=v \\ e \in E_{\theta}}} \ell(e) \cdot w(e)=\overline{0} \in \mathbb{Z} / q \mathbb{Z}
$$

(2) for all $e \in R_{\theta}, w(e) \neq \overline{0} \in \mathbb{Z} / q \mathbb{Z}$.

The arithmetic flow polynomial $\chi_{\mathcal{G}, \ell}^{*}(q)$ of (\mathcal{G}, ℓ) is defined as the number of (nowhere zero) arithmetic q-flows of ($\mathcal{G}_{\theta}, \ell$) (it doesn't depend on θ).
When $D=\emptyset$ and $\ell \equiv 1$ we get the classical flow polynomial.
The equation $2 x-3 y=0$ has q solutions, but 4 of them are not nowhere zero.

We have that $\chi_{\mathcal{G}, \ell}^{*}(q)=2(q-4)=2 q-8$.

Graphical toric arrangements

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.
To each edge $e=\left(v_{i}, v_{j}\right) \in E_{\theta}$ we associate the element of \mathbb{Z}^{n}

$$
x_{e} \doteq(0, \ldots, 0, \ell(e), 0, \ldots, 0,-\ell(e), 0, \ldots)
$$

Then we look at the image of the list X_{R} in the group $G:=\mathbb{Z}^{n} /\left\langle X_{D}\right\rangle$ We denote by $M_{\mathcal{G}, \ell}(x, y)$ the associated arithmetic Tutte polynomial.

Graphical toric arrangements

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.
To each edge $e=\left(v_{i}, v_{j}\right) \in E_{\theta}$ we associate the element of \mathbb{Z}^{n}

$$
x_{e} \doteq(0, \ldots, 0, \ell(e), 0, \ldots, 0,-\ell(e), 0, \ldots)
$$

Then we look at the image of the list X_{R} in the group $G:=\mathbb{Z}^{n} /\left\langle X_{D}\right\rangle$ We denote by $M_{\mathcal{G}, \ell}(x, y)$ the associated arithmetic Tutte polynomial.

Graphical toric arrangements

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.
To each edge $e=\left(v_{i}, v_{j}\right) \in E_{\theta}$ we associate the element of \mathbb{Z}^{n}

$$
x_{e} \doteq(0, \ldots, 0, \ell(e), 0, \ldots, 0,-\ell(e), 0, \ldots)
$$

Then we look at the image of the list X_{R} in the group $G:=\mathbb{Z}^{n} /\left\langle X_{D}\right\rangle$ We denote by $M_{\mathcal{G}, \ell}(x, y)$ the associated arithmetic Tutte polynomial.

Graphical toric arrangements

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.
To each edge $e=\left(v_{i}, v_{j}\right) \in E_{\theta}$ we associate the element of \mathbb{Z}^{n}

$$
x_{e} \doteq(0, \ldots, 0, \ell(e), 0, \ldots, 0,-\ell(e), 0, \ldots)
$$

Then we look at the image of the list X_{R} in the group $G:=\mathbb{Z}^{n} /\left\langle X_{D}\right\rangle$ We denote by $M_{\mathcal{G}, \ell}(x, y)$ the associated arithmetic Tutte polynomial.

We have $X_{R}=\{(1,-1,0,0),(0,-2,2,0),(0,3,0,-3)\} \subseteq \mathbb{Z}^{4}$ and $X_{D}=\{(0,0,6,-6)\} \subseteq \mathbb{Z}^{4}$, so $G:=\mathbb{Z}^{4} /\langle(0,0,6,-6)\rangle$.

Graphical toric arrangements

We associate to each labelled graph (\mathcal{G}, ℓ) a list of elements of a group in the following way.
To each edge $e=\left(v_{i}, v_{j}\right) \in E_{\theta}$ we associate the element of \mathbb{Z}^{n}

$$
x_{e} \doteq(0, \ldots, 0, \ell(e), 0, \ldots, 0,-\ell(e), 0, \ldots)
$$

Then we look at the image of the list X_{R} in the group $G:=\mathbb{Z}^{n} /\left\langle X_{D}\right\rangle$ We denote by $M_{\mathcal{G}, \ell}(x, y)$ the associated arithmetic Tutte polynomial.

We have $X_{R}=\{(1,-1,0,0),(0,-2,2,0),(0,3,0,-3)\} \subseteq \mathbb{Z}^{4}$ and $X_{D}=\{(0,0,6,-6)\} \subseteq \mathbb{Z}^{4}$, so $G:=\mathbb{Z}^{4} /\langle(0,0,6,-6)\rangle$.
In this case $M_{\mathcal{G}, \ell}(x, y)=6 x^{2}+18 x+6 x y$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k^{\prime}} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

(1) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:
Theorem (Tutte)
(9) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)
(a) $v_{g}(a)=(-1)^{|V|-k} q^{k} T_{g}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

(1) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

(1) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

(1) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.
$M_{\mathcal{G}, \ell}(x, y)=2 x+6+2 y$, and therefore

$$
\chi_{\mathcal{G}, \ell}(q)=2 q^{2}-8 q, \chi_{\mathcal{G}, \ell}^{*}(q)=2 q-8
$$

Main results

Let $\overline{\mathcal{G}}=(\bar{V}, \bar{E})$ be the graph obtained from $\mathcal{G}=(V, E=R \cup D)$ by (classically) contracting the edges in D. Let q be an admissible integer.

Theorem (M.- D'Adderio)

(1) $\chi_{\mathcal{G}, \ell}(q)=(-1)^{|\bar{V}|-k} q^{k} M_{\mathcal{G}, \ell}(1-q, 0)$.
(2) $\chi_{\mathcal{G}, \ell}^{*}(q)=(-1)^{|R|-|\bar{V}|+k} q^{|D|-|V|+|\bar{V}|} M_{\mathcal{G}, \ell}(0,1-q)$.

When $D=\emptyset$ and $\ell \equiv 1$ we get the classical result:

Theorem (Tutte)

(1) $\chi_{\mathcal{G}}(q)=(-1)^{|V|-k} q^{k} T_{\mathcal{G}}(1-q, 0)$.
(2) $\chi_{\mathcal{G}}^{*}(q)=(-1)^{|E|-|V|+k} T_{\mathcal{G}}(0,1-q)$.
$M_{\mathcal{G}, \ell}(x, y)=2 x+6+2 y$, and therefore

$$
\chi_{\mathcal{G}, \ell}(q)=2 q^{2}-8 q, \chi_{\mathcal{G}, \ell}^{*}(q)=2 q-8
$$

