

Semi-skyline augmented fillings and a non-symmetric Cauchy identity in type A

Aram Emami PhD student of Coimbra University Supervisor: Olga Azenhas

March 26, 2012

- Cauchy identity.
- Non-symmetric Cauchy identity.
- Problem.
- Semi-skyline augment filling.
- Main theorem.

Cauchy identity

$$\prod_{\substack{(i,j)\in[n]\times[n]}} (1-x_iy_j)^{-1} = \sum_{\lambda \text{ partition } \in \mathbb{N}^n} s_\lambda(x)s_\lambda(y).$$
$$(x_1,\ldots,x_n), y = (y_1,\ldots,y_n)$$

Definition

x =

Let λ be a partition in \mathbb{N}^n . The Schur polynomial s_{λ} of shape λ in the variables $x = (x_1, x_2, \dots, x_n)$ is

$$s_{\lambda}(x) = \sum_{T} x^{T},$$

summed over all SSYTs of shape λ with entries in the alphabet [n].

$$\prod_{\substack{(i,j)\in[n]\times[n]}} (1-x_iy_j)^{-1} = \sum_{\substack{(P,Q)SSYT\\sh(P)=sh(Q)\\cont(P),cont(Q)\in\mathbb{N}^n}} x^P y^Q = \sum_{\substack{\lambda \text{ partition } \in\mathbb{N}^n\\s_\lambda(x)s_\lambda(y).}$$

$$\prod_{(i,j)\in dg(n,n-1,...,1)} (1-x_iy_j)^{-1} = \prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{(P,Q)\in \mathcal{F}'} x^P y^Q.$$

 $\mathcal{F}' \subseteq \{(P,Q)SSYT, sh(P) = sh(Q), cont(P), cont(Q) \in \mathbb{N}^n\}.$ We want to characterize \mathcal{F}' .

A non-symmetric Cauchy identity

Amy M. Fu, Alain Lascoux (2009) have proved in a algebraic way, using Demazure operators in type A:

$$\prod_{(i,j)\in dg(n,n-1,...,1)} (1-x_iy_j)^{-1} = \prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{\nu\in\mathbb{N}^n} \widehat{K}_{\nu}(x)K_{\omega\nu}(y).$$

Demazure operator (isobaric divided difference) in type A

$$\pi_i: f \mapsto \pi_i(f) := rac{x_i f - x_{i+1} s_i(f)}{x_i - x_{i+1}}, \quad 1 \le i < n, \ \ \widehat{\pi}_i := \pi_i - 1.$$

The Demazure character (key polynomials) $K_{\sigma\lambda}$ corresponding to a partition λ and reduced decomposition of a permutation $\sigma = s_{i_1} s_{i_2} \dots s_{i_k}$ is

$$K_{\sigma\lambda} = \pi_{i_1}\pi_{i_2}\ldots\pi_{i_k}(x^{\lambda}).$$

 $\widehat{K}_{\sigma\lambda}$ corresponding to a partition λ and reduced decomposition of a permutation $\sigma = s_{i_1}s_{i_2}\dots s_{i_k}$ is

$$\widehat{K}_{\sigma\lambda} = \widehat{\pi}_{i_1}\widehat{\pi}_{i_2}\ldots\widehat{\pi}_{i_k}(x^{\lambda}).$$

Lascoux's combinatorial interpretation using double crystal graphs.

Lascoux has used the crystal version of RSK and the combinatorial interpretation of Demazure operators in terms of crystal operators.

$$\prod_{i+j\leq n+1}(1-x_iy_j)^{-1}=\sum_{
u\in\mathbb{N}^n}\widehat{K}_
u(x)K_{\omega
u}(y).$$

Double crystal graphs.(2003)

Lascoux's combinatorial interpretation using double crystal graphs.

Lascoux has used the crystal version of RSK and the combinatorial interpretation of Demazure operators in terms of crystal operators.

$$\prod_{i+j\leq n+1}(1-x_iy_j)^{-1}=\sum_{
u\in\mathbb{N}^n}\widehat{K}_
u(x)K_{\omega
u}(y).$$

Double crystal graphs.(2003)

 $\prod_{(i,j)\in dg(n,n-1,\dots,1)} (1-x_i y_j)^{-1} = \prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum_{(P,Q)\in \mathcal{F}'} x^P y^Q.$

 $\mathcal{F}' \subseteq \{(P,Q)SSYT, sh(P) = sh(Q), cont(P), cont(Q) \in \mathbb{N}^n\}.$

We want to characterize \mathcal{F}' in terms of semi-skyline augmented filling.

Lascoux's combinatorial interpretation using double crystal graphs.

Lascoux has used the crystal version of RSK and the combinatorial interpretation of Demazure operators in terms of crystal operators.

$$\prod_{i+j\leq n+1}(1-x_iy_j)^{-1}=\sum_{\nu\in\mathbb{N}^n}\widehat{K}_\nu(x)K_{\omega\nu}(y).$$

Double crystal graphs.(2003)

$$\prod_{(i,j)\in dg(n,n-1,\dots,1)} (1-x_i y_j)^{-1} = \prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum_{(P,Q)\in \mathcal{F}'} x^P y^Q.$$

 $\mathcal{F}' \subseteq \{(P,Q)SSYT, sh(P) = sh(Q), cont(P), cont(Q) \in \mathbb{N}^n\}.$

We want to characterize \mathcal{F}' in terms of semi-skyline augmented filling.

Semi-skyline augmented filling. (Haglund, Haiman, Loehr. 2005)

Let $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n) \in \mathbb{N}^n$.

The *column diagram* of γ is a figure $dg'(\gamma)$ consisting of n columns, with γ_i boxes in column i.

The augmented diagram of γ is a column diagram with a basement consisting of the numbers 1 through n in strictly increasing order, denoted by $\widehat{dg}(\gamma)$.

The column diagram and augmented diagram for $\gamma = (1, 0, 3, 0, 1, 2, 0)$ are

An inversion triple of type 1.

The triple $\{a, b, c\}$ is an inversion triple of type 1 if and only if after standardization, the ordering from smallest to largest induces a counterclockwise orientation.

An inversion triple of type 2.

The triple $\{a, b, c\}$ is an inversion triple of type 2 if and only if after standardization, the ordering from smallest to largest induces a clockwise orientation.

SSAF

A semi-skyline augmented filling (SSAF) is any augmented filling F that is weakly decreasing along columns, from bottom to top, and every triple is an inversion triple.

An analogue of Schensted row insertion in SSAF.

An analogue of Schensted row insertion in SSAF.																	
3	\rightarrow	1		1				1		1				1			
		2	1			2		3	1			1		3	2		
		3	4		6			3	4		6			3	4		6
1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
		F						F						F			
1	2	1	<u>3</u>	4	6	1	2	1	3	<u>4</u>	6	1	2	1	3	4	<u>6</u>

Example

$$T = \begin{array}{cccc} 4 \\ T = \begin{array}{ccccc} 2 & 5 \\ 1 & 3 & 3 \end{array} \rightarrow col(T) = 421533$$

Example

Example

2 3 4 5

Example

Example

Example

Example

Example

Example

.

Right key of SSYT (S.Mason 2009)

$$P(SSYT) \quad \underbrace{\Psi} \quad F(SSAF),$$
$$k_+(P) = key(sh(F)).$$

Remark

The original definition of right key of a tableau is due to Lascoux and Schützenberger (1988).

An analogue of the RSK for semi-skyline augmented filling. (S.Mason 2008)

Bijection Φ between words in commutative biletters and pairs (*F*, *G*) of semi-skyline augmented fillings whose shapes are rearrangements of the same partition.

$$w_{A} = \begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 2 & 2 & 1 & 1 \end{pmatrix} \longrightarrow \begin{bmatrix} 1 \\ 1 & 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$w_{A} = \begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 2 & 2 & 1 & 1 \end{pmatrix} \longrightarrow \boxed{1}_{1 & 2 & 3} \xrightarrow{3}_{F} \qquad \boxed{3}_{F} \qquad \boxed{3}_{F}$$

March 26, 2012 15 / 29

March 26, 2012 15 / 29

Aram Emami PhD student of Coimbra Univ<mark>Semi-skyline augmented fillings and a non-s</mark>y

March 26, 2012 15 / 29

Aram Emami PhD student of Coimbra UnivSemi-skyline augmented fillings and a non-sy

March 26, 2012 15 / 29

Cauchy identity in terms of SSAF

$$\prod_{(i,j)\in[n]\times[n]} (1-x_iy_j)^{-1} = \sum_{\substack{(F,G)SSAF\\sh(F)^+=sh(G)^+\\cont(F),cont(G)\in\mathbb{N}^n}} x^F y^G$$

Non-symmetric Cauchy kernel

$$\prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum_{(F,G)\in\mathcal{F}} x^F y^G$$
$$\mathcal{F} \subseteq \{(F,G)SSAF, sh(F)^+ = sh(G)^+, cont(F), cont(G) \in \mathbb{N}^n\}.$$
Non-symmetric Cauchy kernel in terms of SSYT

$$\prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum_{(P,Q)\in\mathcal{F}'} x^P y^Q = \sum_{(F,G)\in\mathcal{F}} x^F y^G$$
$$\mathcal{F}' \subseteq \{(P,Q)SSYT, \ sh(P) = sh(Q), \ cont(P), cont(Q) \in \mathbb{N}^n\}.$$
$$\mathcal{F} \subseteq \{(F,G)SSAF, \ sh(F)^+ = sh(G)^+, \ cont(F), cont(G) \in \mathbb{N}^n\}.$$

March 26, 2012 18 / 29

Theorem (E.)

Let A be a biword in lexicographic order, let $\Phi(A) = (F, G)$. For each biletter $\begin{pmatrix} i \\ j \end{pmatrix}$ in A we have $i + j \le n + 1$ if and only if $key(sh(G)) \le key(\omega sh(F))$.

Corollary

Let A be a biword in lexicographic order, let $A \xrightarrow{RSK} (P, Q)$. For each biletter $\begin{pmatrix} i \\ j \end{pmatrix}$ in A we have $i + j \le n + 1$ if and only if $k_+(Q) \le evac(k_+(P))$.

$$k_+(Q) \leq evac(k_+(P)) \iff key(sh(G)) \leq key(\omega sh(F)).$$

$$\prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum_{(F,G)\in\mathcal{F}} x^F y^G = \sum_{\nu\in\mathbb{N}^n} \sum_{\substack{(F,G)\in SSAF\\sh(F)=\nu\\sh(G)\leq\omega\nu}} x^F y^G.$$

$$\prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{(P,Q)\in\mathcal{F}'} x^P y^Q = \sum_{\nu\in\mathbb{N}^n} \sum_{\substack{(P,Q)\in SSYT\\sh(P)=sh(Q)=\nu^+\\K_+(P)=key(\nu)\\K_+(Q)=key(\beta)\\\beta\leq\omega\nu}} x^P y^Q.$$

Or the shorter way:

$$\prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{\substack{(P,Q)\in SSYT\\K_+(Q)\leq evac(K_+(P))\\cont(P),cont(Q)\in \mathbb{N}^n}} x^P y^Q.$$

$$\prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{(F,G)\in\mathcal{F}} x^F y^G = \sum_{\nu\in\mathbb{N}^n} \sum_{\substack{(F,G)\in SSAF \\ sh(F)=\nu \\ sh(G)\leq\omega\nu}} x^F y^G.$$
$$\prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{\nu\in\mathbb{N}^n} \sum_{\substack{(P,Q)\in SSYT \\ sh(P)=sh(Q)=\nu^+ \\ K_+(P)=sh(Q)=\nu^+ \\ K_+(Q)=key(\beta) \\ \beta\leq\omega\nu}} x^P y^Q.$$
$$\prod_{i+j\leq n+1} (1-x_iy_j)^{-1} = \sum_{\nu\in\mathbb{N}^n} \widehat{K}_{\nu}(x)K_{\omega\nu}(y).$$

Aram Emami PhD student of Coimbra Univ<mark>Semi-skyline augmented fillings and a non-s</mark>

Combinatorial structure for key polynomials

and

$$\begin{aligned} \mathcal{K}_{\nu}(x) &= \sum_{\substack{P \text{ } SSYT\\ sh(P) = \nu^{+}\\ \mathcal{K}_{+}(P) \leq key(\nu)}} x^{P} = \sum_{\substack{F \text{ } SSAF\\ sh(F) \leq \nu}} x^{F}. \\ \widehat{\mathcal{K}}_{\nu}(x) &= \sum_{\substack{P \text{ } SSYT\\ sh(P) = \nu^{+}\\ \mathcal{K}_{+}(P) = key(\nu)}} x^{P} = \sum_{\substack{F \text{ } SSAF\\ sh(F) = \nu}} x^{F}. \end{aligned}$$

Lascoux and Schützenberger have studied the combinatorial structure of Key polynomials in terms of SSYT in (1988) and S.Mason has studied it in terms of SSAF in (2009).

Theorem (E.)

Let A be a biword in lexicographic order, let $\Phi(A) = (F, G)$. For each biletter $\begin{pmatrix} i \\ j \end{pmatrix}$ in A we have $i + j \le n + 1$ if and only if $key(sh(G)) \le key(\omega sh(F))$.

sketch of proof:

By induction on the number of biletters in A and using lemma below:

Lemma

Given a partition λ , let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ be two rearrangements of λ , such that $key(\beta) \leq key(\alpha)$. Let $k, k' \in \{1, \dots, n\}$ such that $\beta_{k'}$ is the first entry of β such that $\alpha_k = \beta_{k'}$. If $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_k + 1, \dots, \alpha_n)$ and $\beta' = (\beta_1, \beta_2, \dots, \beta_{k'} + 1, \dots, \beta_n)$, then $key(\beta') \leq key(\alpha')$

Work in progress with R. Mamede

$$\begin{split} \Omega^{A} &:= \frac{1}{\prod_{i+j \le n+1} (1 - x_{i} y_{j})} = \sum_{\nu \in \mathbb{N}^{n}} \widehat{K}_{\nu}(x) K_{\omega\nu}(y), \\ \Omega^{B} &:= \frac{\prod_{1 \le i < j \le n} (1 - x_{i} x_{j}) \prod_{i=1}^{n} (1 + x_{i})}{\prod_{i,j=1}^{n} (1 - x_{i} y_{j}) \prod_{i=1}^{n} \prod_{j=i}^{n} (1 - \frac{x_{i}}{y_{j}})} = \sum_{\nu \in \mathbb{N}^{n}} \widehat{K}_{\nu}(x) K_{-\nu}^{B}(y), \\ \Omega^{C} &:= \frac{\prod_{1 \le i < j \le n} (1 - x_{i} y_{j}) \prod_{i=1}^{n} \prod_{j=i}^{n} (1 - \frac{x_{i}}{y_{j}})}{\prod_{i,j=1}^{n} (1 - x_{i} y_{j}) \prod_{i=1}^{n} \prod_{j=i}^{n} (1 - \frac{x_{i}}{y_{j}})} = \sum_{\nu \in \mathbb{N}^{n}} \widehat{K}_{\nu}(x) K_{-\nu}^{C}(y), \end{split}$$

- Amy M. Fu, Alain Lascoux, Non-symmetric Cauchy kernels for the classical groups. J. Comb. Theory, Ser. A 116(4): 903-917 (2009)
- A. Lascoux and M. P. Schützenberger, Keys and standard bases, in Invariant Theory and Tableaux, (Minneapolis MN, 1988) I.M.A. Vol. Math. Appl. 19, Springer Verlag, New York, 125144.
- A. Lascoux, Double crystal graphs. in: Studies in Memory of Issai Schur, in: Progr. Math. vol. 210, Birkhuse, 2003, pp. 95-114.
- J.Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. Jour. Amer. Math. Soc., 18:735-761, 2005.
- S. Mason, An explicit construction of type A Demazure atoms. J. Algebra Comb. 29, (2009), 295-313
- S. Mason, A decomposition of Schur functions and an analogue of the Robinson-Schensted- Knuth Algorithm. Sem. Lothar. Combin. 57 (2008), B57e.

THANK YOU

Proof by Lascoux

Let
$$\Xi_n := \sum_{\sigma \in S_n} \widehat{\pi}^x_{\sigma} \pi^y_{\omega \sigma}$$
.

$$\equiv_n \frac{1}{(1-x_1y_1)(1-x_1x_2y_1y_2)\dots(1-x_1\dots x_ny_1\dots y_n)} = \frac{1}{\prod_{i+j\leq n+1}(1-x_iy_j)}$$

as

$$\frac{1}{(1-x_1y_1)(1-x_1x_2y_1y_2)\dots(1-x_1\dots x_ny_1\dots y_n)}$$

is the generating function of dominant monomials $x^{\lambda}y^{\lambda}$ in n variables x_1y_1, \ldots, x_ny_n ,

$$\prod_{i+j\leq n+1} (1-x_i y_j)^{-1} = \sum \Xi_n x^\lambda y^\lambda = \sum_{\sigma\in S_n} \hat{\pi}^x_\sigma(x^\lambda) \pi^y_{\omega\sigma}(y^\lambda) = \sum_{\nu\in\mathbb{N}^n} \widehat{K}_\nu(x) K_{\omega\nu}(y)$$