Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

Combinatorics and Symmetrized Tensors

Pedro C. Silva
CEF, Technical University of Lisbon

(Joint work with Maria M. Torres)

Outline

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

Outline

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
\square Terminology on symmetrized tensors
\square Statement of the problem

Outline

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
\square Terminology on symmetrized tensors
\square Statement of the problem
\square A combinatorial approach

Outline

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
\square Terminology on symmetrized tensors
\square Statement of the problem
\square A combinatorial approach
\square Connections with coding theory

Outline

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
\square Terminology on symmetrized tensors
\square Statement of the problem
\square A combinatorial approach
\square Connections with coding theory
\square Root systems of symmetrized tensors

Some terminology on symmetrized tensors

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
$V=\mathbb{C}^{n}$ and $\left(e_{1}, \ldots, e_{n}\right)$ o.n. basis of V.
Set
$\Gamma_{m, n}=\{$ words of lenght m on the alphabet $[n]=\{1, \ldots, n\}\}$,
which can be identified with the set of maps $[m] \rightarrow[n]$.

Some terminology on symmetrized tensors

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
$V=\mathbb{C}^{n}$ and $\left(e_{1}, \ldots, e_{n}\right)$ o.n. basis of V.
Set
$\Gamma_{m, n}=\{$ words of lenght m on the alphabet $[n]=\{1, \ldots, n\}\}$,
which can be identified with the set of maps $[m] \rightarrow[n]$.

Let $\lambda \vdash m$ an irreducible character of $S_{m} \equiv$ partition of m

Some terminology on symmetrized tensors

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors
$V=\mathbb{C}^{n}$ and $\left(e_{1}, \ldots, e_{n}\right)$ o.n. basis of V.
Set
$\Gamma_{m, n}=\{$ words of lenght m on the alphabet $[n]=\{1, \ldots, n\}\}$,
which can be identified with the set of maps $[m] \rightarrow[n]$.
Let $\lambda \vdash m$ an irreducible character of $S_{m} \equiv$ partition of m
The λ-symmetry class of tensors V_{λ} is the linear span of the set of decomposable symmetrized tensors

$$
\left\{e_{\alpha}^{* \lambda}: \left.=\frac{\lambda(i d)}{m!} \sum_{\sigma \in S_{m}} \lambda(\sigma) e_{\alpha \sigma^{-1}(1)} \otimes \ldots \otimes e_{\alpha \sigma^{-1}(m)} \right\rvert\, \alpha \in \Gamma_{m, n}\right\} .
$$

It is well known that,

Symmetrized
tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

$$
V_{\lambda}=\bigoplus_{\alpha \in G_{m, n}} V_{\alpha}^{\lambda}
$$

where $G_{m, n}$ is the set of weakly increasing words of lenght m on the alphabet $\{1, \ldots, n\}$, and

$$
V_{\alpha}^{\lambda}=\left\langle E_{\alpha}^{\lambda}\right\rangle,
$$

is the linear span of the orbital set associated to $\lambda \vdash m$ and $\alpha \in G_{m, n}$,

$$
E_{\alpha}^{\lambda}=\left\{e_{\alpha \sigma}^{* \lambda}: \sigma \in S_{m}\right\} .
$$

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

It is well known that,

$$
V_{\lambda}=\bigoplus_{\alpha \in G_{m, n}} V_{\alpha}^{\lambda}
$$

where $G_{m, n}$ is the set of weakly increasing words of lenght m on the alphabet $\{1, \ldots, n\}$, and

$$
V_{\alpha}^{\lambda}=\left\langle E_{\alpha}^{\lambda}\right\rangle,
$$

is the linear span of the orbital set associated to $\lambda \vdash m$ and $\alpha \in G_{m, n}$,

$$
E_{\alpha}^{\lambda}=\left\{e_{\alpha \sigma}^{* \lambda}: \sigma \in S_{m}\right\} .
$$

We say that the orbital subspace V_{α}^{λ} is critical if λ is the multiplicity partition of α.

In that case, $\operatorname{dim} V_{\alpha}^{\lambda}=\lambda(i d)$ and we set $E_{\alpha}=E_{\alpha}^{\lambda}, V_{\alpha}=V_{\alpha}^{\lambda}$.

Inner product of tensors

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

The inner product of two decomposable symmetrized tensors $e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}$ in the same critical orbital set of multiplicity partition $\lambda \vdash m$ is given by

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!} \sum_{\tau \in S_{\alpha}} \lambda\left(\sigma^{-1} \tau\right)
$$

where S_{α} is the stabilizer subgroup of α and $\beta=\alpha \sigma$.

Inner product of tensors

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

The inner product of two decomposable symmetrized tensors $e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}$ in the same critical orbital set of multiplicity partition $\lambda \vdash m$ is given by

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!} \sum_{\tau \in S_{\alpha}} \lambda\left(\sigma^{-1} \tau\right)
$$

where S_{α} is the stabilizer subgroup of α and $\beta=\alpha \sigma$.
Holmes (1995) has proved that the critical orbital sets of $V_{(m-1,1)}$ have no pair of orthogonal tensors.

Inner product of tensors

Symmetrized tensors
Statement of the problem The combinatorial approach
Connections with coding theory Root systems of tensors

The inner product of two decomposable symmetrized tensors $e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}$ in the same critical orbital set of multiplicity partition $\lambda \vdash m$ is given by

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!} \sum_{\tau \in S_{\alpha}} \lambda\left(\sigma^{-1} \tau\right)
$$

where S_{α} is the stabilizer subgroup of α and $\beta=\alpha \sigma$.
Holmes (1995) has proved that the critical orbital sets of $V_{(m-1,1)}$ have no pair of orthogonal tensors.

Results on the existence of orthogonal basis for V_{α} consisting of decomposable symmetrized tensors by Wang et al (1991) and Pournaki (2001).

The orthogonal dimension problem

Symmetrized tensors
Statement of the problem
The combinatorial approach
Connections with coding theory Root systems of tensors

Orthogonal dimension problem [J Dias da Silva, MM Torres]:
What is the orthogonal dimension of E_{α}, i.e., the maximum cardinality of an orthogonal subset of a critical orbital set E_{α} ?

This dimension only depends on the multiplicity partition λ of α and shall be denoted $\operatorname{dim}^{\perp} \lambda$.

Bessenrodt et al (2003) and Dias da Silva and Torres (2005) proved that $\operatorname{dim}^{\perp}\left(2,1^{m-2}\right)=2$.

Dias da Silva and Torres approach relies on a combinatorial necessary and sufficient condition for the orthogonality in critical orbital sets of symmetry classes of tensors.

λ-regular bipartite graphs

Symmetrized tensors Statement of the problem

The
combinatorial
approach
Connections with coding theory Root systems of tensors

We say that a bipartite graph $G=(X, Y, E)$ with $|X|=|Y|$
is λ-regular for some partition $\lambda \vdash|E|$
if we can enumerate the sets of vertices

$$
X=\left\{x_{1}, \ldots, x_{r}\right\} \text { and } Y=\left\{y_{1}, \ldots, y_{r}\right\}
$$

so that

$$
\lambda=\left(\operatorname{deg}\left(x_{1}\right), \ldots, \operatorname{deg}\left(x_{r}\right)\right)=\left(\operatorname{deg}\left(y_{1}\right), \ldots, \operatorname{deg}\left(y_{r}\right)\right) .
$$

From now on we will only consider λ-regular bipartite graphs.

Full edge colorings

Symmetrized tensors Statement of the problem

The
combinatorial \triangleright approach Connections with coding theory Root systems of tensors

A full edge coloring of a λ-regular graph $G=(X, Y, E)$ is an ordered set partition $\mathcal{L}=\left(U_{1}, \ldots, U_{\lambda_{1}}\right)$ of the edge family E, such that each $U_{j}, j=1, \ldots, \lambda_{1}$, is a matching and $\lambda^{*}:=\left(\left|U_{1}\right|,\left|U_{2}\right|, \ldots,\left|U_{\lambda_{1}}\right|\right)$ is the conjugate partition of λ.

In particular, U_{1} is a complete matching of G.
The sign of a full edge coloring $\mathcal{L}=\left(U_{1}, \ldots, U_{\lambda_{1}}\right)$ is defined as

$$
\operatorname{sign}(\mathcal{L})=\prod_{i=1}^{\lambda_{1}} \operatorname{sign}\left(U_{i}\right)
$$

where $\operatorname{sign}\left(U_{i}\right)$ is the sign of the permutation of the indices of the vertices of X and Y, induced by the complete matching U_{i}.Symmetrized tensors Statement of the problem
The
combinatorial approach Connections with coding theory Root systems of tensors
ensors

Let $G=(X, Y, E)$ be the λ-regular graph, with $\lambda=\left(3,2^{2}, 1^{2}\right)$ and $\lambda^{*}=(5,3,1)$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Let $G=(X, Y, E)$ be the λ-regular graph, with $\lambda=\left(3,2^{2}, 1^{2}\right)$ and $\lambda^{*}=(5,3,1)$.

The edge set E is the disjoint union of the sets U_{1}, U_{2}, U_{3},

$$
\begin{aligned}
U_{1} & =\left\{\left\{x_{1}, y_{5}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{1}\right\},\left\{x_{5}, y_{3}\right\}\right\}, \\
U_{2} & =\left\{\left\{x_{1}, y_{3}\right\},\left\{x_{2}, y_{1}\right\},\left\{x_{3}, y_{2}\right\}\right\}, \\
U_{3} & =\left\{\left\{x_{1}, y_{1}\right\}\right\} .
\end{aligned}
$$

Then $\mathcal{L}=\left(U_{1}, U_{2}, U_{3}\right)$ is a full edge coloring of G and $\operatorname{sign}(\mathcal{L})=\operatorname{sign}\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3\end{array}\right) \cdot \operatorname{sign}\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right) \cdot \operatorname{sign}\binom{1}{1}=-1$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Let $G=(X, Y, E)$ be the λ-regular graph, with $\lambda=\left(3,2^{2}, 1^{2}\right)$ and $\lambda^{*}=(5,3,1)$.

The edge set E is the disjoint union of the sets U_{1}, U_{2}, U_{3},

$$
\begin{aligned}
U_{1} & =\left\{\left\{x_{1}, y_{5}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{1}\right\},\left\{x_{5}, y_{3}\right\}\right\}, \\
U_{2} & =\left\{\left\{x_{1}, y_{3}\right\},\left\{x_{2}, y_{1}\right\},\left\{x_{3}, y_{2}\right\}\right\}, \\
U_{3} & =\left\{\left\{x_{1}, y_{1}\right\}\right\} .
\end{aligned}
$$

Then $\mathcal{L}=\left(U_{1}, U_{2}, U_{3}\right)$ is a full edge coloring of G and $\operatorname{sign}(\mathcal{L})=\operatorname{sign}\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3\end{array}\right) \cdot \operatorname{sign}\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right) \cdot \operatorname{sign}\binom{1}{1}=-1$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Let $G=(X, Y, E)$ be the λ-regular graph, with $\lambda=\left(3,2^{2}, 1^{2}\right)$ and $\lambda^{*}=(5,3,1)$.

The edge set E is the disjoint union of the sets U_{1}, U_{2}, U_{3},

$$
\begin{aligned}
& U_{1}=\left\{\left\{x_{1}, y_{5}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{1}\right\},\left\{x_{5}, y_{3}\right\}\right\}, \\
& U_{2}=\left\{\left\{x_{1}, y_{3}\right\},\left\{x_{2}, y_{1}\right\},\left\{x_{3}, y_{2}\right\}\right\}, \\
& U_{3}=\left\{\left\{x_{1}, y_{1}\right\}\right\} .
\end{aligned}
$$

Then $\mathcal{L}=\left(U_{1}, U_{2}, U_{3}\right)$ is a full edge coloring of G and $\operatorname{sign}(\mathcal{L})=\operatorname{sign}\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3\end{array}\right) \cdot \operatorname{sign}\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right) \cdot \operatorname{sign}\binom{1}{1}=-1$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Let $G=(X, Y, E)$ be the λ-regular graph, with $\lambda=\left(3,2^{2}, 1^{2}\right)$ and $\lambda^{*}=(5,3,1)$.

The edge set E is the disjoint union of the sets U_{1}, U_{2}, U_{3},

$$
\begin{aligned}
U_{1} & =\left\{\left\{x_{1}, y_{5}\right\},\left\{x_{2}, y_{2}\right\},\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{1}\right\},\left\{x_{5}, y_{3}\right\}\right\}, \\
U_{2} & =\left\{\left\{x_{1}, y_{3}\right\},\left\{x_{2}, y_{1}\right\},\left\{x_{3}, y_{2}\right\}\right\}, \\
U_{3} & =\left\{\left\{x_{1}, y_{1}\right\}\right\} .
\end{aligned}
$$

Then $\mathcal{L}=\left(U_{1}, U_{2}, U_{3}\right)$ is a full edge coloring of G and $\operatorname{sign}(\mathcal{L})=\operatorname{sign}\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3\end{array}\right) \cdot \operatorname{sign}\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right) \cdot \operatorname{sign}\binom{1}{1}=-1$.

Strong sign uniform partitions

Symmetrized tensors Statement of the problem

The
combinatorial
approach
Connections with coding theory Root systems of tensors

We call a partition λ strong sign uniform if for every λ-regular bipartite graph $G=(X, Y, E)$ we have

- All full edge colorings of G have the same sign, which we denote by $\operatorname{sign}(G)$ (sign uniform partition)
- The existence of a full edge coloring of G only depends on the existence of a complete matching of G.

Strong sign uniform partitions

Symmetrized tensors Statement of the problem

The
combinatorial
\triangle approach
Connections with coding theory Root systems of tensors

We call a partition λ strong sign uniform if for every λ-regular bipartite graph $G=(X, Y, E)$ we have

- All full edge colorings of G have the same sign, which we denote by $\operatorname{sign}(G)$ (sign uniform partition)
- The existence of a full edge coloring of G only depends on the existence of a complete matching of G.

Theorem [JA Dias da Silva, MM Torres]
A partition is sign uniform if and only if its Ferrers diagram does not contain the diagram below.

Strong sign uniform partitions

Symmetrized tensors Statement of the problem

The
combinatorial
\triangleright approach
Connections with coding theory
Root systems of tensors

We call a partition λ strong sign uniform if for every λ-regular bipartite graph $G=(X, Y, E)$ we have

- All full edge colorings of G have the same sign, which we denote by $\operatorname{sign}(G)$ (sign uniform partition)
- The existence of a full edge coloring of G only depends on the existence of a complete matching of G.

Theorem [JA Dias da Silva, MM Torres]
A partition is strong sign uniform if and only if its Ferrers diagram does not contain the diagram below.

The class of strong sign uniform partitions corresponds to the class of the partitions of the form $\left(\ell, k, 1^{r}\right)$ or $\left(2^{s}, 1^{t}\right)$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Let $\alpha \in \Gamma_{m, n}$ be a normal word of multiplicity λ i.e., $\alpha(i)<\alpha(j) \Rightarrow \operatorname{mult}(\alpha(i)) \geq \operatorname{mult}(\alpha(j))$.

Let β be a rearrangement of α.
We denote by $G_{\alpha, \beta}=(X, Y, E)$ the λ-regular graph s.t.

- $X=\left\{x_{1}, \ldots, x_{\lambda_{1}^{*}}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{\lambda_{1}^{*}}\right\}$.
- E is a multiset of multi-edges $\left\{x_{\alpha(i)}, y_{\beta(i)}\right\}$, in 1-1 correspondence with the pairs $(\alpha(i), \beta(i))$.

Symmetrized tensors Statement of the problem

The
combinatorial
\triangle approach
Connections with coding theory Root systems of tensors

Let $\alpha \in \Gamma_{m, n}$ be a normal word of multiplicity λ i.e., $\alpha(i)<\alpha(j) \Rightarrow \operatorname{mult}(\alpha(i)) \geq \operatorname{mult}(\alpha(j))$.
Let β be a rearrangement of α.
We denote by $G_{\alpha, \beta}=(X, Y, E)$ the λ-regular graph s.t.

- $X=\left\{x_{1}, \ldots, x_{\lambda_{1}^{*}}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{\lambda_{1}^{*}}\right\}$.
- E is a multiset of multi-edges $\left\{x_{\alpha(i)}, y_{\beta(i)}\right\}$, in 1-1 correspondence with the pairs $(\alpha(i), \beta(i))$.
$\mathrm{Ex}: \alpha=(1,1,1,2,2,3,3,4,5), \beta=(1,3,5,1,2,2,4,1,3) \in \Gamma_{7,5}$, then $G_{\alpha, \beta}$ is the λ-regular bipartite graph with $\lambda=\left(3,2^{2}, 1^{2}\right)$,

A combinatorial criterion for orthogonality of tensors

Symmetrized tensors Statement of the problem

The
combinatorial
approach
Connections with coding theory Root systems of tensors

Let λ be a sign uniform partition
Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ and β a rearrangement of α.

Let $\mathcal{C}\left(G_{\alpha, \beta}\right)$ be the set (possibly empty) of full colorings of $G_{\alpha, \beta}$.

Theorem [JA Dias da Silva, MM Torres]

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \left|\mathcal{C}\left(G_{\alpha, \beta}\right)\right|= \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right)\left|\mathcal{C}\left(G_{\alpha, \beta}\right)\right|, & \text { otherwise. }\end{cases}
$$

A combinatorial criterion for orthogonality of tensors

Symmetrized tensors Statement of the problem

The
combinatorial
\triangleright approach
Connections with coding theory Root systems of tensors

Let λ be a sign uniform partition
Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ and β a rearrangement of α.

Let $\mathcal{C}\left(G_{\alpha, \beta}\right)$ be the set (possibly empty) of full colorings of $G_{\alpha, \beta}$.

Theorem [JA Dias da Silva, MM Torres]

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \left|\mathcal{C}\left(G_{\alpha, \beta}\right)\right|= \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right)\left|\mathcal{C}\left(G_{\alpha, \beta}\right)\right|, & \text { otherwise. }\end{cases}
$$

Using this theorem and calculating the number of full colorings we compute explicitly the inner product of two symmetrized tensors $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ assuming λ strong sign uniform.

Symmetrized tensors Statement of the problem

The
combinatorial
approach Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.

Symmetrized tensors Statement of the problem

The
combinatorial
approach
Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.
Theorem [MM Torres, -] Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ strong sign uniform and β a rearrangement of α. Then

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.
Theorem [MM Torres, -] Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ strong sign uniform and β a rearrangement of α. Then
a) If $\lambda=\left(\ell, 1^{t}\right)$,
$\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \text { if } \mu_{1,1} \leq \ell \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \mu_{1,1}!, & \text { otherwise. }\end{cases}$
In particular, $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ are orthogonal iff $\mu_{1,1} \leq \ell-2$.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.
Theorem [MM Torres, -] Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ strong sign uniform and β a rearrangement of α. Then
a) If $\lambda=\left(\ell, 1^{t}\right)$,
$\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \text { if } \mu_{1,1} \leq \ell \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \mu_{1,1}!, & \text { otherwise. }\end{cases}$
In particular, $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ are orthogonal iff $\mu_{1,1} \leq \ell-2$.
b) If $\lambda=(\ell, k),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!}(-1)^{\mu_{1,2}} \mu_{1,1}$! $\mu_{1,2}!\left(\mu_{2,1}+\mu_{2,2}\right)$!.

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.
Theorem [MM Torres, -] Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ strong sign uniform and β a rearrangement of α. Then
a) If $\lambda=\left(\ell, 1^{t}\right)$,
$\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \text { if } \mu_{1,1} \leq \ell \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \mu_{1,1}!, & \text { otherwise. }\end{cases}$
In particular, $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ are orthogonal iff $\mu_{1,1} \leq \ell-2$.
b) If $\lambda=(\ell, k),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!}(-1)^{\mu_{1,2}} \mu_{1,1}$! $\mu_{1,2}!\left(\mu_{2,1}+\mu_{2,2}\right)$!.
c) If $\lambda=\left(\ell, k, 1^{t}\right),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\cdots$

Symmetrized tensors Statement of the problem

The
combinatorial \triangleright approach Connections with coding theory Root systems of tensors

Denote by $\mu_{i, j}$ the multiplicity of the multi-edge connecting the vertices x_{i} and y_{j} in $G_{\alpha, \beta}$.
Theorem [MM Torres, -] Let $\alpha \in \Gamma_{m, n}$ be a normal word with multiplicity partition λ strong sign uniform and β a rearrangement of α. Then
a) If $\lambda=\left(\ell, 1^{t}\right)$,
$\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)= \begin{cases}0, & \text { if } \mu_{1,1} \leq \ell \\ \frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \mu_{1,1}!, & \text { otherwise. }\end{cases}$
In particular, $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ are orthogonal iff $\mu_{1,1} \leq \ell-2$.
b) If $\lambda=(\ell, k),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!}(-1)^{\mu_{1,2}} \mu_{1,1}$! $\mu_{1,2}!\left(\mu_{2,1}+\mu_{2,2}\right)$!.
c) If $\lambda=\left(\ell, k, 1^{t}\right),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\cdots$
d) If $\lambda=\left(2^{s}, 1^{t}\right),\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{m!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \operatorname{per}\left(A_{G_{\alpha, \beta}}\right)$.

Example

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

If $\alpha=(1,1,1,1,2,3,4)$ and $\beta=(1,1,3,1,4,2,1), G_{\alpha, \beta}$ is the $\left(4,1^{3}\right)$-regular graph depicted below.

Example

Symmetrized tensors Statement of the problem

The
combinatorial approach Connections with coding theory Root systems of tensors

If $\alpha=(1,1,1,1,2,3,4)$ and $\beta=(1,1,3,1,4,2,1), G_{\alpha, \beta}$ is the $\left(4,1^{3}\right)$-regular graph depicted below.

Thus $\mu_{1,1}=3>\ell-2=1, \mathcal{C}\left(G_{\alpha, \beta}\right)=1, \operatorname{sign}(\mathcal{L})=-1$ and

$$
\left(e_{\alpha}^{* \lambda}, e_{\beta}^{* \lambda}\right)=\frac{\lambda(i d)}{7!} \operatorname{sign}\left(G_{\alpha, \beta}\right) \mu_{1,1}!=\frac{20}{7!}(-3)=-\frac{1}{84} .
$$

In particular, $e_{\alpha}^{* \lambda}$ and $e_{\beta}^{* \lambda}$ are not orthogonal.

Connections with coding theory

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

Denote by $A(n, d, w)$ the maximum number of binary sequences of length n with w positions equal to 1 and pairwise Hamming distance greater than or equal to d.

Connections with coding theory

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

Denote by $A(n, d, w)$ the maximum number of binary sequences of length n with w positions equal to 1 and pairwise Hamming distance greater than or equal to d.

Theorem [MM Torres, -] For strong sign uniform partitions we have the following:

1. $\operatorname{dim}^{\perp}\left(\ell, 1^{m-\ell}\right)=A(m, 4, \ell)$.

Connections with coding theory

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

Denote by $A(n, d, w)$ the maximum number of binary sequences of length n with w positions equal to 1 and pairwise Hamming distance greater than or equal to d.

Theorem [MM Torres, -] For strong sign uniform partitions we have the following:

1. $\operatorname{dim}^{\perp}\left(\ell, 1^{m-\ell}\right)=A(m, 4, \ell)$.
2. $\operatorname{dim}^{\perp}(\ell, k)=1$.

Connections with coding theory

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

Denote by $A(n, d, w)$ the maximum number of binary sequences of length n with w positions equal to 1 and pairwise Hamming distance greater than or equal to d.

Theorem [MM Torres, -] For strong sign uniform partitions we have the following:

1. $\operatorname{dim}^{\perp}\left(\ell, 1^{m-\ell}\right)=A(m, 4, \ell)$.
2. $\operatorname{dim}^{\perp}(\ell, k)=1$.
3. $A(m, 6, \ell+k) \leq \operatorname{dim}^{\perp}\left(\ell, k, 1^{m-\ell-k}\right) \leq A(m, 4, \ell+k)$.
4. $A(m, 2 s+2,2 s) \leq \operatorname{dim}^{\perp}\left(2^{s}, 1^{m-2 s}\right) \leq A(m, 4,2 s)$.

Connections with coding theory

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

Denote by $A(n, d, w)$ the maximum number of binary sequences of length n with w positions equal to 1 and pairwise Hamming distance greater than or equal to d.

Theorem [MM Torres, -] For strong sign uniform partitions we have the following:

1. $\operatorname{dim}^{\perp}\left(\ell, 1^{m-\ell}\right)=A(m, 4, \ell)$.
2. $\operatorname{dim}^{\perp}(\ell, k)=1$.
3. $A(m, 6, \ell+k) \leq \operatorname{dim}^{\perp}\left(\ell, k, 1^{m-\ell-k}\right) \leq A(m, 4, \ell+k)$.
4. $A(m, 2 s+2,2 s) \leq \operatorname{dim}^{\perp}\left(2^{s}, 1^{m-2 s}\right) \leq A(m, 4,2 s)$.

The computation of $A(n, w, d)$ is an important open problem in coding theory known as the error-correcting code problem which is the discrete analogue of sphere packing problems.

Consequences

Symmetrized tensors Statement of the problem
The combinatorial approach

Connections with \triangleright coding theory Root systems of tensors

- $\operatorname{dim}^{\perp}\left(2,1^{m-2}\right)=\left\lfloor\frac{m}{2}\right\rfloor$
[C Bessenrodt et al (2003); JA Dias da Silva and MM Torres (2005)]
- $\operatorname{dim}^{\perp}\left(w, 1^{n-w}\right)=\operatorname{dim}^{\perp}\left(n-w, 1^{w}\right)$
- $\operatorname{dim}^{\perp}\left(w, 1^{n-w}\right) \leq\left\lfloor\frac{n}{w} \operatorname{dim}^{\perp}\left(w-1,1^{n-w}\right)\right\rfloor$
- $\operatorname{dim}^{\perp}\left(w, 1^{n-w}\right) \leq\left\lfloor\frac{n}{n-w} \operatorname{dim}^{\perp}\left(w, 1^{n-w-1}\right)\right\rfloor$
- $\operatorname{dim}^{\perp}\left(w, 1^{n-w}\right) \leq \operatorname{dim}^{\perp}\left(w-1,1^{n-w}\right)+\operatorname{dim}^{\perp}\left(w, 1^{n-w-1}\right)$
- $\operatorname{dim}^{\perp}\left(3,1^{n-3}\right)=\left\{\begin{array}{l}\left\lfloor\frac{n}{3}\left\lfloor\frac{m-1}{2}\right\rfloor\right\rfloor, \quad n \not \equiv 5(\bmod 6) \\ \left\lfloor\frac{n}{3}\left\lfloor\frac{n-1}{2}\right\rfloor\right\rfloor-1, \quad n \equiv 5(\bmod 6)\end{array}\right.$
- $\operatorname{dim}^{\perp}\left(4,1^{n-4}\right) \begin{cases}\frac{n(n-1)(n-2)}{24}, & n \equiv 2 \text { or } 4(\bmod 6) \\ \frac{n(n-1)(n-3)}{24}, & n \equiv 3 \operatorname{or} 5(\bmod 6) \\ \frac{n\left(n^{2}-3 n-6\right)}{24}, & n \equiv 0(\bmod 6)\end{cases}$
- Etc...

Root systems of symmetrized decomposable tensors

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Consider $\lambda=\left(2,1^{m-2}\right)$ and $\alpha=(\mathbf{1}, \mathbf{1}, 2, \ldots, m-1)$.
For $1 \leq i<j \leq m$ let $\alpha[i, j]$ be the rearrangement of α,

$$
(2,3, \ldots, i, \mathbf{1}, i+1, i+2, \ldots, j-1, \mathbf{1}, j, j+1, \ldots, m-1),
$$

and set

$$
\Pi_{\alpha}=\left\{e_{\alpha[i, i+1]}^{* \lambda}: i=1, \ldots, m-1\right\} .
$$

In particular, $\operatorname{dim} V_{\alpha}=\left|\Pi_{\alpha}\right|=m-1$.

Root systems of symmetrized decomposable tensors

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Consider $\lambda=\left(2,1^{m-2}\right)$ and $\alpha=(\mathbf{1}, \mathbf{1}, 2, \ldots, m-1)$.
For $1 \leq i<j \leq m$ let $\alpha[i, j]$ be the rearrangement of α,

$$
(2,3, \ldots, i, \mathbf{1}, i+1, i+2, \ldots, j-1, \mathbf{1}, j, j+1, \ldots, m-1),
$$

and set

$$
\Pi_{\alpha}=\left\{e_{\alpha[i, i+1]}^{* \lambda}: i=1, \ldots, m-1\right\} .
$$

In particular, $\operatorname{dim} V_{\alpha}=\left|\Pi_{\alpha}\right|=m-1$.

Theorem The set Π_{α} is a basis for $V_{\alpha}=\left\langle E_{\alpha}\right\rangle$ s.t.

$$
e_{\beta}^{* \lambda}=\operatorname{sign}\left(G_{\alpha[i, j], \beta}\right)(-1)^{j-i+1} \sum_{s=i}^{j-1} e_{\alpha[s, s+1]}^{* \lambda}, \quad \forall e_{\beta}^{* \lambda} \in E_{\alpha} .
$$

where $i<j$ are the positions of β that are equal to one.

Example

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Consider $\alpha=(1,1,2,3,4)$ and $\beta=(2,4,1,3,1)$. Then

$$
\Pi_{\alpha}=\left\{e_{(1,1,2,3,4)}^{* \lambda}, e_{(2,1,1,3,4)}^{*_{\lambda}}, e_{(2,3,1,1,4)}^{* \lambda}, e_{(2,3,4,1,1)}^{* \lambda}\right\}
$$

and we get

$$
e_{(2,4,1,3,1)}^{* \lambda}=(-1) \times(-1)^{5-3+1} \sum_{s=3}^{4} e_{\alpha[s, s+1]}^{*_{\lambda}}=e_{(2,3,1,1,4)}^{*_{\lambda}}+e_{(2,3,4,1,1)}^{*_{\lambda}}
$$

Example

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Consider $\alpha=(1,1,2,3,4)$ and $\beta=(2,4,1,3,1)$. Then

$$
\Pi_{\alpha}=\left\{e_{(1,1,2,3,4)}^{* \lambda}, e_{(2,1,1,3,4)}^{*_{\lambda}}, e_{(2,3,1,1,4)}^{* \lambda}, e_{(2,3,4,1,1)}^{* \lambda}\right\}
$$

and we get

$$
e_{(2,4,1,3,1)}^{* \lambda}=(-1) \times(-1)^{5-3+1} \sum_{s=3}^{4} e_{\alpha[s, s+1]}^{*_{\lambda}}=e_{(2,3,1,1,4)}^{*_{\lambda}}+e_{(2,3,4,1,1)}^{*_{\lambda}}
$$

The metric structure of critical orbital sets

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Let $V_{\alpha}^{\mathbb{R}}=\bigoplus_{s=1}^{m-1} \mathbb{R} e_{\alpha[s, s+1]}^{* \lambda} \subset V_{\alpha}$ be the real span of Π_{α}. By the previous theorem $E_{\alpha} \subset V_{\alpha}^{\mathbb{R}}$. Moreover, $V_{\alpha}^{\mathbb{R}}$ is endowed with the induced inner product.

Set $E_{\alpha}^{+}:=\left\{(-1)^{j-i+1} e_{\alpha[i, j]}^{* \lambda}: 1 \leq i<j \leq m\right\}$.

The metric structure of critical orbital sets

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory

Root systems of
tensors

Let $V_{\alpha}^{\mathbb{R}}=\bigoplus_{s=1}^{m-1} \mathbb{R} e_{\alpha[s, s+1]}^{* \lambda} \subset V_{\alpha}$ be the real span of Π_{α}. By the previous theorem $E_{\alpha} \subset V_{\alpha}^{\mathbb{R}}$. Moreover, $V_{\alpha}^{\mathbb{R}}$ is endowed with the induced inner product.

Set $E_{\alpha}^{+}:=\left\{(-1)^{j-i+1} e_{\alpha[i, j]}^{* \lambda}: 1 \leq i<j \leq m\right\}$.
Theorem [MM Torres, -] Let $\alpha=(1,1,2, \ldots, m-1)$. The following hold.

1. $E_{\alpha}=E_{\alpha}^{+} \cup-E_{\alpha}^{+}$is a regular crystallographic root system of rank $m-1$, set of positive roots E_{α}^{+}, simple system Π_{α} and Dynkin diagram A_{m-1}.
2. The critical orbital sets E_{α} with multiplicity $\left(2,1^{m-2}\right)$, are the only crystallographic root systems consisting entirely of critical decomposable symmetrized tensors associated to a single hook partition.

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

Next figure depicts the root systems E_{α} for $m=3,4$ and the corresponding Dynkin diagrams

The simple roots were marked with filled dots, the remaining positive roots by filled arrows and the negative roots by white arrows.

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set

 of G that contains no pair of adjacent vertices.Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Symmetrized tensors Statement of the problem
The combinatorial approach
Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Recall that two vertices of the Dynkin diagram are adjacent if and only if the corresponding simple roots are non-orthogonal.

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Recall that two vertices of the Dynkin diagram are adjacent if and only if the corresponding simple roots are non-orthogonal.

Corollary The orthogonal dimension of the critical orbital sets associated to the hook partition $\lambda=\left(2,1^{m-2}\right)$ can be interpreted as the independence number of the Dynkin diagram of the root system E_{α}, i.e.,

$$
\operatorname{dim}^{\perp}(\lambda)=\alpha\left(A_{m-1}\right)=\left\lfloor\frac{m}{2}\right\rfloor
$$

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Recall that two vertices of the Dynkin diagram are adjacent if and only if the corresponding simple roots are non-orthogonal.

Corollary The orthogonal dimension of the critical orbital sets associated to the hook partition $\lambda=\left(2,1^{m-2}\right)$ can be interpreted as the independence number of the Dynkin diagram of the root system E_{α}, i.e.,

$$
\operatorname{dim}^{\perp}(\lambda)=\alpha\left(A_{m-1}\right)=\left\lfloor\frac{m}{2}\right\rfloor
$$

For instance, if $\lambda=\left(2,1^{7}\right)$,

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Recall that two vertices of the Dynkin diagram are adjacent if and only if the corresponding simple roots are non-orthogonal.

Corollary The orthogonal dimension of the critical orbital sets associated to the hook partition $\lambda=\left(2,1^{m-2}\right)$ can be interpreted as the independence number of the Dynkin diagram of the root system E_{α}, i.e.,

$$
\operatorname{dim}^{\perp}(\lambda)=\alpha\left(A_{m-1}\right)=\left\lfloor\frac{m}{2}\right\rfloor
$$

For instance, if $\lambda=\left(2,1^{7}\right)$,

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory

Root systems of tensors

An independent set of a graph G is a subset of the vertex set of G that contains no pair of adjacent vertices.

The independence number of G, denoted $\alpha(G)$, is the maximum cardinality of an independent set in G.

Recall that two vertices of the Dynkin diagram are adjacent if and only if the corresponding simple roots are non-orthogonal.

Corollary The orthogonal dimension of the critical orbital sets associated to the hook partition $\lambda=\left(2,1^{m-2}\right)$ can be interpreted as the independence number of the Dynkin diagram of the root system E_{α}, i.e.,

$$
\operatorname{dim}^{\perp}(\lambda)=\alpha\left(A_{m-1}\right)=\left\lfloor\frac{m}{2}\right\rfloor
$$

For instance, if $\lambda=\left(2,1^{7}\right)$,

Symmetrized tensors Statement of the problem
The combinatorial approach Connections with coding theory Root systems of tensors

References:

- C Bessenrodt, MR Pournaki and A Reifegerste, A note on the orthogonal basis of a certain full symmetry class of tensors, LAA (2003).
- R Holmes, Orthogonal basis of symmetrized tensor spaces, LMA (1995).
- MM Torres and PC Silva, Tensors, matchings and codes, LAA (2011).
- JA Dias da Silva and MM Torres, On the orthogonal dimension of orbital sets, LAA (2005).
- JA Dias da Silva and MM Torres, A combinatorial approach to the orthogonality on critical orbital sets, LAA (2006).

Thank you for your attention!

