Codes for Trees

Maria Leonor Moreira CMUP
Universidade do Porto

67 SLC, Bertinoro 2011

Joint work with:
Ignacio M. Pelayo (Univ. Politècnica da Catalunya)

A sharp lower bound for the locating-domination number of a tree. A realization result for this code. A conjectured upper for the identifying code and some open problems.

Localizing in graphs: how can you do it
Different Codes for graphs

Using distance: Locating sets/ Metric dimension

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating set of G iff $\forall u, v \in V(G)$, $\left(d\left(u, x_{1}\right), \cdots, d\left(u, x_{k}\right)\right) \neq\left(d\left(v, x_{1}\right), \cdots, d\left(v, x_{k}\right)\right)$

Using distance: Locating sets/ Metric dimension

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating set of G iff $\forall u, v \in V(G)$, $\left(d\left(u, x_{1}\right), \cdots, d\left(u, x_{k}\right)\right) \neq\left(d\left(v, x_{1}\right), \cdots, d\left(v, x_{k}\right)\right)$
- metric dimension or location number $\beta(G)=$ minimum cardinality of a locating set,

Using distance: Locating sets/ Metric dimension

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating set of G iff $\forall u, v \in V(G)$, $\left(d\left(u, x_{1}\right), \cdots, d\left(u, x_{k}\right)\right) \neq\left(d\left(v, x_{1}\right), \cdots, d\left(v, x_{k}\right)\right)$
- metric dimension or location number $\beta(G)=$ minimum cardinality of a locating set,
- $\beta\left(P_{n}\right)=1, \beta\left(C_{n}\right)=2, \beta\left(W_{1,6}\right)=3$

Using distance: Locating sets/ Metric dimension

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating set of G iff $\forall u, v \in V(G)$, $\left(d\left(u, x_{1}\right), \cdots, d\left(u, x_{k}\right)\right) \neq\left(d\left(v, x_{1}\right), \cdots, d\left(v, x_{k}\right)\right)$
- metric dimension or location number $\beta(G)=$ minimum cardinality of a locating set,
- $\beta\left(P_{n}\right)=1, \beta\left(C_{n}\right)=2, \beta\left(W_{1,6}\right)=3$

- Introduced by Harary and Melter (1976)

Using neighbors: Dominating sets/ Domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a dominating set (or covering code) of G iff $\forall u \in V(G \backslash D)$ has a neighbour in D $N(u) \cap D=N[u] \cap D \neq \emptyset$, $N(u)=\{x \in V(G):(u, x) \in E(G)\}, N[u]=\{u\} \cup N(u)$.

Using neighbors: Dominating sets/ Domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a dominating set (or covering code) of G iff $\forall u \in V(G \backslash D)$ has a neighbour in D

$$
\begin{aligned}
& N(u) \cap D=N[u] \cap D \neq \emptyset, \\
& N(u)=\{x \in V(G):(u, x) \in E(G)\}, N[u]=\{u\} \cup N(u) .
\end{aligned}
$$

- domination number
$\gamma(G)=$ minimum cardinality of a dominating set,

Using neighbors: Dominating sets/ Domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a dominating set (or covering code) of G iff $\forall u \in V(G \backslash D)$ has a neighbour in D $N(u) \cap D=N[u] \cap D \neq \emptyset$, $N(u)=\{x \in V(G):(u, x) \in E(G)\}, N[u]=\{u\} \cup N(u)$.
- domination number $\gamma(G)=$ minimum cardinality of a dominating set,
- Exs: $\gamma\left(W_{1, n}\right)=1 \gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

- Determining a vertex cover is a classical optimization problem (NP-complete example)

Using neighbors: Dominating sets/ Domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a dominating set (or covering code) of G iff $\forall u \in V(G \backslash D)$ has a neighbour in D
$N(u) \cap D=N[u] \cap D \neq \emptyset$,
$N(u)=\{x \in V(G):(u, x) \in E(G)\}, N[u]=\{u\} \cup N(u)$.
- domination number
$\gamma(G)=$ minimum cardinality of a dominating set,
- Exs: $\gamma\left(W_{1, n}\right)=1 \gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

- Determining a vertex cover is a classical optimization problem (NP-complete example)
- Domination in Graphs: Haynes, Hedetniemi, Slater (1998)

Using both: (Metric) Location domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating dominating set of G iff it is both.

Using both: (Metric) Location domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating dominating set of G iff it is both.
- metric location domination number $\eta(G)=$ minimum cardinality of a locating and dominating set,

Using both: (Metric) Location domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating dominating set of G iff it is both.
- metric location domination number $\eta(G)=$ minimum cardinality of a locating and dominating set,
- $\max \{\beta(G), \gamma(G)\} \leq \eta(G) \leq \beta(G)+\gamma(G)$

Using both: (Metric) Location domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating dominating set of G iff it is both.
- metric location domination number $\eta(G)=$ minimum cardinality of a locating and dominating set,
- $\max \{\beta(G), \gamma(G)\} \leq \eta(G) \leq \beta(G)+\gamma(G)$
- $\beta\left(W_{1,5}\right)=2$ and $\eta\left(W_{1,5}\right)=3$

Only binary: Location-domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating-dominating set of G iff it locates and dominates the other vertices only with 0,1 , i.e., $\forall u, v \in V(G) \backslash D, \emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$.

Only binary: Location-domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating-dominating set of G iff it locates and dominates the other vertices only with 0,1 , i.e., $\forall u, v \in V(G) \backslash D, \emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$.
- location domination number
$\lambda(G)=$ minimum cardinality of a locating-dominating set,

Only binary: Location-domination number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a locating-dominating set of G iff it locates and dominates the other vertices only with 0,1 , i.e., $\forall u, v \in V(G) \backslash D, \emptyset \neq N(u) \cap D \neq N(v) \cap D \neq \emptyset$.
- location domination number
$\lambda(G)=$ minimum cardinality of a locating-dominating set,
- $\lambda\left(W_{1,5}\right)=\eta\left(W_{1,5}\right) \lambda\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil \neq \eta\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$

Binary for all: Identifying number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a identifying code of G iff it locates and dominates all the vertices only with 0,1 , i.e., $\forall u, v \in V(G), \emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset$.

Binary for all: Identifying number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a identifying code of G iff it locates and dominates all the vertices only with 0,1 , i.e., $\forall u, v \in V(G), \emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset$.
- metric location dominate number $\iota(G)=$ minimum cardinality of an identifying code.
Defined iff there are no twin vertices in G $(x, y \in V(G): N[u]=N[v])$

Binary for all: Identifying number

- $D=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a identifying code of G iff it locates and dominates all the vertices only with 0,1 , i.e.,
$\forall u, v \in V(G), \emptyset \neq N[u] \cap D \neq N[v] \cap D \neq \emptyset$.
- metric location dominate number $\iota(G)=$ minimum cardinality of an identifying code.
Defined iff there are no twin vertices in G
$(x, y \in V(G): N[u]=N[v])$
- $4=\iota\left(W_{1,5}\right) \neq \lambda\left(W_{1,5}\right)=3 \iota\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Known for trees

- The calculation of the metric dimension of a tree is a well studied problem with different contributions, since the refered paper of Harary and Melter. (eg,. (Landmarks in graphs, Khuller et. al.(1996)) . There is closed formula for $\beta(T)$.

Known for trees

- The calculation of the metric dimension of a tree is a well studied problem with different contributions, since the refered paper of Harary and Melter. (eg,. (Landmarks in graphs, Khuller et. al.(1996)) . There is closed formula for $\beta(T)$.
- Covering codes for trees and $\gamma(T)$ are completely studied.

Known for trees

- The calculation of the metric dimension of a tree is a well studied problem with different contributions, since the refered paper of Harary and Melter. (eg,. (Landmarks in graphs, Khuller et. al.(1996)) . There is closed formula for $\beta(T)$.
- Covering codes for trees and $\gamma(T)$ are completely studied.
- In 2004 Henning and Oellermann showed that $\eta(T)$ can be calculated using the covering code of the tree T :

$$
\eta(T)=\gamma(T)+l(T)-s(T)
$$

$I(T)$ number of leaves (any degree one vertex is a leaf) $s(T)$ number of support vertices (any vertex adjacent to a leaf is a support vertex)

Binary codes for trees

- For any tree $T, I(T)-s(T)<\lambda(T)<|V(T)|$

Binary codes for trees

- For any tree $T, I(T)-s(T)<\lambda(T)<|V(T)|$
- In the same paper of Henning and Oellermann they relate the binary parameter with the metric one, proving that:
$\eta(T) \leq \lambda(T) \leq 2 \eta(T)-2$.

Binary codes for trees

- For any tree $T, I(T)-s(T)<\lambda(T)<|V(T)|$
- In the same paper of Henning and Oellermann they relate the binary parameter with the metric one, proving that:
$\eta(T) \leq \lambda(T) \leq 2 \eta(T)-2$.
- All the values on the previous interval can occur: take the star with r branches with 3 vertices and s branches of 4 vertices. Then $\eta(T)=r+s+1$ and $\lambda(T)=r+2 s$ (extremal cases with $s=0$ making $\lambda=\eta=r+1$ and $s=0$ making $\lambda=2 \eta-2=r+2 s$
- Blidia et. al., in 2007, showed that $\frac{|V(T)|+l(T)-s(T)}{2}$ is a sharp upper bound for $\lambda(T)$.

A good lower bound for λ

- Slater, in 1987 , showed that $\frac{|V(T)|+1}{3}$ is a lower bound for $\lambda(T)$ and constructed an infinite family of trees with this value of λ, all them with $I(T)=s(T)$

A good lower bound for λ

- Slater, in 1987 , showed that $\frac{|V(T)|+1}{3}$ is a lower bound for $\lambda(T)$ and constructed an infinite family of trees with this value of λ, all them with $I(T)=s(T)$
- In general, $\lambda(T) \geq \frac{(|V(T)|+2(I(T)-s(T))+1}{3}$ and the bound is sharp.

A good lower bound for λ

- Slater, in 1987 , showed that $\frac{|V(T)|+1}{3}$ is a lower bound for $\lambda(T)$ and constructed an infinite family of trees with this value of λ, all them with $I(T)=s(T)$
- In general, $\lambda(T) \geq \frac{(|V(T)|+2(I(T)-s(T))+1}{3}$ and the bound is sharp.
- Given a tree T_{2} with $c=I\left(T_{2}\right)-s\left(T_{2}\right)>0$ build another tree T_{1} by deleting all but one of the leaves on each support vertex and apply Slater result to this one.
$\left|V\left(T_{2}\right)\right|=\left|V\left(T_{1}\right)\right|+c \leq\left(3 \lambda\left(T_{1}\right)-1\right)+c=$
$\left(3\left(\lambda\left(T_{2}\right)-c\right)-1\right)+c=3 \lambda\left(T_{2}\right)-2 c-1$

A realization result with trees for λ

- Theorem
$\forall a, b, c \in \mathbb{N}$ such that:
- $0 \leq c<b<a$
- $2 b-c \leq a \leq 3 b-2 c-1$

There is a tree $T=T(a, b, c)$ such that:

- $|V(T)|=a$
- $\lambda(T)=b$
- $l(T)-s(T)=c$

A realization result with trees for λ

- Theorem
$\forall a, b, c \in \mathbb{N}$ such that:
- $0 \leq c<b<a$
- $2 b-c \leq a \leq 3 b-2 c-1$

There is a tree $T=T(a, b, c)$ such that:

- $|V(T)|=a$
- $\lambda(T)=b$
- $l(T)-s(T)=c$
- $c=0 a=2 b$

$T(12,6)$

A realization result with trees for λ (cont.)

- $c=0, a=3 b-1$

$T(14,5)$

A realization result with trees for λ (cont.)

- $c=0, a=3 b-1$

$$
T(14,5)
$$

- $c=0,2 b<a<3 b-1$ make convenient subdivision of the edges connecting support vertices of $T(2 b, b)$

A realization result with trees for λ (cont.)

- $c>00<c<b<a$ the pair $(a-c, b-c)$ verifies $0<b-c<a-c$ as $2 b-c \leq a \leq 3 b-2 c-1$ then $2(b-c) \leq a-c \leq 3(b-c)-1$

A realization result with trees for λ (cont.)

- $c>00<c<b<a$ the pair $(a-c, b-c)$ verifies $0<b-c<a-c$ as $2 b-c \leq a \leq 3 b-2 c-1$ then $2(b-c) \leq a-c \leq 3(b-c)-1$
- Construct $T_{0}=T(a-c, b-c)\left(I\left(T_{0}\right)=s\left(T_{0}\right)\right)$

A realization result with trees for λ (cont.)

- $T=T(a, b, c)$ can be obtained from T_{0} adding c new leaves connected to the support vertices of T_{0}

$$
T(19,10,5)
$$

A realization result with trees for λ (cont.)

- $T=T(a, b, c)$ can be obtained from T_{0} adding c new leaves connected to the support vertices of T_{0}

$T(19,10,5)$
- $|V(T)|=\left|V\left(T_{0}\right)\right|+c=(a-c)+c=a$, $\lambda(T) \mid=\lambda\left(T_{0}\right)+c=(b-c)+c=b$ and $I(T)=I\left(T_{0}\right)+c=s\left(T_{0}\right)+c=s(T)+c$.

A conjecture and some open problems

- Solve the equations:

$$
\lambda(T)=\frac{|V(T)|+l(T)-s(T)}{2} \text { and } \lambda(T)=\frac{(|V(T)|+2(l(T)-s(T))+1}{3}
$$

A conjecture and some open problems

- Solve the equations:

$$
\lambda(T)=\frac{|V(T)|+l(T)-s(T)}{2} \text { and } \lambda(T)=\frac{(|V(T)|+2(l(T)-s(T))+1}{3}
$$

- In Blidia et. al., it is shown that $\frac{3(|V(T)|+l(T)-s(T)+1)}{7}$ is a lower bound for $\iota(T)$ and this bound is sharp for infinitely many values of n.

A conjecture and some open problems

- Solve the equations:

$$
\lambda(T)=\frac{|V(T)|+l(T)-s(T)}{2} \text { and } \lambda(T)=\frac{(|V(T)|+2(l(T)-s(T))+1}{3}
$$

- In Blidia et. al., it is shown that $\frac{3(|V(T)|+l(T)-s(T)+1)}{7}$ is a lower bound for $\iota(T)$ and this bound is sharp for infinitely many values of n.
- Conjecture: $\left\lceil\frac{|V(T)|+1}{2}\right\rceil$ is a sharp upper bound for $\iota(T)$.

A conjecture and some open problems

- Solve the equations:

$$
\lambda(T)=\frac{|V(T)|+l(T)-s(T)}{2} \text { and } \lambda(T)=\frac{(|V(T)|+2(l(T)-s(T))+1}{3}
$$

- In Blidia et. al., it is shown that $\frac{3(|V(T)|+l(T)-s(T)+1)}{7}$ is a lower bound for $\iota(T)$ and this bound is sharp for infinitely many values of n.
- Conjecture: $\left\lceil\frac{|V(T)|+1}{2}\right\rceil$ is a sharp upper bound for $\iota(T)$.
- Given "good" $a, b \in \mathbb{N}$ construct a tree with $|V(T)|=a$ and $\iota(T)=b$.

A conjecture and some open problems

- Solve the equations:

$$
\lambda(T)=\frac{|V(T)|+l(T)-s(T)}{2} \text { and } \lambda(T)=\frac{(|V(T)|+2(l(T)-s(T))+1}{3}
$$

- In Blidia et. al., it is shown that $\frac{3(|V(T)|+l(T)-s(T)+1)}{7}$ is a lower bound for $\iota(T)$ and this bound is sharp for infinitely many values of n.
- Conjecture: $\left\lceil\frac{|V(T)|+1}{2}\right\rceil$ is a sharp upper bound for $\iota(T)$.
- Given "good" $a, b \in \mathbb{N}$ construct a tree with $|V(T)|=a$ and $\iota(T)=b$.
- Solve the equation $\iota(T)=\lambda(T)$

Bibliography

- M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australian J. of Combinatorics, 39 (2007), 219-232.

Bibliography

- M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australian J. of Combinatorics, 39 (2007), 219-232.
- P. Slater, Domination and Location in Acyclic Graphs, Networks, 17 (1987), 55-64.

Bibliography

- M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australian J. of Combinatorics, 39 (2007), 219-232.
- P. Slater, Domination and Location in Acyclic Graphs, Networks, 17 (1987), 55-64.
- Bibliography on codes: http://www.infres.enst.fr/ lobstein/bibLOCDOMetID.html

