Combinatorial Properties of the Temperley-Lieb Algebra of a Coxeter Group

Alfonso Pesiri

Department of Mathematics
University of Rome "Tor Vergata"

67th Séminaire Lotharingien de Combinatoire Joint session with
 XVII Incontro Italiano di Combinatoria Algebrica

Motivation

By study of the combinatorial properties of the Temperley-Lieb algebra we mean the study of two families of polynomials which arise naturally in the context of the Temperley-Lieb algebra associated to a Coxeter group. These polynomials are the analogous of the well-known R-polynomials and Kazhdan-Lusztig polynomials defined in the context of the Hecke algebra of a Coxeter group.

Motivation

By study of the combinatorial properties of the Temperley-Lieb algebra we mean the study of two families of polynomials which arise naturally in the context of the Temperley-Lieb algebra associated to a Coxeter group. These polynomials are the analogous of the well-known R-polynomials and Kazhdan-Lusztig polynomials defined in the context of the Hecke algebra of a Coxeter group.
This work was motivated by the fact that, on the one hand, the Kazhdan-Lusztig polynomials and the R-polynomials have been studied a lot, since they were first defined. On the other hand, no one has ever studied their analogous in the Temperley-Lieb algebra.

Motivation

By study of the combinatorial properties of the Temperley-Lieb algebra we mean the study of two families of polynomials which arise naturally in the context of the Temperley-Lieb algebra associated to a Coxeter group. These polynomials are the analogous of the well-known R-polynomials and Kazhdan-Lusztig polynomials defined in the context of the Hecke algebra of a Coxeter group.
This work was motivated by the fact that, on the one hand, the Kazhdan-Lusztig polynomials and the R-polynomials have been studied a lot, since they were first defined. On the other hand, no one has ever studied their analogous in the
Temperley-Lieb algebra.
The main purpose of this work is to highlight the analogies between these polynomials.

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{x, w}$
- Combinatorial properties of $a_{x, w}$

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{X, w}$
- Combinatorial properties of $a_{X, w}$

Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix $m:[n] \times[n] \rightarrow \mathbb{P} \cup\{\infty\}$ such that

$$
m(i, j)=1 \Longleftrightarrow i=j, \forall i, j \in[n] .
$$

Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix $m:[n] \times[n] \rightarrow \mathbb{P} \cup\{\infty\}$ such that

$$
m(i, j)=1 \Longleftrightarrow i=j, \forall i, j \in[n] .
$$

A Coxeter System associated to a Coxeter matrix m is a pair (W, S), where W is a group with set of generators $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and relations

$$
\left(s_{i} s_{j}\right)^{m(i, j)}=e, \forall i, j \in[n]
$$

Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix $m:[n] \times[n] \rightarrow \mathbb{P} \cup\{\infty\}$ such that

$$
m(i, j)=1 \Longleftrightarrow i=j, \forall i, j \in[n] .
$$

A Coxeter System associated to a Coxeter matrix m is a pair (W, S), where W is a group with set of generators $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and relations

$$
\left(s_{i} s_{j}\right)^{m(i, j)}=e, \forall i, j \in[n] .
$$

A Coxeter Graph of a Coxeter system (W, S) is the graph whose node set is S and whose edges are the unordered pairs $\left\{s_{i}, s_{j}\right\}$ such that $m(i, j) \geq 3$. The edges $\left\{s_{i}, s_{j}\right\}$ such that $m(i, j) \geq 4$ are labelled by the number $m(i, j)$.

An Example

Example

Coxeter matrix and corresponding Coxeter graph, which we will denote by A_{3} :

An Example

Example

Coxeter matrix and corresponding Coxeter graph, which we will denote by A_{3} :

The previous Coxeter matrix determines a group $W=W\left(A_{3}\right)$ generated by s_{1}, s_{2}, and s_{3} subject to the relations $s_{i}^{2}=e$ and

$$
\left\{\begin{array}{lll}
s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, & \longleftrightarrow m(1,2)=3 \\
s_{3} s_{2} s_{3}=s_{2} s_{3} s_{2}, & \longleftrightarrow m(2,3)=3 \\
s_{1} s_{3}=s_{3} s_{1} & \longleftrightarrow m(1,3)=2
\end{array}\right.
$$

The Symmetric Group

Let (W, S) be the Coxeter system associated to the Coxeter graph X. Then we say that (W, S) has type X.

Theorem

The pair $\left(S_{n}, S\right)$ is a Coxeter system of type

denoted by A_{n-1}, with $(n \geq 1)$.

The Symmetric Group

Let (W, S) be the Coxeter system associated to the Coxeter graph X. Then we say that (W, S) has type X.

Theorem

The pair $\left(S_{n}, S\right)$ is a Coxeter system of type

denoted by A_{n-1}, with ($n \geq 1$).
Group isomorphism: $s_{i} \mapsto(i, i+1)$. Hence, S_{n} is generated by $s_{1}, s_{2}, \cdots, s_{n-1}$ such that $s_{i}^{2}=e$ and subject to

$$
\begin{cases}s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { if }|i-j|=1 \\ s_{i} s_{j}=s_{j} s_{i} & \text { if }|i-j| \geq 2\end{cases}
$$

Length Function and Bruhat order

Any element $w \in W(X)$ can be written as product of generators. The length of w, denoted by $\ell(w)$, is the minimal k such that w can be written as the product of k generators. If $w=s_{i_{1}} \cdots s_{i_{k}}$ and $k=\ell(w)$ then $s_{i_{1}} \cdots s_{i_{k}}$ is called a reduced expression or a reduced word of w.

Length Function and Bruhat order

Any element $w \in W(X)$ can be written as product of generators. The length of w, denoted by $\ell(w)$, is the minimal k such that w can be written as the product of k generators. If $w=s_{i_{1}} \cdots s_{i_{k}}$ and $k=\ell(w)$ then $s_{i_{1}} \cdots s_{i_{k}}$ is called a reduced expression or a reduced word of w.
We may define a partial order relation \leq on $W(X)$, called the Bruhat order relation. The following is a characterization of the Bruhat order relation.

Theorem (Subword Property)

Let $x, w \in W(X)$ and let $s_{1} s_{2} \cdots s_{q}$ be a reduced expression of w. Then $x \leq w$ if and only if x admits a reduced expression of the form $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ with $1 \leq i_{1}<\cdots<i_{k} \leq q$. In this case we say that x is a subword of w.

Fully Commutative Elements

Definition (J. R. Stembridge)

An element $w \in W(X)$ is fully commutative if any reduced expression for w can be obtained from any other by applying Coxeter relations that involve only commuting generators. Let

$$
W_{c}(X) \stackrel{\text { def }}{=}\{w \in W(X): w \text { is a fully commutative element }\} .
$$

Fully Commutative Elements

Definition (J. R. Stembridge)

An element $w \in W(X)$ is fully commutative if any reduced expression for w can be obtained from any other by applying Coxeter relations that involve only commuting generators. Let

$$
W_{c}(X) \stackrel{\text { def }}{=}\{w \in W(X): w \text { is a fully commutative element }\} .
$$

Therefore $W_{c}\left(A_{n-1}\right)$ may be described as the set of elements of $W\left(A_{n-1}\right)$ whose reduced expressions avoid substrings of the form $s_{i} s_{i+1} s_{i}$, for all $i \in[n-2]$.

Fully Commutative Elements

Definition (J. R. Stembridge)

An element $w \in W(X)$ is fully commutative if any reduced expression for w can be obtained from any other by applying Coxeter relations that involve only commuting generators. Let

$$
W_{c}(X) \stackrel{\text { def }}{=}\{w \in W(X): w \text { is a fully commutative element }\} .
$$

Therefore $W_{c}\left(A_{n-1}\right)$ may be described as the set of elements of $W\left(A_{n-1}\right)$ whose reduced expressions avoid substrings of the form $s_{i} s_{i+1} s_{i}$, for all $i \in[n-2]$.
Theorem (S. C. Billey; W. Jockush; R. P. Stanley)

$$
S_{n}(321)=W_{c}\left(A_{n-1}\right), \text { for all } n \geq 2
$$

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{X, w}$
- Combinatorial properties of $a_{x, w}$

Definition of Hecke Algebra

Let \mathcal{A} be the ring of Laurent polynomials $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$.

Definition of Hecke Algebra

Let \mathcal{A} be the ring of Laurent polynomials $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$.

Definition

The Hecke algebra $\mathcal{H}(X)$ associated to $W(X)$ is an \mathcal{A}-algebra with linear basis $\left\{T_{w}: w \in W(X)\right\}$. For all $w \in W(X)$ and $s \in S(X)$ the multiplication law is determined by

$$
T_{w} T_{s}= \begin{cases}T_{w s} & \text { if } \ell(w s)>\ell(w), \\ q T_{w s}+(q-1) T_{w} & \text { if } \ell(w s)<\ell(w),\end{cases}
$$

We refer to $\left\{T_{w}: w \in W(X)\right\}$ as the standard basis for $\mathcal{H}(X)$.

Involution and R-polynomials in $\mathcal{H}(X)$

Define a map $\mathrm{j}: \mathcal{H} \rightarrow \mathcal{H}$ such that $\mathrm{j}\left(T_{w}\right)=\left(T_{w^{-1}}\right)^{-1}, \mathrm{j}(q)=q^{-1}$ and linear extension. The map j is a ring homomorphism of order 2 on $\mathcal{H}(X)$.

Involution and R-polynomials in $\mathcal{H}(X)$

Define a map $\mathrm{j}: \mathcal{H} \rightarrow \mathcal{H}$ such that $\mathrm{j}\left(T_{w}\right)=\left(T_{w^{-1}}\right)^{-1}, \mathrm{j}(q)=q^{-1}$ and linear extension. The map j is a ring homomorphism of order 2 on $\mathcal{H}(X)$.
To express $\mathrm{j}\left(T_{w}\right)$ as a linear combination of elements in the standard basis, one defines the so-called R-polynomials.

Theorem (D. Kazhdan; G. Lusztig)

Let $\varepsilon_{x} \stackrel{\text { def }}{=}(-1)^{\ell(x)}$, for every $x \in W(X)$. There is a unique family of polynomials $\left\{R_{X, w}(q)\right\}_{X, w \in W}(X) \subseteq \mathbb{Z}[q]$ such that

$$
T_{w^{-1}}^{-1}=\varepsilon_{w} q^{-\ell(w)} \sum_{x \leq w} \varepsilon_{x} R_{x, w}(q) T_{x}
$$

where $R_{x, x}(q)=1$ and $R_{x, w}(q)=0$ if $x \not \leq w$.

Canonical Basis for $\mathcal{H}(X)$

Theorem (D. Kazhdan; G. Lusztig)

There exists a unique basis $\left\{C_{w}^{\prime}: w \in W(X)\right\}$ for $\mathcal{H}(X)$ such that
(i) $\mathrm{j}\left(C_{w}^{\prime}\right)=C_{w}^{\prime}$,
(ii) $C_{w}^{\prime}=q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q) T_{x}$,
where $\operatorname{deg}\left(P_{x, w}(q)\right) \leq \frac{1}{2}(\ell(w)-\ell(x)-1), P_{x, x}(q)=1$ and $P_{x, w}(q)=0$ if $x \nless w$.

Canonical Basis for $\mathcal{H}(X)$

Theorem (D. Kazhdan; G. Lusztig)

There exists a unique basis $\left\{C_{w}^{\prime}: w \in W(X)\right\}$ for $\mathcal{H}(X)$ such that
(i) $\mathrm{j}\left(C_{w}^{\prime}\right)=C_{w}^{\prime}$,
(ii) $C_{w}^{\prime}=q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q) T_{x}$,
where $\operatorname{deg}\left(P_{x, w}(q)\right) \leq \frac{1}{2}(\ell(w)-\ell(x)-1), P_{x, x}(q)=1$ and $P_{x, w}(q)=0$ if $x \notin w$.

We will refer to the latter basis as the Kazhdan-Lusztig basis for $\mathcal{H}(X)$.

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{X, w}$
- Combinatorial properties of $a_{X, w}$

Definition of Generalized Temperley-Lieb Algebra

Consider the two-sided ideal $J(X)$ generated by all elements of $\mathcal{H}(X)$ of the form $\sum_{w \in\left\langle s_{i}, s_{j}\right\rangle} T_{w}$, where $\left(s_{i}, s_{j}\right)$ runs over all pairs in $S(X)^{2}$ such that $2<m(i, j)<\infty$.

Definition of Generalized Temperley-Lieb Algebra

Consider the two-sided ideal $J(X)$ generated by all elements of $\mathcal{H}(X)$ of the form $\sum_{w \in\left\langle s_{i}, s_{j}\right\rangle} T_{w}$, where $\left(s_{i}, s_{j}\right)$ runs over all pairs in $S(X)^{2}$ such that $2<m(i, j)<\infty$.

Definition (H. N. V. Temperley; E. H. Lieb)

Let X be a Coxeter graph of type A. The Temperley-Lieb algebra is

$$
T L(X) \stackrel{\text { def }}{=} \mathcal{H}(X) / J(X)
$$

Definition of Generalized Temperley-Lieb Algebra

Consider the two-sided ideal $J(X)$ generated by all elements of $\mathcal{H}(X)$ of the form $\sum_{w \in\left\langle s_{i}, s_{j}\right\rangle} T_{w}$, where $\left(s_{i}, s_{j}\right)$ runs over all pairs in $S(X)^{2}$ such that $2<m(i, j)<\infty$.

Definition (H. N. V. Temperley; E. H. Lieb)

Let X be a Coxeter graph of type A. The Temperley-Lieb algebra is

$$
T L(X) \stackrel{\text { def }}{=} \mathcal{H}(X) / J(X) .
$$

J. J. Graham extended this definition to arbitraty Coxeter graphs and he showed that the generalized Temperley-Lieb algebra is finite dimensional when X is a finite irreducible Coxeter graph.

Multiplication Law

Let $t_{w}=\sigma\left(T_{w}\right)$, where $\sigma: \mathcal{H} \rightarrow \mathcal{H} / J$ is the canonical projection.

Multiplication Law

Let $t_{w}=\sigma\left(T_{w}\right)$, where $\sigma: \mathscr{H} \rightarrow \mathcal{H} / J$ is the canonical projection.

Proposition (J. J. Graham)

The generalized Temperley-Lieb algebra $\operatorname{TL}(X)$ admits an \mathcal{A}-basis of the form $\left\{t_{w}: w \in W_{c}(X)\right\}$. It satisfies

$$
t_{w} t_{s}= \begin{cases}t_{w s} & \text { if } \ell(w s)>\ell(w), \\ q t_{w s}+(q-1) t_{w} & \text { if } \ell(w s)<\ell(w) .\end{cases}
$$

We call $\left\{t_{w}: w \in W_{c}(X)\right\}$ the t-basis of $T L(X)$

Involution and Polynomials $a_{x, w}$

The map j induces an involution on $T L(X)$, which we still denote by j . Therefore $\mathrm{j}\left(t_{w}\right)=\left(t_{w^{-1}}\right)^{-1}$ and $\mathrm{j}(q)=q^{-1}$.

Involution and Polynomials $a_{x, w}$

The map j induces an involution on $T L(X)$, which we still denote by j . Therefore $\mathrm{j}\left(t_{w}\right)=\left(t_{w^{-1}}\right)^{-1}$ and $\mathrm{j}(q)=q^{-1}$. We have seen that the R-polynomials express the coordinates of $\mathrm{j}\left(T_{w}\right)$ with respect to the standard basis of $\mathcal{H}(X)$. The polynomials $a_{x, w}$ play the same role in $T L(X)$.

Proposition (R. M. Green; J. Losonczy)

Let $w \in W_{c}(X)$. Then there exists a unique family of polynomials $\left\{a_{y, w}(q)\right\} \subset \mathbb{Z}[q]$ such that

$$
\left(t_{w^{-1}}\right)^{-1}=q^{-\ell(w)} \sum_{\substack{y \in W_{c}(X) \\ y \leq w}} a_{y, w}(q) t_{y}
$$

where $a_{w, w}(q)=1$ and $a_{y, w}(q)=0$ if $y \not \leq w$.

The IC Basis

The generalized Temperley-Lieb algebra admits a basis $\left\{c_{w}: w \in W_{c}(X)\right\}$, called IC basis, which is analogous to the Kazhdan-Lusztig basis $\left\{C_{w}^{\prime}: w \in W(X)\right\}$ of $\mathcal{H}(X)$.

The IC Basis

The generalized Temperley-Lieb algebra admits a basis $\left\{c_{w}: w \in W_{c}(X)\right\}$, called IC basis, which is analogous to the Kazhdan-Lusztig basis $\left\{C_{w}^{\prime}: w \in W(X)\right\}$ of $\mathcal{H}(X)$.

Theorem (R. M. Green; J. Losonczy)

There exists a unique basis $\left\{c_{w}: w \in W_{c}(X)\right\}$ for $T L(X)$ such that
(i) $\mathrm{j}\left(c_{w}\right)=c_{w}$,
(ii) $c_{w}=\sum_{\substack{x \in W_{c} \\ x \leq w}} q^{-\frac{\ell(x)}{2}} L_{x, w}\left(q^{-\frac{1}{2}}\right) t_{x}$,
where $\left\{L_{x, w}\left(q^{-\frac{1}{2}}\right)\right\} \subset q^{-\frac{1}{2}} \mathbb{Z}\left[q^{-\frac{1}{2}}\right], L_{x, x}\left(q^{-\frac{1}{2}}\right)=1$ and $L_{x, w}\left(q^{-\frac{1}{2}}\right)=0$ if $x \not \leq w$.

Analogies

We make clear the general setting by means of the following diagrams. The arrow $\xrightarrow{\sigma}$ denotes the canonical projection.

$$
\begin{gathered}
\left.\mathcal{H}(X) \rightarrow\left\{T_{w}: w \in W(X)\right\} \rightarrow \rightarrow C_{w}^{\prime}: w \in W(X)\right\} \\
\sigma \downarrow \\
\left.T L(X) \cdots\left\{t_{w}: w \in W_{c}(X)\right\} \rightarrow \cdots \rightarrow c_{w}: w \in W_{c}(X)\right\}
\end{gathered}
$$

Analogies

We make clear the general setting by means of the following diagrams. The arrow $\xrightarrow{\sigma}$ denotes the canonical projection.

$$
\begin{gathered}
\left.\left.\mathcal{H}(X) \cdots \rightarrow T_{w}: w \in W(X)\right\} \cdots \rightarrow C_{w}^{\prime}: w \in W(X)\right\} \\
\sigma \downarrow \\
\left.T L(X) \cdots\left\{t_{w}: w \in W_{c}(X)\right\} \rightarrow \cdots \rightarrow c_{w}: w \in W_{c}(X)\right\}
\end{gathered}
$$

$\mathcal{H}(X) \cdots \cdots \cdots$-polynomials $\cdots \cdots \cdots \cdots$ K L polynomials

$T L(X) \rightarrow$ Polynomials $\left\{a_{x, w}\right\} \rightarrow$ Polynomials $\left\{L_{x, w}\right\}$

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{X, w}$
- Combinatorial properties of $a_{x, w}$

Polynomials $D_{x, w}(q)$

Recall that t_{w} denotes the canonical projection of the standard basis element T_{w}, for every $w \in W(X)$.

Polynomials $D_{x, w}(q)$

Recall that t_{w} denotes the canonical projection of the standard basis element T_{w}, for every $w \in W(X)$.

Proposition (R. M. Green; J. Losonczy)

There exists a unique family of polynomials
$\left\{D_{X, w}(q)\right\}_{x \in W_{c}(X), w \in W(X)} \subset \mathbb{Z}[q]$ such that

$$
t_{w}=\sum_{\substack{x \in W_{c}(X) \\ x \leq w}} D_{x, w}(q) t_{x},
$$

where $D_{w, w}(q)=1$ if $w \in W_{c}(X)$.

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{x, w}$
- Combinatorial properties of $a_{X, w}$

Recursive Fromula for $D_{x, w}$

Proposition (A. Pesiri)

Let X be an arbitrary Coxeter graph. Let $w \notin W_{c}(X)$ and $s \in S(X)$ be such that $w>w s \notin W_{c}(X)$. Then, for all $x \in W_{c}(X), x \leq w$, we have

$$
\begin{gathered}
D_{x, w}(q)=\tilde{D}+\sum_{\substack{y \in W_{c}(X), y s \notin W_{c}(X) \\
y s>y}} D_{x, y s}(q) D_{y, w s}(q), \\
\tilde{D}= \begin{cases}D_{x s, w s}(q)+(q-1) D_{x, w s}(q) & \text { if } x s<x, \\
q D_{x s, w s}(q) & \text { if } x<x s \in W_{c}(X), \\
0 & \text { if } x<x s \notin W_{c}(X) .\end{cases}
\end{gathered}
$$

Recursive Fromula for $D_{x, w}$

Proposition (A. Pesiri)

Let X be an arbitrary Coxeter graph. Let $w \notin W_{c}(X)$ and $s \in S(X)$ be such that $w>w s \notin W_{c}(X)$. Then, for all $x \in W_{c}(X), x \leq w$, we have

$$
\begin{gathered}
D_{x, w}(q)=\tilde{D}+\sum_{\substack{y \in W_{c}(X), y s \notin W_{c}(X) \\
y s>y}} D_{x, y s}(q) D_{y, w s}(q), \\
\tilde{D}= \begin{cases}D_{x s, w s}(q)+(q-1) D_{x, w s}(q) & \text { if } x s<x, \\
q D_{x s, w s}(q) & \text { if } x<x s \in W_{c}(X), \\
0 & \text { if } x<x s \notin W_{c}(X) .\end{cases}
\end{gathered}
$$

Observe that this recursion is similar to the one for the parabolic Kazhdan-Lusztig polynomials.

Branching Coxeter Graph

Definition

We say that a Coxeter graph X is branching if X contains a vertex connected to at least three other vertices. Otherwise X is called a non-branching graph.

Branching Coxeter Graph

Definition

We say that a Coxeter graph X is branching if X contains a vertex connected to at least three other vertices. Otherwise X is called a non-branching graph.

Type D is branching while type B is non-branching.

Non-recursive Formula for $D_{x, w}$

From now on, X will always denote a finite irreducible non-branching Coxeter graph.
The following theorem is the main result of this work.

Non-recursive Formula for $D_{x, w}$

From now on, X will always denote a finite irreducible non-branching Coxeter graph.
The following theorem is the main result of this work.

Theorem (A. Pesiri)

For all $x \in W_{c}(X)$ and $w \notin W_{c}(X)$ such that $x<w$, we have

$$
D_{x, w}(q)=\sum\left((-1)^{k} \prod_{i=1}^{k} P_{x_{i-1}, x_{i}}(q)\right),
$$

where the sum is taken over all the chains
$x=x_{0}<x_{1}<\cdots<x_{k}=w$ such that $x_{i} \notin W_{c}(X)$ if $i>0$, and
$1 \leq k \leq \ell(x, w)$.

Corollaries

Corollary (A. Pesiri)

Let $x \in W_{c}(X)$ and $w \notin W_{c}(X)$ be such that $x<w$. Then

- $D_{x, w}(q)=D_{x^{-1}, w^{-1}}(q)$;
- $D_{x, w}(q)=D_{w_{0} x w_{0}, w_{0} w w_{0}}(q)$,
where w_{0} denotes the maximum in $W(X)$.

Corollaries

Corollary (A. Pesiri)

Let $x \in W_{c}(X)$ and $w \notin W_{c}(X)$ be such that $x<w$. Then

- $D_{x, w}(q)=D_{x^{-1}, w^{-1}}(q)$;
- $D_{x, w}(q)=D_{w_{0} x w_{0}, w_{0} w w_{0}}(q)$,
where w_{0} denotes the maximum in $W(X)$.
In [1], Green and Losonczy state that a degree bound on $D_{x, w}$ may be of interest. Here is the answer.

Corollary (A. Pesiri)

Let $x \in W_{c}(X)$ and $w \notin W_{c}(X)$ be such that $x<w$. Then

$$
\operatorname{deg}\left(D_{x, w}(q)\right) \leq \frac{1}{2}(\ell(w)-\ell(x)-1)
$$

Explicit formulas

We obtain some explicit formulas for the polynomials $D_{x, w}$ such that the Bruhat interval $[x, w]$ has a particular structure.
Recall that $\varepsilon_{x} \stackrel{\text { def }}{=}(-1)^{\ell(x)}$, for every $x \in W(X)$.

Explicit formulas

We obtain some explicit formulas for the polynomials $D_{x, w}$ such that the Bruhat interval $[x, w]$ has a particular structure.
Recall that $\varepsilon_{X} \stackrel{\text { def }}{=}(-1)^{\ell(x)}$, for every $x \in W(X)$.

Proposition (A. Pesiri)

Let $s_{1} s_{2} \cdots s_{n-1} s_{n} s_{n-1} \cdots s_{2} s_{1}$ be a reduced expression for $w \in W\left(A_{n}\right)$ and let $x \in W\left(A_{n}\right)$ be a Coxeter element. Then

$$
D_{x, w}(q)=\varepsilon_{x} \varepsilon_{w}
$$

Explicit formulas

We obtain some explicit formulas for the polynomials $D_{x, w}$ such that the Bruhat interval $[x, w]$ has a particular structure.
Recall that $\varepsilon_{x} \stackrel{\text { def }}{=}(-1)^{\ell(x)}$, for every $x \in W(X)$.

Proposition (A. Pesiri)

Let $s_{1} s_{2} \cdots s_{n-1} s_{n} s_{n-1} \cdots s_{2} s_{1}$ be a reduced expression for $w \in W\left(A_{n}\right)$ and let $x \in W\left(A_{n}\right)$ be a Coxeter element. Then

$$
D_{x, w}(q)=\varepsilon_{x} \varepsilon_{w}
$$

The previous result can be conveniently generalized to arbitrary finite irreducible non-branching Coxeter graphs.

Outline

(1) Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{x, w}$
- Combinatorial properties of $a_{x, w}$

Non-recursive Formula for $L_{x, w}$

Theorem (A. Pesiri)

For all elements $x, w \in W_{c}(X)$ such that $x<w$ we have

$$
L_{x, w}\left(q^{-\frac{1}{2}}\right)=q^{\frac{\ell(x)-\ell(w)}{2}} \sum\left((-1)^{k} \prod_{i=1}^{k+1} P_{x_{i-1}, x_{i}}(q)\right),
$$

where the sum runs over all the chains
$x=x_{0}<x_{1}<\cdots<x_{k+1}=w$ such that $x_{i} \notin W_{c}(X)$ if
$1 \leq i \leq k$, and $0 \leq k \leq \ell(x, w)-1$.

Corollaries

Corollary (A. Pesiri)

Let $x, w \in W_{c}(X)$ be such that $x \leq w$. Then

- $L_{x, w}\left(q^{-\frac{1}{2}}\right)=L_{x^{-1}, w^{-1}}\left(q^{-\frac{1}{2}}\right)$;
- $L_{x, w}\left(q^{-\frac{1}{2}}\right)=L_{w_{0} x w_{0}, w_{0} w w_{0}}\left(q^{-\frac{1}{2}}\right)$.

Corollaries

Corollary (A. Pesiri)

Let $x, w \in W_{c}(X)$ be such that $x \leq w$. Then

- $L_{x, w}\left(q^{-\frac{1}{2}}\right)=L_{x^{-1}, w^{-1}}\left(q^{-\frac{1}{2}}\right)$;
- $L_{x, w}\left(q^{-\frac{1}{2}}\right)=L_{w_{0} x w_{0}, w_{0} w w_{0}}\left(q^{-\frac{1}{2}}\right)$.

Corollary (A. Pesiri)

Let $v \in W_{c}(X)$ and define

$$
F_{v}(q) \stackrel{\text { def }}{=} \sum_{\substack{u \in W_{c}(X) \\ u \leq v}} \varepsilon_{u} q^{-\frac{\ell(u)}{2}} L_{u, v}\left(q^{-\frac{1}{2}}\right)
$$

Then $F_{v}(q)=F_{v}\left(q^{-1}\right)=\delta_{e, v}$.

Outline

Preliminaries

- Coxeter Groups
- The Hecke Algebra
- The Generalized Temperley-Lieb Algebra
- Polynomials $D_{x, w}$
(2) My Results
- Combinatorial Properties of $D_{x, w}$
- Combinatorial properties of $L_{X, w}$
- Combinatorial properties of $a_{x, w}$

Non-recursive Formula for $a_{x, w}$

Proposition (A. Pesiri)

Let $x, w \in W_{c}(X)$ be such that $x \leq w$. Then

$$
\begin{aligned}
a_{x, w}(q)= & \varepsilon_{x} \varepsilon_{w} R_{x, w}(q)+ \\
& +\sum_{\substack{y \notin W_{c}(x) \\
x<y<w}} \varepsilon_{y} \varepsilon_{w} R_{y, w}(q)\left(\sum(-1)^{k} \prod_{i=1}^{k} P_{x_{i-1}, x_{i}}(q)\right),
\end{aligned}
$$

where the second sum runs over all the chains $x=x_{0}<\cdots<x_{k}=y$ such that $x_{i} \notin W_{c}(X)$ if $i>0$.

Corollaries

Corollary (A. Pesiri)

For all $x, w \in W_{c}(X)$ such that $x<w$ we have
(i) $a_{x, w}(1)=0$;
(ii) $a_{x, w}(0)=\sum(-1)^{k}$,
where the sum is taken over all the chains
$x=x_{0}<x_{1}<\cdots<x_{k+1}=w$ such that $x_{i} \notin W_{c}(X)$ if
$1 \leq i \leq k$, and $0 \leq k \leq \ell(x, w)-1$.

Corollaries

Corollary (A. Pesiri)

For all $x, w \in W_{c}(X)$ such that $x<w$ we have
(i) $a_{x, w}(1)=0$;
(ii) $a_{x, w}(0)=\sum(-1)^{k}$,
where the sum is taken over all the chains
$x=x_{0}<x_{1}<\cdots<x_{k+1}=w$ such that $x_{i} \notin W_{c}(X)$ if
$1 \leq i \leq k$, and $0 \leq k \leq \ell(x, w)-1$.

Corollary (A. Pesiri)

Let $x, w \in W_{c}(X)$. Then we have that
(i) $a_{x, w}(q)=a_{x^{-1}, w^{-1}}(q)$;
(ii) $a_{x, w}(q)=a_{w_{0} x w_{0}, w_{0} w w_{0}}(q)$.

More Corollaries

Corollary (A. Pesiri)

Let $w \in W_{c}(X)$. Then

$$
\sum_{\substack{x \in W_{c}(X) \\ x \leq w}} \varepsilon_{x} \varepsilon_{w} a_{x, w}(q)=q^{\ell(w)}
$$

More Corollaries

Corollary (A. Pesiri)

Let $w \in W_{c}(X)$. Then

$$
\sum_{\substack{x \in W_{c}(X) \\ x \leq w}} \varepsilon_{x} \varepsilon_{w} a_{x, w}(q)=q^{\ell(w)}
$$

Lastly, we are able to compute the degree of $a_{x, w}$.

Corollary (A. Pesiri)

Let $x, w \in W_{c}(X)$ and $x \leq w$. Then $\operatorname{deg}\left(a_{x, w}(q)\right)=\ell(w)-\ell(x)$.

For Further Reading I

围 Green, R. M. ; Losonczy, J.
Canonical bases for Hecke algebra quotients.
Math. Res. Lett., 6 (1999), no. 2, 213-222.
(in Green, R. M. ; Losonczy, J.
A projection property for Kazhdan-Lusztig bases.
Internat. Math. Res. Notices, 2000, no. 1, 23-34.
围 Losonczy, Jozsef.
The Kazhdan-Lusztig basis and the Temperley-Lieb quotient in type D.
J. Algebra, 233 (2000), no. 1, 1-15.

Rules

Consider the symmetric group $S_{4} \cong W\left(A_{3}\right)$. In $T L\left(A_{3}\right)$ the following relations hold:

$$
t_{s_{i} s_{i+1}} s_{i}+t_{s_{i} s_{i+1}}+t_{s_{i+1} s_{i}}+t_{s_{i}}+t_{s_{i+1}}+t_{e}=0, \text { for all } i \in\{1,2\}
$$

By the expression untying the braid, we mean performing the substitution

$$
t_{s_{i} s_{i+1} s_{i}}=-t_{s_{i} s_{i+1}}-t_{s_{i+1} s_{i}}-t_{s_{i}}-t_{s_{i+1}}-t_{e}
$$

Rules

Consider the symmetric group $S_{4} \cong W\left(A_{3}\right)$. In $T L\left(A_{3}\right)$ the following relations hold:

$$
t_{s_{i} s_{i+1}} s_{i}+t_{s_{i} s_{i+1}}+t_{s_{i+1} s_{i}}+t_{s_{i}}+t_{s_{i+1}}+t_{e}=0, \text { for all } i \in\{1,2\}
$$

By the expression untying the braid, we mean performing the substitution

$$
t_{s_{i} s_{i+1} s_{i}}=-t_{s_{i} s_{i+1}}-t_{s_{i+1} s_{i}}-t_{s_{i}}-t_{s_{i+1}}-t_{e}
$$

Recall that

$$
t_{w} t_{s}= \begin{cases}t_{w s} & \text { if } \ell(w s)>\ell(w) \\ q t_{w s}+(q-1) t_{w} & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.
$t_{1,2,3,2,1}=t_{1} \cdot t_{2,3,2} \cdot t_{1}$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1} & =t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
& =t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1}
\end{aligned}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1} & =t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
& =t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1} \\
& =-t_{1,2,3,1}-t_{1,3,2,1}-t_{1,2,1}-t_{1,3} \cdot t_{1}-t_{1} \cdot t_{1}
\end{aligned}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1}= & t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
= & t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1} \\
= & -t_{1,2,3,1}-t_{1,3,2,1}-t_{1,2,1}-t_{1,3} \cdot t_{1}-t_{1} \cdot t_{1} \\
= & -t_{1,2,1,3}-t_{3,1,2,1}-t_{1,2,1}-\left(q t_{3}+(q-1) t_{1,3}\right)+ \\
& -\left(q t_{e}+(q-1) t_{1}\right)
\end{aligned}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1}= & t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
= & t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1} \\
= & -t_{1,2,3,1}-t_{1,3,2,1}-t_{1,2,1}-t_{1,3} \cdot t_{1}-t_{1} \cdot t_{1} \\
= & -t_{1,2,1,3}-t_{3,1,2,1}-t_{1,2,1}-\left(q t_{3}+(q-1) t_{1,3}\right)+ \\
& -\left(q t_{e}+(q-1) t_{1}\right) \\
= & \cdots \cdots \cdots
\end{aligned}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1}= & t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
= & t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1} \\
= & -t_{1,2,3,1}-t_{1,3,2,1}-t_{1,2,1}-t_{1,3} \cdot t_{1}-t_{1} \cdot t_{1} \\
= & -t_{1,2,1,3}-t_{3,1,2,1}-t_{1,2,1}-\left(q t_{3}+(q-1) t_{1,3}\right)+ \\
& -\left(q t_{e}+(q-1) t_{1}\right) \\
= & \cdots \cdots \cdots \\
= & (1-q) t_{e}+(2-q) t_{1}+t_{2}+(2-q) t_{3}+(3-q) t_{1,3}+ \\
& +t_{1,2}+t_{2,1}+t_{2,3}+t_{3,2}+t_{1,2,3}+t_{3,2,1}+t_{1,3,2}+t_{2,1,3} .
\end{aligned}
$$

Worked Example

Let $w=s_{1} s_{2} s_{3} s_{2} s_{1}=[1,2,3,2,1] \in W\left(A_{3}\right)$. To compute $D_{x, w}(q)$ we have to untie the braids.

$$
\begin{aligned}
t_{1,2,3,2,1}= & t_{1} \cdot t_{2,3,2} \cdot t_{1} \\
= & t_{1} \cdot\left(-t_{2,3}-t_{3,2}-t_{2}-t_{3}-t_{e}\right) \cdot t_{1} \\
= & -t_{1,2,3,1}-t_{1,3,2,1}-t_{1,2,1}-t_{1,3} \cdot t_{1}-t_{1} \cdot t_{1} \\
= & -t_{1,2,1,3}-t_{3,1,2,1}-t_{1,2,1}-\left(q t_{3}+(q-1) t_{1,3}\right)+ \\
& -\left(q t_{e}+(q-1) t_{1}\right) \\
= & \cdots \cdots \cdots \\
= & (1-q) t_{e}+(2-q) t_{1}+t_{2}+(2-q) t_{3}+(3-q) t_{1,3}+ \\
& +t_{1,2}+t_{2,1}+t_{2,3}+t_{3,2}+t_{1,2,3}+t_{3,2,1}+t_{1,3,2}+t_{2,1,3} .
\end{aligned}
$$

Therefore we get $D_{s_{1}, w}(q)=D_{s_{3}, w}(q)=2-q, D_{s_{1} s_{3}, w}=3-q$ and $D_{x, w}(q)=1$ for the rest of the elements $x \leq w$.

A Key Observation

One may wonder whether the map $\sigma: \mathcal{H}(X) \rightarrow \mathcal{H}(X) / J(X)$ satisfies

$$
\sigma\left(C_{w}^{\prime}\right)= \begin{cases}c_{w} & \text { if } w \in W_{c}(X) \\ 0 & \text { if } w \notin W_{c}(X)\end{cases}
$$

A Key Observation

One may wonder whether the map $\sigma: \mathcal{H}(X) \rightarrow \mathcal{H}(X) / J(X)$ satisfies

$$
\sigma\left(C_{w}^{\prime}\right)= \begin{cases}c_{w} & \text { if } w \in W_{c}(X), \\ 0 & \text { if } w \notin W_{c}(X) .\end{cases}
$$

Proposition

The answer is affirmative for non-branching graphs, that is for types $A, B, I_{2}(m), F_{4}, H_{3}$ and H_{4}, and negative for branching graphs, that is for types D, E_{6}, E_{7} and E_{8}.

Sketch of the Proof. I

$$
\begin{aligned}
\sigma\left(C_{w}^{\prime}\right) & =q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q) \sigma\left(T_{x}\right) \\
& =q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q)\left(\sum_{\substack{y \in W_{c}(X) \\
y \leq x}} D_{y, x}(q) t_{y}\right) \\
& =q^{-\frac{\ell(w)}{2}} \sum_{\substack{y \in W_{c}(X) \\
y \leq w}}\left(\sum_{y \leq x \leq w} D_{y, x}(q) P_{x, w}(q)\right) t_{y}
\end{aligned}
$$

Sketch of the Proof. I

$$
\begin{aligned}
\sigma\left(C_{w}^{\prime}\right) & =q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q) \sigma\left(T_{x}\right) \\
& =q^{-\frac{\ell(w)}{2}} \sum_{x \leq w} P_{x, w}(q)\left(\sum_{\substack{y \in W_{c}(X) \\
y \leq x}} D_{y, x}(q) t_{y}\right) \\
& =q^{-\frac{\ell(w)}{2}} \sum_{\substack{y \in W_{c}(X) \\
y \leq w}}\left(\sum_{y \leq x \leq w} D_{y, x}(q) P_{x, w}(q)\right) t_{y}
\end{aligned}
$$

On the other hand, when $w \notin W_{c}(X)$ we get $\sigma\left(C_{w}^{\prime}\right)=0$.
Therefore the expression highlighted in red is equal to 0 .

Sketch of the Proof. II

Keep in mind that

$$
\sum_{y \leq x \leq w} D_{y, x}(q) P_{x, w}(q)=0, \text { for all } y \in W_{c}(X)
$$

and proceed by induction on $\ell(x, w) \stackrel{\text { def }}{=} \ell(w)-\ell(x)$.

Sketch of the Proof. II

Keep in mind that

$$
\sum_{y \leq x \leq w} D_{y, x}(q) P_{x, w}(q)=0, \text { for all } y \in W_{c}(X)
$$

and proceed by induction on $\ell(x, w) \stackrel{\text { def }}{=} \ell(w)-\ell(x)$.
If $\ell(x, w)=1$, then we get $D_{x, w}(q)=-P_{x, w}(q)$. If $\ell(x, w)>1$, then

$$
D_{x, w}(q)=-P_{x, w}(q)-\sum_{\substack{t \notin W_{c}(X) \\ x<t<w}} D_{x, t}(q) P_{t, w}(q)
$$

and the statement follows by applying the induction hypothesis on $D_{x, t}(q)$.

