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ABSTRACT. This paper is a continuation of the systematic study of the distribution of
quadrant marked mesh patterns initiated by the authors in [J. Integer Sequences 12 (2012),
Article 12.4.7]. We study quadrant marked mesh patterns on up-down and down-up per-
mutations, also known as alternating and reverse alternating permutations, respectively.
In particular, we refine classical enumeration results of André [C. R. Acad. Sci. Paris 88
(1879), 965-967; J. Math. Pur. Appl. 7 (1881), 167-184] on alternating permutations by
showing that the distribution with respect to the quadrant marked mesh pattern of interest
is given by (sec(xt))'/* on up-down permutations of even length and by fot (sec(xz)) s dz
on down-up permutations of odd length.

1. INTRODUCTION

The notion of mesh patterns was introduced by Brandén and Claesson [4] to provide ex-
plicit expansions for certain permutation statistics as, possibly infinite, linear combinations
of (classical) permutation patterns (see [6] for a comprehensive introduction to the theory
of permutation patterns). This notion was further studied in [3, 5, 7, 9, 10, 13].

Let 0 = 01...0, be a permutation in the symmetric group S, written in one-line no-
tation. Then we will consider the graph of o, G(o), to be the set of points (i,0;) for
1t =1,...,n. For example, the graph of the permutation o = 471569283 is shown in Fig-
ure 1. Then, if we draw a coordinate system centered at a point (i, 0;), we will be interested
in the points that lie in the four quadrants I, II, III, and IV of that coordinate system as
shown in Figure 1. For any a,b,c,d € N, where N = {0,1,2,...} is the set of natural
numbers and any o = 0;1...0, € 5,, we say that o; matches the quadrant marked mesh
pattern MM P(a,b,c,d) in o if in G(o) relative to the coordinate system which has the
point (i,0;) as its origin, there are > a points in quadrant I, > b points in quadrant II,
> ¢ points in quadrant III, and > d points in quadrant IV. For example, if 0 = 471569283,
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the point 04 = 5 matches the quadrant marked mesh pattern MM P(2,1,2,1) since rela-
tive to the coordinate system with origin (4, 5), there are 3 points of G(o) in quadrant I,
there is 1 point of G(0) in quadrant II, there are 2 points in quadrant 111, and 2 points
in quadrant IV. Note that, if a coordinate in MM P(a,b, c,d) is 0, then there is no condi-
tion imposed on the points in the corresponding quadrant. In addition, we shall consider
patterns MM P(a,b,c,d), where a,b,c¢,d € NU{(}. Here, when one of the parameters
a, b, ¢, or d in MM P(a,b,c,d) is the empty set, then, for o; to match MM P(a,b,c,d)
ino =o0y...0, €8, it must be the case that there are no points in G(o) relative to
the coordinate system with origin (i,0;) in the corresponding quadrant. For example, if
o = 471569283, the point o3 = 1 matches the marked mesh pattern MM P(4,2,0, () since,
relative to the coordinate system with origin (3, 1), there are 6 points of G(o) in quadrant
I, 2 points in quadrant II, no points in quadrant III, and no points in quadrant IV. We
let mmp(»**%(g) denote the number of i such that ¢; matches the marked mesh pattern

MMP(a,b,c,d) in o.

PN W A O O N ® ©
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FiGURE 1. The graph of o0 = 471569283.

Note how the (two-dimensional) notation of Ulfarsson [13] for marked mesh patterns
corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

MMP(0,0,k,0) = , MMP(k,0,0,0) = ,

n

Kitaev and Remmel [7] studied the distribution of quadrant marked mesh patterns in
the symmetric group S, and Kitaev, Remmel, and Tiefenbruck [9, 10] studied the distri-
bution of quadrant marked mesh patterns in 132-avoiding permutations in 5,,. The main
goal of this paper is to study the distribution of the statistics mmp®%%9  mmp(®1.0.0)
mmp®%19 and mmp@%%Y in the set of up-down and down-up permutations. We say that
o=071...0, €8, is an up-down permutation if it is of the form

MMP(0,a,b,c) = and MMP(0,0,0, k) =

)

01 <09 >03<04>05<:"-,
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and o is a down-up permutation if it is of the form
01> 09 < 03>04<05>""".

Let UD,, denote the set of all up-down permutations in .S, and DU, denote the set of
all down-up permutations in S,. Given a permutation o = oy...0, € S,, we define
the reverse of o, ¢", to be 0,0,_1...00 and the complement of o, ¢° to be
m+l—0o)n+1—09)...(n+1—0,). Forn>1, we let

(1,0,0,0) (1,0,0,0)
Azn(ﬂf) = E D (U), anfl(l’) = E P (0)7

oeUDasy, o€UDgy,_1
(1,0,0,0) (1,0,0,0)
Con(z) = E ™ @ and Dyp_1(2) = E P (@),
c€DUsy, oc€DUsp—1

We then have the following simple proposition.

Proposition 1. For alln > 1,

(1) da(r) = 3 @m0 Z § gm0 §Y mmplo010e)

oc€DUszy, oeDUszy, o€UDap
(0,1,0,0) (0,0,0,1) (0,0,1,0)
(2) an(ﬂf) — E : P (o) — E : P (o) — § mp (o)’
ocUDayy, ocUDayy, oceDUs,
mmp(0:1,0,0) (o mmp(0:0,0,1) (o mmp(0:0,1,0) (&
(3)3%_1@): E mp (o) — E P (o) — E P ();
o€UD2n—1 c€DUzp—1 0€DUzp—1
and ( ) ( (
0,1,0,0 0,0,0,1) 0,0,1,0)
(4) D2n71<l’) — E P (o) — E P (o) — E P (0).
oc€DUsgp—1 oc€UD2p—1 oc€UD2p—1

Proof. 1t is easy to see that for any o € 5,,,
mmp 99 (¢} = mmp©@129 (57) = mmp©@°9D (5¢) = mmp@OLO((57)°).
Then part 1 easily follows since
0 €UDsy, <= 0" € DUy, <= 0°€ DU, <= (0")° € UDs,. (1.1)
Parts 2, 3, and 4 are proved in a similar manner. O

It follows from Proposition 1 that the study of the distribution of the statistics
mmpH000)  mmp@100  mmp@0L0) - and mmp@%%Y in the set of up-down and down-up
permutations can be reduced to the study of the generating functions

t2n
Alt,z) =1+ ; Azn(x)m,
th_l
B(t,x) =) Byn1(x) G
n>1
t2n
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and

In the case when x = 1, these generating functions are well known. That is, the operation
of complementation shows that As,(1) = Ca,(1) and By, 1(1) = Dy, 1(1) for all n > 1,
and André [1, 2] proved that

t2n
Z A2”(1) (271)' = S€C<t>
n>0
and
t2n—1
By, 1(1)——— = tan(?).
D Bana >(2n— 1)! an(?)
n>1
Thus, the number of up-down permutations is given by the exponential generating function
t m
sec(t) + tan(t) = tan <§ + Z) . (1.2)

We shall prove the following theorem.
Theorem 1. We have

A(t, z) = (sec(zt))V®,

B(t,x) = (sec(aziﬁ))l/m/0 (sec(x2))~Y*dz,

1

Ct,z) =1 +/0 (sec(xy)) = /y(sec(xz))l/wdz dy,

0

and
D(t,:p):/O(seC(xz))H%dz.

As an immediate corollary of Theorem 1, we get, for example, that the bivariate expo-
nential generating function for up-down permutations, where the variable x keeps track of
occurrences of MM P(1,0,0,0), is given by

A(t,z) + B(t,z) = (sec(xt))V/® (1 + /Ot(sec(:pz))_l/mdz) ,

which refines (1.2).

One can use these generating functions to find some initial values of the polynomials
Ao (), Bap—1(x), Con(z), and Dg,_1(z). For example, we have used Mathematica to
compute the following tables.
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Ay ()
1

22(3 + 22)

2 (15 1 30z 1 1627)

z* (105 + 420z + 588z% + 2722°)
2 (

2 (

945 + 6300z + 16380z% + 18960z + 7936x*)
10395 + 103950 + 42966027 + 8936402° + 911328z* + 3537922°)

ola | wlol—lols

Ban1(z)

1

2z

8z%(1 + x)

162° (3 + 8z + 627)

1282* (3 + 15z + 27z% + 1723)

25625 (15 + 120z + 38122 + 5562° + 310z%)

10242° (45 + 525z + 256227 + 64202° + 81462 + 41462°)

| o ot i ol ro| —| 3

an(l‘)

1

1

x(2 + 3x)

(8 + 28z + 2527)

(48 + 296z + 6142 + 42727)

(384 + 3648z + 1310422 + 209202° + 124652%)

(3840 + 51840z + 2823362* + 7690722° + 10399462* + 5557312°)

(
2
3
4
5

oo lwlvl—lols

Danl(SC)
1
z(1+ x)
(3 + 8z + Hz?)
(15 + 752 + 12122 + 6123)
(105 + 840z + 2478z + 312823 + 1385x%)
(945 + 11025z + 510302% + 1153502 + 1249212* + 505212°)
2%(10395 + 166320x + 110533522 + 385968023
+7365633z* + 7158128x° + 2702765x5)

(
2
3
4
5

oo w3

The outline of this paper is as follows. In Section 2, we shall prove Theorem 1. Then, in
Section 3, we shall study the entries of the tables above explaining them either explicitly
or through recursions.
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2. PrROOF OF THEOREM 1

The proof of all parts of Theorem 1 proceeds in the same manner. Namely, there are
simple recursions satisfied by the polynomials Ay, (x), Bayi1(x), Can(z), and Doy, i1 (2)
based on the position of the largest value in the permutation.

2.1. The generating function A(t,z). If 0 = 0y ...09, € UD,,, then 2n must occur in
one of the positions 2,4, ...,2n. Let UDéik) denote the set of permutations o € U Ds,, such
that oo = 2n. A schematic diagram of an element in U Déik) is shown in Figure 2.

2n

\ o \
2k-1 | 2n-2k

position
2k

FIGURE 2. The graph of a permutation o € UDéik).
Note that there are (ggj) ways to pick the elements which occur to the left of position 2k
in such a permutation o and there are By,_1(1) ways to order them since the elements to the
left of position 2k form an up-down permutation of length 2k — 1. Each of the elements to
the left of position 2k contributes to mmp:%%%(s). Thus the contribution of the elements
to the left of position 2k to EanDgzk) gmmp 000 () 4o Bop_1(1)2?*71. There are Ay, ox(1)
ways to order the elements to the rrilght of position 2k since they must form an up-down
permutation of length 2n — 2k. Since the elements to the left of position 2k have no effect
on whether an element to the right of position 2k contributes to mmp™®*%%(g), it follows
that the contribution of the elements to the right of position 2k to > mmp(10:00)(0)

is Ao, _or(x). As a consequence, we obtain

"L 2n—1
A2n<$’) = Z (2k _ 1)ng1(1)x2k1A2n2k(:U),

k=1

O’EUDéik) X

or, equivalently,

Agn () i Bop1(1)z* " Ay _oi()

- 2k — 1)1 (2n—2k)

(2n—1)! & (2.1)

Multiplying both sides of (2.1) by ¢*"~! and summing the result over n > 1, we see that

Ay (z)t2n1 Bop_1(1)x?n—12n=1 Aoy (z)12"
2 (2n —1)! :<Z (2n —1)! )(Z (2n)! )

n>1 n>1 n>0
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By André’s result, we have

Z Banl (1)x2n—1t2n—1

@n—1) = tan(xt),

n>1
so that

%A(t, x) = tan(zt)A(t, x).
Our initial condition is that A(0,z) = 1. It is easy to check that the solution to this
differential equation is

A(t, x) = (sec(xt))Ve.

2.2. The generating function B(t,z). If 0 = 0y...09,41 € UDg,1, then 2n 4+ 1 must

occur in one of the positions 2,4,...,2n. Let UDgﬁzl denote the set of permutations

0 € UDs, 4 such that o9, = 2n+1. A schematic diagram of an element in U Dgf)

in Figure 3.

is shown

2n+1

| | | |
2k-1 2n-2k+1

position
2k

FI1GURE 3. The graph of a permutation o € UDngzl.

Again there are (2,3?1) ways to pick the elements which occur to the left of position 2k
in such a permutation o, and the contribution of the elements to the left of position 2k

to EO_eUD(Qk) gmmp 000 (o) o B%,l(l)x%_l. There are Ba, or+1(1) ways to order the ele-
2n+1

ments to the right of position 2k since they must form an up-down permutation of length
2n — 2k + 1. Since the elements to the left of position 2k have no effect on whether an
element to the right of position 2k contributes to mmp*%%0 (), it follows that the contri-

bution of the elements to the right of position 2k to ZanDf’f@l gm0 (0) 4o Bon_opi1().
Consequently, if n > 1, then
Bony1(z) = Z o Boje—1(1)2*" ! Boy_opes1 ().
p 2k —1
Hence, for n > 1, we have

Byt () " B, —1(1)20%71 Boy—ok41(x)
(2+n)! =2 ]Ezk — 1) (2n- 2kk++ -

(2.2)
k=1



8 SERGEY KITAEV AND JEFFREY REMMEL

Multiplying both sides of (2.2) by ¢*", summing the result over n > 1, and taking into
account that B;(z) = 1, we see that

Bap g (2)t" Bap g1 (1)x?ntigntl Bopsr (z)t271
ZW:”@: +(2n+1)! )(Zw>

n>0 n>0 n>0

Since

= tan(xt),

Z B2n71(1)x2n—1t2n—1
= (2n —1)!
we see that

%B(t,x) = 1+ tan(xt)B(t, x).

Our initial condition is that B(0,z) = 0. It is easy to check that the solution to this
differential equation is

B(t,x) = (sec(xt))l/x/o (sec(zz))~*dz.

2.3. The generating function C(t,x). If 0 = 01...09, € DU,,, then 2n must occur in

one of the positions 1,3,...,2n—1. Let DUz(ikH) denote the set of permutations o € DU,
2%k+1)

-/ is shown in Figure 4.

such that o911 = 2n. A schematic diagram of an element in DUQ(

2n

\ | \
| \ |
2k 2n-2k-1
position
2k+1

i casy)

FIGURE 4. The graph of a permutation o € DU,

Note that there are (2’;;1) ways to pick the elements which occur to the left of position
2k+1 in such a permutation o, and there are Cy,(1) = Ay, (1) ways to order them since the
elements to the left of position 2k+1 form a down-up permutation of length 2k. Each of the
elements to the left of position 2k + 1 contributes to mmp(%9 (). Thus the contribution
of the elements to the left of position 2k + 1 to ZanD@k) s COR T Ao (1)z%. There

2n

are B, or_1(1) ways to order the elements to the right of position 2k + 1 since they must
form an up-down permutation of length 2n—2k-+1. Since the elements to the left of position
2k 4 1 have no effect on whether an element to the right of position 2k 4+ 1 contributes to
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mmp%%0) (), it follows that the contribution of the elements to the right of position 2k

(1,0,0,0) . .
to > et D) P (@) is By, _or_1(7). As a consequence, we obtain

n—

/o —1
Con(z < )A2k(1)$2k32n—2k—1($),
0

k=

or, equivalently,

Conlz) "i Ao (D)2 Bop_op_1(2)

(2n—1)! (2k)!  (2n—2k — 1) (2.3)

Multiplying both sides of (2.3) by ¢**~! and summing the result over n > 1, we see that

an(l')t%zil Bgn_1(1)$2n71t2n71 Agn(ZL')th
2 (2n —1)! :<Z (2n —1)! )(Z (2n)! )

n>1 n>1 n>0

By André’s result, we have

A " 1 2nt2n
Z S LA A (D2 = sec(xt),

= (2n)!

so that

0 ! -

EC(t x) = sec(xt)B(t,z) = (sec(xt))Holc/ (sec(:pz))Tldz. (2.4)

0

Our initial condition is that C'(0,z) = 1. Both Maple and Mathematica will solve this
differential equation, but the final expressions are complicated and not particularly useful
for enumerative purposes. Thus we actually used the right-hand side of (2.4) to find the
entries of the table for the initial values of Cy,(x) given in the introduction. Nevertheless,
we can record the solution of (2.4) as

Clt,r) =1 —i—/o (sec(zy))' = /Oy(sec(azz))wldz dy.

2.4. The generating function D(t,z). If 0 = 0y...09,.1 € DUy, 1, then 2n + 1 must

occur in one of the positions 1,3,...,2n + 1. Let DUQ(lefgl) denote the set of permutations

0 € DUy, such that o911 = 2n + 1. A schematic diagram of an element in DUQ(ZTEU

shown in Figure 5.

Note that there are (32) ways to pick the elements which occur to the left of position
2k + 1 in such a permutation o, and there are Cy,(1) = Agx(1) ways to order them since
the elements to the right of position 2k + 1 form a down-up permutation of length 2k.
Each of the elements to the left of position 2k + 1 contributes to mmp®%%9(5). Thus the

contribution of the elements to the left of position 2k + 1 to E (2k+1) gmmp 000 (@) i

oeDUSKH
Agip(1)z%. There are Ay, (1) ways to order the elements to the right of position 2k + 1
since they must form an up-down permutation of length 2n — 2k. Since the elements to the
left of position 2k + 1 have no effect on whether an element to the right of position 2k + 1
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2n+1

| | |
\ \ \ \
2k 2n-2k

position
2k+1

FIGURE 5. The graph of a permutation o € DUéi’f{l).

contributes to mmp*%%% (), it follows that the contribution of the elements to the right
of position 2k + 1 to ZoeDU(ZkH) gmmp 0 (0) i Ao, _or(x). Consequently, if n > 1, then

2n+1
" /2n ok
D2n+1($)=Z o) Aoi(1)z*" Agp ok ().
k=0

Hence, for n > 1, we have

D2n+1(ZL‘) _ i Agk(l)l‘2k Agn_gk(l')

(2n)! k) (2n— 2k)! (2.5)

Multiplying both sides of (2.5) by ¢*" and summing the result over n > 0, we see that

5 Dopyr (2)12" (Z A2n(1)x2nt2n> (Z Agn(:p)t2n>
= (2n)! = (2n)! = (2n)! ’
so that

%D(t, x) = sec(z, ) A(t, z) = (sec(xt))”i.

Our initial condition is that D(0,z) = 0 so that the solution to this differential equation is

D(t,x)z/o(sec(xz))pr%dz.

2.5. A remark on MMP(k,0,0,0) for £ > 2. We note that we cannot apply the same
techniques to find the distribution of marked mesh patterns MM P(k,0,0,0) in up-down
and down-up permutations when k£ > 2. For example, suppose that we try to set up a

. 2,0,0,0 (2,0,0,0) . . .
recursion for Aén )(:c) =D ocUDy, TP (@) Then, if we consider the permutations

0 =01...09, € UD,, such that o9 = 2n, we still have (;Zj) ways to pick the elements
for o1 ...09,_1. However, in this case the question of whether some ¢; with ¢ < 2k matches
the marked mesh pattern MM P(2,0,0,0) in o is dependent on which values occur in

O9k+1 - - - O9p. For example, if 2n —1 € {ook 11, ..., 09, }, then every o; with i < k will match



QUADRANT MARKED MESH PATTERNS IN ALTERNATING PERMUTATIONS 11

the marked mesh pattern MM P(2,0,0,0) in 0. However, if 2n — 1 € {01, ..., 091}, this

will not be the case. Thus we were not able to find a simple recursion for Agzn’o’o’o) (x).

3. THE COEFFICIENTS OF THE POLYNOMIALS As, (), Baopi1(2), Con(x), AND Dayiq(x)

The main goal of this section is to explain several of the coefficients of the polynomials
Agn(2), Bong1 (), Can(x), and Doy, (x). For any polynomial P(x), we write (z*) P(z) for
the coefficient of z* in P(z). First, it is easy to understand the coefficients of the lowest
power of x in each of these polynomials. More precisely, we have the following theorem,

where 0!! =1 and, for n > 1, (2n)!! = [['_,(2¢) and (2n — 1)!! =], (20 — 1).

Theorem 2.
(1) For alln > 1, we have

. o if 0<k<n,
(@) Asn(w) = {(Qn— D if k=n.

(2) For alln > 1, we have

0 if 0<k<n,
(@) Bona () = {(Zn)!! if k=n.

(3) For alln > 1, we have

. o if 0<k<n-—1,
<37 >C2"(x)_ {(Q(n_l))!! if k=n—1.

(4) For alln > 1, we have

(2") Dypya(2) = {(Qn - DI if k=n.

Proof. For (1), note that, if 0 = 0y ... 09, € UDy,, then 09,1 always matches the pattern
MMP(1,0,0,0) for i = 0,...,n — 1. Thus mmp™®®%9(s) > n. We now proceed by
induction on n to prove that (z™) Ag,(z) = (2n — 1)!! for all n > 1. This is obvious for
n = 1since Ay(x) = x. Now suppose that o = oy ... 09, € UDs, and mmp*09(g) = n. It
is then easy to see that g, = 2n since otherwise oy is an unwanted occurrence of the pattern
MMP(1,0,0,0). Moreover, if 7 = red(03 . ..02,), then 7 € UDa, 5 and mmp099) (1) =
n —1. Thus, since we are assuming by induction that (z"~!) Ay, o(x) = (2n —3)!!, we have
2n — 1 choices of o1 and (2n — 3)!! choices for 7. Hence (z™) Ag,(x) = (2n — 1)!1.

For (2), note that, if 0 = 0y ...09,11 € UDs,11, then 09,1 always matches the pattern
MMP(1,0,0,0) for i = 0,...,n — 1. Thus mmp™®®%9(s) > n. We now proceed by
induction on n to prove that (z") Bg,1(x) = (2n)!! for all n > 1. This is obvious for n =1
since Bs(r) = 2x. Now suppose that ¢ = o1 ...0941 € UDgyy; and mmpH200(g) =
n. It is then easy to see that oo = 2n + 1. Moreover, if 7 = red(o3...09,.1), then
7 € UDy,_; and mmp?%9(7) = n — 1. Thus, since we are assuming by induction that
(2" 1) By, _1(x) = (2n — 2)!!, we have 2n choices of o and (2n — 2)!! choices for 7. Hence
(™) Bopy1(z) = (2n)!! for n > 1.
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For (3), note that, if 0 = o0y...09, € DU,,, then oy always matches the pattern
MMP(1,0,0,0) for i = 1,...,n — 1. Thus mmp***%(g) > n — 1. Now suppose that
0= 01...00 € DUy, and mmp009(g) = n — 1. It is then easy to see that o; = 2n.
Moreover, if 7 = 0y ...09,, then 7 € UDy,_; and mmp*%%9(7) = n — 1. Thus we have
(2(n — 1))!! choices for 7 by part (2). Hence (z"!) Cy,(x) = (2(n — 1))!.

For (4), note that, if 0 = 01 ... 09,41 € DUsy 1, then oy; always matches MM P(1,0,0,0)
for i = 1,...,n. Thus mmp®%%9(5) > n. Now suppose that ¢ = oy ...0ms1 € DUspiy
and mmp:%%0) (g) = n. It is then easy to see that o1 = 2n+1. Moreover, if 7 = 05 . .. Topy1,
then 7 € UDs, and mmp™®*%%(7) = n. Thus we have (2n — 1)!! choices for 7 by part (1).
Hence (2") Dopi1(x) = (2n — ! for n > 1. O

We can easily explain the coefficients of the highest power of x in each of the polynomials
Aoy (), Bopi1(x), Con(z), and Dy, 41 (x). More precisely, we have the following proposition.

Proposition 2.

=1 " which appears

(1) For allm > 1, the highest power of x that appears in Ay, (x) is x
with coefficient Bo,_1(1).

(2) For all n > 1, the highest power of x that appears in Bany1(x) is x*"1, which
appears with coefficient (2n)Bay,_1(1).

(3) For alln > 1, the highest power of x that appears in Ca, () is x*"~
with coefficient (2n — 1) Ag,_o(1).

(4) For alln > 1, the highest power of x that appears in Day,1(x) is x®, which appears
with coefficient Ay, (1).

2 which appears

Proof. For (1), it is easy to see that mmp:%%0(s) is maximized for a permutation o =
01 ...09, € UDsy, with 0y, = 2n. In such a case mmp(l’o’o’o)(cr) =2n—1and o;...09,_1
can be any element of UDsy, ;.

For (2), it is easy to see that mmp(%%9(5) is maximized for a permutation o =
01...0mp1 € UDgyqq with 09, = 2n + 1. In such a case mmp?%9(g) = 2n — 1. We
then have 2n choices for 09,1 and red(oy ...09,_1) can be any element of UD,,_;. Thus
(52 By 1 (2) = (21) B 1(1).

For (3), it is easy to see that mmp**0(s) is maximized for a permutation o =
01...00 € DUy, with 09,1 = 2n. In such a case mmp:%*0(g) = 2n — 2. We then
have 2n — 1 choices for oy, and red(o; ...09, 2) can be any element of DU, 5. Thus
<.T2n_2> CQn(SU) = (2n — 1)02n72(1) = (277, — 1)142”,2(1)

For (4), it is easy to see that mmp**?(s) is maximized for a permutation o =
01...0my1 € DUppyy with 09,41 = 2n + 1. In such a case mmp%%%(g) = 2n. Then
01 ...09, can be any element of DUs,. Thus (z**) Dy, 1(x) = Ca,(1) = As,(1). O

3.1. Recursions on up-down permutations of even length. By Theorem 2, the lowest
power of x that appears with a non-zero coefficient in Ag,(x) is ™. Next we consider
(x"F) Ay () for fixed k. That is, we let

AQZ,?M =|{oc € UDy, : mmp(l’o’o’o)(a) = n + k}|
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for fixed k > 1. Our goal is to show that A5 = pi(n)(2n—1)!! for some fixed polynomial
pr(n) in n. More precisely, we shall prove the following theorem, where we let

() dp=2x(x—1)---(r—mn+1)if n>1and (z) Lo=1.
Theorem 3. There is a sequence of polynomials po(x), p1(x), ... such that, for all k > 0,
AT = pr(n)(2n — D) for allmn >k + 1.

Moreover, for k > 1, the values pg(n) are defined by the recursion

k n

B2k+1 Boj1(1)27(t — 1) 14 .
_i(t—79—1 1
i) i e > 37 Bl oy

where po(z) = 1.

Proof. We proceed by induction on k. For k = 0, we know by Theorem 2 that A3 =
(2n — 1)!! for all n > 1 so that we may let py(z) = 1.

Now assume that & > 1 and the theorem is true for s < k. That is, assume that for
0 < s < k, there is a polynomial p,(z) such that for n > s+ 1, A;"* = py(n)(2n — 1)L

It is easy to see that, for 0 = o1...09, € UDs,, we have mmp(l’o’o’o)(a) >n+ kif
09; = 2n with j > k + 2, because then 09,04, ...,00%492 as well as 09,11, 1 =0,...,n— 1,
will match the pattern MMP(1,0,0,0) in o. Thus, if mmp®2%9 () = n + k, then 2n €
{092,04,...,004+2}. Now suppose that j < k+ 1 and o9; = 2n. Then we have (22?:;) ways
to choose the elements o7,...,09;_1, and we have By;_;(1) ways to order them. Then we
know that o; matches the marked mesh pattern MM P(1,0,0,0) in o for ¢ odd and for
i €{2,4,...,2j —2}. Hence, we have mmp®000 (ved (o941 ...09,)) =n—j+k—j+ 1.
Thus it follows that, for n > k + 1,

1o
—n - = h=j+1
A=) (29' - 1)BQJ (DA (3:2)
j=1
Now define pi(n) = (’3: i for n > k+ 1. Note that Ag;ig = Bay4+1(1), since for a

permutation 7 = 7y ... Topy2 € UDgio to have mmp090(7) = 2k + 1, it must satisfy

Top+o = 2k + 2, and, hence, we have Byyy1(1) choices for 71 ...7or11. Hence, pp(k + 1) =
Bart1(1)
ey

We may rewrite (3.2) as

pe(n)(2n — DI = (2n — 1)pr(n — 1)(2n — 3)!!

2] 2
(2n —1—j) . ‘
+ Z 2] — 1 Baj 1 (D)pe—j1(n — j)(2n — 25 — DI (3.3)
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Dividing both sides of (3.3) by (2n — 1)!!, we obtain

o BQj—l i1 2n — 2s
3 () ITes )

pe(n) —pu(n — 1) = @) - 1) Pr—j+1(n — j)
7j=2
k .
Byj1(1)27(n —1) |, ;

-y Bl piosln—j = 1)

‘= (27 +1)!
Hence, for n > k 4+ 1, we have
pr(n) —pe(k+1) = > pilt) —pi(t — 1)
t=k+2
Bojir (1)2(t — 1) |
sy Bl
t=k+2 j=1 ‘]

It follows that, for n > k + 1,

n

pe(n) = BQk-H Z Z Byjiq(1 2J t—1) ], . ,j(t _io).

u
(2k+1) = S 2]+1)

This proves (3.1).
Since ps(z) is a polynomial for s < k, it is easy to see that

n

By 1(1)27(t — 1)
3 2j+1( )‘ t-11y (=i —1)
(27 +1)! !
t=k+2
is a polynomial in n for j = 1,..., k. Thus px(n) is a polynomial in n. O

One may use Mathematica and (3.1) to compute the first few expressions for py(n). For
example, we have computed that

po(n) =1,

pi(n) = %(Z),

n(2 + Tn — 14n* + 5n?)
90 ’

pa(n) =

and
n(192 — 478n + 213n? + 227n® — 198n* + 35n°)
5670 '

pa(n) =

3.2. Recursions on up-down permutations of odd length.

Theorem 4. There is a sequence of polynomials qo(x),q1(x), ... such that, for all k > 0,
we have

BortF = qr(n)(2n)!! for all n > k + 1.
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Moreover, for k > 1, the values qi(n) are defined by the recursion

ge(n) = Boj11(1) Z Z Baj1 (1) JTip(2t — 1 - 28)qk,j(t i), (3.4)

”
2]{: j=1 t=k+2 2‘7+1)

where qo(z) = 1.

Proof. We proceed by induction on k. For k = 0, we know by Theorem 2 that B3 ; = (2n)!!
for all n > 1 so that we may let go(z) = 1.

Now assume that £ > 1 and the theorem is true for s < k. That is, assume that, for
0 < s < k, there is a polynomial ¢(z) such that, for n > s+ 1, B5"[7* = ¢,(n)(2n)!!.

We can argue as in Theorem 3 that, if 0 = 0y ...09,11 € UD3, 1 and mmp(l’o’o’o)(a) =
n+ k, then 2n € {09, 04, ...,09%42}. Now suppose that j < k+ 1 and 09; = 2n. Then we
have (2;:) ways to choose the elements o7y, ..., 021, and we have By;_1(1) ways to order
them. Then we know that o; matches the marked mesh pattern MM P(1,0,0,0) in o for
i€{2,4,...,2j—2}U{1,3,...,2n—1}. Hence, we have mmp-%%0 (red (g1 . .. 09, 41)) =
n—7j+k—j+ 1. Thus it follows that, for n > k + 2,

k+1
Briit =2 <2j - 1) Baja (1) By 5T (3.5)
j=1

Now define gx(n) = BQ"“ for n > k + 1. Note that Béiiéyrk = (2k + 2)Bag11(1) since
for a permutation 7 = 7'1 ... Topys € UDgi3 to have mmpt090(7) = 2k + 1, it must
satisfy mor40 = 2k + 3, and, hence, we have 2k + 2 choices for 79,3 and Bog1(1) choices
for 7y ... 7op11. Thus, gp(k+1) = (%gl)igk)ﬁl(l) = 32(’;;)1!(!1)

We may rewrite (3.5) as

i (n)(2n)!! = (2n)gr(n — 1)(2n — 2)!!

S D) g (gt d)ea— 20 (30

Dividing both sides of (3.6) by (2n)!!, we obtain

()~ — 1) = 3o 2B e

Hence, for n > k + 2, we have

n

a(n) = qe(k+1) = > qult) — qu(t — 1)

t=k+2

Z ZBQJ_H 2 H 71(271—28—1)

(27 +1)!

Gs(t—j—1).
t=k+2 j=1
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It follows that, for n > k + 1,

ae(n) = BQk—i—l Z Z Byjya(l H (2n — 25— 1)qk7j(t —ji—1). (3.8)

H
(2k) o= (25 + 1)!

This proves (3.4).
Since gs(x) is a polynomial for s < k, it is easy to see that

N Byn(DITZ (20— 25 — 1)
Z (25 + 1)!

Qr—j(t — 5 —1)
t=k+2

is a polynomial in n for j = 1,..., k. Thus gx(n) is a polynomial in n. 0

One may use Mathematica and (3.4) to compute the first few expressions for gx(n). For
example, we have computed that

%(”) = 17
n®—1
ql(n) = 3 Y
—(n—1)(5n%+n—
i) B2 9)5571 tno8)
(n) 35n8 — 84n® — 193n* + 345n3 + 140n? — 81n + 198
qs\n) = .

5670

3.3. Recursions on down-up permutations. Similar results hold for down-up permu-
tations.

Theorem 5. There are sequences of polynomials ro(z),r1(x),... and so(x), s1(x), ... such
that, for all k > 0, we have

Cym 7 = r(n)(2n — 2)!! for alln > k + 1, (3.9)
and

D3 MR = s (n)(2n — DI for alln > k + 1. (3.10)

Proof. By Theorem 2, we have C5""' = (2n — 2)!l and D5", = (2n — 1)!! for all n > 1.
Thus we may let ro(z) = so(x) = 1.

For a permutation o0 = oy ... 09, € DU,, to have mmp(l’o’o’o)(cr) = n—1+k, we must have
2n € {01,03,...,09+1}. If 09;41 = 2n where j € {0,1,...,k}, then there are (2’;;1) ways
to pick the elements of oy ... 0y; and Cy;(1) ways to order them. Then red(ogj42...02,) €
UDs(n—j-1)4+1 and it must have n — 14k — (25) matches of MM P(1,0,0,0). Thus we have

B:(n—j—l)-f—k—j

Sn—j-1)41  Ways to order 09542 . ..09,. It follows that, for n > £ + 1,

e 2n — [
Y G X @1

J=0
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But Cy;(1) = Ag;(1) and By~ 1757 = (2(n—j—1))!lgx_;(n—j—1). Thus, for n > k+1,

we have

k
e (2” - 1)A2j<1><2<n—j gy (n— - 1)

AN

k J n — 48
= (2n — 2)!!2 Az(1) 5(123,2)! t1-2 )(Z(n — 7= DMgp—j(n—j —1).

Thus C3;." % = (2n — 2)!lr(n), where

iy = S WAL BRE L=, ) (3.12)

A similar argument shows that, for n > k + 1,

k

Dyt = Z (2 .)023'(1)142(11]5 7.
— \2j
j
Since A;(Z:ﬁ;rk_j = (2(n —j) — )!lpy—;(n — j), we obtain

Dzt =3 (30) Au 02— ) ~ Dl =)

=0
L A
A (VTP (2n 4+ 2 — 2s ,
=@2n -1y 2 () ][y , )pk—j(n —J)-
Thus D3, HF = (2n — 2)!s4(n), where
L A
A (VTP (2n 4+ 2 — 2s _
Sk<n) — 2]( )Hs—l( )pk—j<n o ]) (313>

0

One may use (3.12) and (3.13) to compute 7(n) and si(n) for the first few values of k.
For example, we have

ro(n) =1,

on?+2n—3
nin) ==

20n* 4 24n3 — 128n% — 12n + 45
ra(n) =

360 ’

and
~280n° 4 168n° — 4820n" + 3168n° + 8734n° — 6702n + 2835

45360

r3(n)
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Similarly, we have

so(n) =1,

n(n + 2
o) = 22

n(5n® + 16n% — 68n + 47)
So(n) = ,

90
and

n(35n5 + 126n* — 340n3 — 417n? + 656n — 60)

s3(n) = :

2760

4. CONCLUSION

In this paper, we have shown that one can find the generating functions for the distri-
bution of the quadrant marked mesh patterns MM P(1,0,0,0), MMP(0,1,0,0),
MMP(0,0,1,0),and MM P(0,0,0,1) in both up-down and down-up permutations by prov-
ing simple recursions based on the position of the largest element in a permutation. As
noted in Subsection 2.5, these recursions of simple type no longer hold for the distribution
of the quadrant marked mesh patterns M M P(k,0,0,0), MM P(0,k,0,0), MMP(0,0,k,0),
and MMP(0,0,0,k) in both up-down and down-up permutations when k& > 2. However,
our results allow us to derive generating functions for the distribution of other quadrant
marked mesh patterns in up-down and down-up permutations. More specifically, for any
a,b,c,d € {0} UN, let

2n
Alabed) (g gy — 1 +Z t Z e (o)
n>1 ) O'EUDQ
(a,b,c,d) t2n+1 mmp(l,O,m,o)(o)
Bt lat) =2 o 2 ’
n>0 ’ c€UD2p41
2n
Clobed (g f) — 1+Z l Z D (o)
O’EDUQn
and
(a,b,c,d) t2n+1 mmp(®¢d (5)
n>0 ) c€DUzp 41

Then our results allow us to find the distribution of MM P(,0,0,0), MMP(0,0,0,0),
MMP(0,0,0,0), and MMP(0,0,0,0) over up-down and down-up permutations. More
precisely, it is clear that for any 0 = o1...0, € S,,, we have

mmp(l’o’o’o)(cr) + mmp(@’o’o’o)(a) =n, (4.1)
since any o; either matches MM P(1,0,0,0) or MM P((,0,0,0) in o but cannot match both
MMP(1,0,0,0) and MMP($,0,0,0) in 0. For any set A C S, let A" = {o" : 0 € A},
Ac={o¢:0e€ A}, and A ={(0"):0 € A}. Then, clearly,

Z xmmp(@,0,0,0)((7 Z mmp(0:0:0:0) (& Z mmp(©:0:0:0) (0) _ Z xmmp(o,o,m,o)(o)

g€eA oEA” geAc (ceAre
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It then follows from (1.1) and (4.1) that
Alte, é) = AP0 (¢ 2y = 0O (4 1) = OO0 (1 1) = ACOBD (1 Y.
Using the fact that

0 €UDgpy1 <= 0" € UDgpy1 < 0° € DUy, < (0")° € DUspy1, (4.2)
it follows that
B(tz, é) = OO0 (4 z) = BOAOO) (¢ 1) = DOOOD (4 1) = DOOBD (4 1),
Similar reasoning will show that
C(tx, i) = CO000 (4 1) = AODOO (g 1) = ACOOD (1 o) = GO0 )

and
1
D(tl»’ _) — D(wvovovo) (t’ l‘) p— D(vavovo) (t’ ZE) — B(Ovovovw) (t’ x) — B(Ovovwvo) (t’ x)
x

Moreover, our techniques can be used to study the distribution of other quadrant marked
mesh patterns in up-down and down-up permutations. For example, in [8], we have proved
similar recursions based on the position of the smallest element in a permutation to study
the distribution of the quadrant marked mesh patterns MM P(1,0,0,0), MMP(0,1,0,0),
MMP(9,0,1,0), and MMP(0,0,0,1) in both up-down and down-up permutations. In this
case, the recursions are a bit more subtle, and the corresponding generating functions are
not always as simple as in the results of this paper. For example, we have shown that

4(1.0,0,0) (t,z) = (sec(t)),
sin(t) cos(t)(1 — x + sec(t))
x4 (1 — ) cos(t)

1 1+2 3 . 1 242 3 |
X ((1 —x) o F (i’T; 53 8in (t2)) +1x o Fy <§,T;§;sm (tz))) ,

where o Fy(a,b;c; 2) = Zzo:()%% and (z), = v(x —1)---(x —n+ 1) if n > 1 and
(ZL‘)Q =1.

There are several directions for further research that are suggested by the results of this
paper. First, one may study the distribution in up-down and down-up permutations of other
quadrant marked meshed patterns MM P(a,b,c,d) in the case where a,b,c,d € {0,0,1}.
More generally, one may study the distribution of quadrant marked mesh patterns on other
classes of pattern-restricted permutations such as 2-stack-sortable permutations or vexillary
permutations (see [6] for definitions of these) and many other permutation classes having
nice properties. Finally, we conjecture that the polynomials As,(x), Bayi1(x), Con(x), and
Dy, 1(z) are unimodal for all n > 1. This is certainly true for small values of n.

B(170,®70) (t’ ZE) —
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