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A sharp lower bound for the locating-domination number of a
tree. A realization result for this code. A conjectured upper for the
identifying code and some open problems.

Localizing in graphs: how can you do it
Different Codes for graphs



Using distance: Locating sets/ Metric dimension

I D = {x1, x2, · · · , xk} is a locating set of G iff ∀u, v ∈ V (G ),
(d(u, x1), · · · , d(u, xk)) 6= (d(v , x1), · · · , d(v , xk))

I metric dimension or location number
β(G ) = minimum cardinality of a locating set,

I β(Pn) = 1, β(Cn) = 2, β(W1,6) = 3
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Using neighbors: Dominating sets/ Domination number

I D = {x1, x2, · · · , xk} is a dominating set (or covering code) of
G iff ∀u ∈ V (G \ D) has a neighbour in D
N(u) ∩ D = N[u] ∩ D 6= ∅,
N(u) = {x ∈ V (G ) : (u, x) ∈ E (G )}, N[u] = {u} ∪ N(u).

I domination number
γ(G ) = minimum cardinality of a dominating set,

I Exs: γ(W1,n) = 1 γ(Pn) = dn3e
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I Determining a vertex cover is a classical optimization problem
(NP-complete example)

I Domination in Graphs : Haynes, Hedetniemi, Slater (1998)
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Using both: (Metric) Location domination number

I D = {x1, x2, · · · , xk} is a locating dominating set of G iff it is
both.

I metric location domination number
η(G ) = minimum cardinality of a locating and dominating set,

I max{β(G ), γ(G )} ≤ η(G ) ≤ β(G ) + γ(G )

I β(W1,5) = 2 and η(W1,5) = 3
(1,1)

y
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Only binary: Location-domination number

I D = {x1, x2, · · · , xk} is a locating-dominating set of G iff it
locates and dominates the other vertices only with 0, 1, i.e.,
∀u, v ∈ V (G ) \ D, ∅ 6= N(u) ∩ D 6= N(v) ∩ D 6= ∅.

I location domination number
λ(G ) = minimum cardinality of a locating-dominating set,

I λ(W1,5) = η(W1,5) λ(Pn) = d2n5 e 6= η(Pn) = dn3e
U,q,ll b,4 o1 l
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Binary for all: Identifying number

I D = {x1, x2, · · · , xk} is a identifying code of G iff it locates
and dominates all the vertices only with 0, 1, i.e.,
∀u, v ∈ V (G ), ∅ 6= N[u] ∩ D 6= N[v ] ∩ D 6= ∅.

I metric location dominate number ι(G ) = minimum cardinality
of an identifying code.
Defined iff there are no twin vertices in G
(x , y ∈ V (G ) : N[u] = N[v ])

I 4 = ι(W1,5) 6= λ(W1,5) = 3 ι(Pn) = dn+1
2 e
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Known for trees

I The calculation of the metric dimension of a tree is a well
studied problem with different contributions, since the refered
paper of Harary and Melter. (eg,. (Landmarks in graphs,
Khuller et. al.(1996)) . There is closed formula for β(T ).

I Covering codes for trees and γ(T ) are completely studied.

I In 2004 Henning and Oellermann showed that η(T ) can be
calculated using the covering code of the tree T :

η(T ) = γ(T ) + l(T )− s(T )

l(T ) number of leaves ( any degree one vertex is a leaf )
s(T ) number of support vertices ( any vertex adjacent to a
leaf is a support vertex )
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Binary codes for trees

I For any tree T , l(T )− s(T ) < λ(T ) < |V (T )|

I In the same paper of Henning and Oellermann they relate the
binary parameter with the metric one, proving that:
η(T ) ≤ λ(T ) ≤ 2η(T )− 2.

I All the values on the previous interval can occur: take the star
with r branches with 3 vertices and s branches of 4 vertices.
Then η(T ) = r + s + 1 and λ(T ) = r + 2s (extremal cases
with s = 0 making λ = η = r + 1 and s = 0 making
λ = 2η − 2 = r + 2s

I Blidia et. al., in 2007, showed that |V (T )|+l(T )−s(T )
2 is a sharp

upper bound for λ(T ).
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A good lower bound for λ

I Slater, in 1987 , showed that |V (T )|+1
3 is a lower bound for

λ(T ) and constructed an infinite family of trees with this
value of λ, all them with l(T ) = s(T )

I In general, λ(T ) ≥ (|V (T )|+2(l(T )−s(T ))+1
3 and the bound is

sharp.

I Given a tree T2 with c = l(T2)− s(T2) > 0 build another tree
T1 by deleting all but one of the leaves on each support vertex
and apply Slater result to this one.
|V (T2)| = |V (T1)|+ c ≤ (3λ(T1)− 1) + c =
(3(λ(T2)− c)− 1) + c = 3λ(T2)− 2c − 1
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A realization result with trees for λ

I Theorem
∀a, b, c ∈ N such that:

I 0 ≤ c < b < a
I 2b − c ≤ a ≤ 3b − 2c − 1

There is a tree T = T (a, b, c) such that:

I |V (T )| = a
I λ(T ) = b
I l(T )− s(T ) = c

I c = 0 a = 2b

T1
T (12, 6)
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A realization result with trees for λ(cont.)

I c = 0, a = 3b − 1 T1
T (14, 5)

I c = 0, 2b < a < 3b − 1 make convenient subdivision of the
edges connecting support vertices of T (2b, b)
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A realization result with trees for λ(cont.)

I c > 0 0 < c < b < a the pair (a− c , b − c) verifies
0 < b − c < a− c
as 2b − c ≤ a ≤ 3b − 2c − 1 then
2(b − c) ≤ a− c ≤ 3(b − c)− 1

I Construct T0 = T (a− c , b − c) ( l(T0) = s(T0) )
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A realization result with trees for λ(cont.)

I T = T (a, b, c) can be obtained from T0 adding c new leaves
connected to the support vertices of T0

T1

T (19, 10, 5)

I |V (T )| = |V (T0)|+ c = (a− c) + c = a,
λ(T )| = λ(T0) + c = (b − c) + c = b and
l(T ) = l(T0) + c = s(T0) + c = s(T ) + c .
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A conjecture and some open problems

I Solve the equations:
λ(T ) = |V (T )|+l(T )−s(T )

2 and λ(T ) = (|V (T )|+2(l(T )−s(T ))+1
3

I In Blidia et. al., it is shown that 3(|V (T )|+l(T )−s(T )+1)
7 is a

lower bound for ι(T ) and this bound is sharp for infinitely
many values of n.

I Conjecture: d |V (T )|+1
2 e is a sharp upper bound for ι(T ).

I Given ”good” a, b ∈ N construct a tree with |V (T )| = a and
ι(T ) = b.

I Solve the equation ι(T ) = λ(T )



A conjecture and some open problems

I Solve the equations:
λ(T ) = |V (T )|+l(T )−s(T )

2 and λ(T ) = (|V (T )|+2(l(T )−s(T ))+1
3

I In Blidia et. al., it is shown that 3(|V (T )|+l(T )−s(T )+1)
7 is a

lower bound for ι(T ) and this bound is sharp for infinitely
many values of n.

I Conjecture: d |V (T )|+1
2 e is a sharp upper bound for ι(T ).

I Given ”good” a, b ∈ N construct a tree with |V (T )| = a and
ι(T ) = b.

I Solve the equation ι(T ) = λ(T )



A conjecture and some open problems

I Solve the equations:
λ(T ) = |V (T )|+l(T )−s(T )

2 and λ(T ) = (|V (T )|+2(l(T )−s(T ))+1
3

I In Blidia et. al., it is shown that 3(|V (T )|+l(T )−s(T )+1)
7 is a

lower bound for ι(T ) and this bound is sharp for infinitely
many values of n.

I Conjecture: d |V (T )|+1
2 e is a sharp upper bound for ι(T ).

I Given ”good” a, b ∈ N construct a tree with |V (T )| = a and
ι(T ) = b.

I Solve the equation ι(T ) = λ(T )



A conjecture and some open problems

I Solve the equations:
λ(T ) = |V (T )|+l(T )−s(T )

2 and λ(T ) = (|V (T )|+2(l(T )−s(T ))+1
3

I In Blidia et. al., it is shown that 3(|V (T )|+l(T )−s(T )+1)
7 is a

lower bound for ι(T ) and this bound is sharp for infinitely
many values of n.

I Conjecture: d |V (T )|+1
2 e is a sharp upper bound for ι(T ).

I Given ”good” a, b ∈ N construct a tree with |V (T )| = a and
ι(T ) = b.

I Solve the equation ι(T ) = λ(T )



A conjecture and some open problems

I Solve the equations:
λ(T ) = |V (T )|+l(T )−s(T )

2 and λ(T ) = (|V (T )|+2(l(T )−s(T ))+1
3

I In Blidia et. al., it is shown that 3(|V (T )|+l(T )−s(T )+1)
7 is a

lower bound for ι(T ) and this bound is sharp for infinitely
many values of n.

I Conjecture: d |V (T )|+1
2 e is a sharp upper bound for ι(T ).

I Given ”good” a, b ∈ N construct a tree with |V (T )| = a and
ι(T ) = b.

I Solve the equation ι(T ) = λ(T )



Bibliography

I M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri,
Locating-domination and identifying codes in trees, Australian
J. of Combinatorics, 39 (2007), 219-232.

I P. Slater, Domination and Location in Acyclic Graphs,
Networks, 17 (1987), 55-64.

I Bibliography on codes:
http://www.infres.enst.fr/ lobstein/bibLOCDOMetID.html



Bibliography

I M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri,
Locating-domination and identifying codes in trees, Australian
J. of Combinatorics, 39 (2007), 219-232.

I P. Slater, Domination and Location in Acyclic Graphs,
Networks, 17 (1987), 55-64.

I Bibliography on codes:
http://www.infres.enst.fr/ lobstein/bibLOCDOMetID.html



Bibliography

I M. Blidia, M Chellali, F. Maffray, J. Moncel, A. Semri,
Locating-domination and identifying codes in trees, Australian
J. of Combinatorics, 39 (2007), 219-232.

I P. Slater, Domination and Location in Acyclic Graphs,
Networks, 17 (1987), 55-64.

I Bibliography on codes:
http://www.infres.enst.fr/ lobstein/bibLOCDOMetID.html


	 A sharp lower bound for the locating-domination number of a tree. A realization result for this code. A conjectured upper for the identifying code and some open problems. 
	Localizing in graphs: how can you do it
	 Different Codes for graphs 


