Bijective proof of the Postnikov formula

THOMAS KRAJEWSKI Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr

"Séminaire Lotharingien de Combinatoire" Domaine Saint Jacques, Ottrott March, 2012

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

$$\sum_{\text{plane binary trees}} \prod_{v} \left(1 + \frac{1}{h_v} \right) = (n+1)^{n-1} \frac{2^n}{n!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

$$\sum_{\substack{\text{plane binary trees}\\ \text{of order } n}} \prod_{v} \left(1 + \frac{1}{h_v} \right) = (n+1)^{n-1} \frac{2^n}{n!}$$

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\sum_{\substack{\text{plane binary trees}\\ \text{of order } n}} \prod_{v} \left(1 + \frac{1}{h_v} \right) = (n+1)^{n-1} \frac{2^n}{n!}$$

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

introduced by Postnikov in his study of the volume of permutohedra

$$\sum_{\text{plane binary trees}\atop of order n} \prod_{v} \left(1 + \frac{1}{h_v} \right) = (n+1)^{n-1} \frac{2^n}{n!}$$

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

- introduced by Postnikov in his study of the volume of permutohedra
- algebraic proofs by Hivert, Novelli and Thibon

$$\sum_{\substack{\text{plane binary trees}\\ \text{of order } n}} \prod_{v} \left(1 + \frac{1}{h_v} \right) = (n+1)^{n-1} \frac{2^n}{n!}$$

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

introduced by Postnikov in his study of the volume of permutohedra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- algebraic proofs by Hivert, Novelli and Thibon
- generalizations by Guo-Niu Han

$$\sum_{\text{plane binary trees}\atop{\text{of order }n}} \prod_{v} \left(1 + \frac{1}{h_v}\right) = (n+1)^{n-1} \frac{2^n}{n!}$$

with hook length $h_v = \#\{\text{vertices below } v \text{ (included)}\}$

- introduced by Postnikov in his study of the volume of permutohedra
- algebraic proofs by Hivert, Novelli and Thibon
- generalizations by Guo-Niu Han
- combinatorial proofs by Chen and Yang and Seo

Hook length formula for trees

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hook length formula for trees $\sum_{\substack{\text{plane binary trees}\\ \text{of order } n}} \frac{n!}{\prod_{v \text{ vertex}} h_v} \prod_{\substack{v \text{ vertex}\\ \text{but root}}} (1+h_v) = 2^n (n+1)^{n-2}$

• Oriented trees with labels on the edges (Cayley's formula)

 $2^{n}(n+1)^{n-2} == \#\{\text{oriented trees with } n \text{ labeled edges}\}$ $(n+1)^{n-1} \text{ trees with } n+1 \text{ labeled vertices}$ $2^{n} \text{ orientations of the edges}$

Hook length formula for trees

• Oriented trees with labels on the edges (Cayley's formula)

 $2^{n}(n+1)^{n-2} == \#\{\text{oriented trees with } n \text{ labeled edges}\}$

 $(n+1)^{n-1}$ trees with n+1 labeled vertices

 2^n orientations of the edges

Decreasing trees and permutations (see next slide)

$$\frac{n!}{\prod h_v} = \# \{ \text{decreasing binary trees of order } n \} \\ = \# \{ \text{permutations of } \{1, 2, \dots, n \} \}$$

Hook length formula for trees

• Oriented trees with labels on the edges (Cayley's formula)

 $2^{n}(n+1)^{n-2} == \#\{\text{oriented trees with } n \text{ labeled edges}\}$

 $(n+1)^{n-1}$ trees with n+1 labeled vertices

 2^n orientations of the edges

Decreasing trees and permutations (see next slide)

$$\frac{n!}{\prod h_v} = \# \{ \text{decreasing binary trees of order } n \} \\ = \# \{ \text{permutations of } \{1, 2, \dots, n \} \}$$

• Problem: find a combinatorial interpretation of

$$\prod_{v \text{ vertex}\atopbut \text{ root}} (1+h_v)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recursive definition starting with the interval $\{1, \ldots, n\}$

Recursive definition starting with the interval $\{1, \ldots, n\}$

• for any interval $\{i, i + 1, ..., k, ..., j\}$ of $\{1, ..., n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval

Recursive definition starting with the interval $\{1, \ldots, n\}$

- for any interval $\{i, i + 1, ..., k, ..., j\}$ of $\{1, ..., n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval
- proceed similarly with the intervals $\{i, \ldots, k-1\}$ and $\{k+1, \ldots, j\}$ associated to the left and right subtrees

Recursive definition starting with the interval $\{1, \ldots, n\}$

- for any interval $\{i, i + 1, ..., k, ..., j\}$ of $\{1, ..., n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval
- proceed similarly with the intervals $\{i, \ldots, k-1\}$ and $\{k+1, \ldots, j\}$ associated to the left and right subtrees

 \bullet decreasing binary trees \leftrightarrow oriented edge labeled trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right

• leaves of $t \leftrightarrow$ vertices of T

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

$$\prod_{\substack{v \text{ vertex} \\ \text{but root}}} \underbrace{(1+h_v)}_{\text{but root}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

$$\prod_{\substack{v \text{ vertex} \\ \text{but root}}} \underbrace{(1+h_v)}_{\text{but root}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$$

- \bullet decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

$$\prod_{v \text{ vertex}} \underbrace{(1+h_v)}_{\text{but root}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$$

▲□▶.▲□▶ ▲□▶ ▲□▶ □ のQ@

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

 $\prod_{\substack{v \text{ vertex}} \\ \text{int norm}} \underbrace{(1+h_v)}_{\text{int norm}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

 $\prod_{\substack{v \text{ vertex}}\\ \text{ where }} \underbrace{(1+h_v)}_{\text{ where }} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of \mathcal{T} oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

 $\prod_{\substack{v \text{ vertex}}\\ \text{ but root}} \underbrace{(1+h_v)}_{\text{ but root}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

 $\prod_{\substack{v \text{ vertex}}\\ \text{int norm}} \underbrace{(1+h_v)}_{\text{int norm}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T

 $\prod_{\substack{v \text{ vertex}}\\ \text{int norm}} \underbrace{(1+h_v)}_{\text{int norm}} = \# \left\{ \text{for every } v \text{ choice of a leaf in the left subtree} \right\}$

A more complicated example

permutation

<□ > < @ > < E > < E > E のQ @

permutation

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$

permutation

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$

 \leftrightarrow

permutation

pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$

 \leftrightarrow

permutation σ of $\{1, \ldots, n\}$ and for every k an interval l_k such that $\max_{l_k} \sigma = \sigma(k)$

permutation

pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$

$$\leftrightarrow$$

permutation σ of $\{1, \ldots, n\}$ and for every k an interval l_k such that $\max_{l_k} \sigma = \sigma(k)$

leaves	vertex	interval
(a, d)	4	$\{1, 2, 3\}$
(c, e)	3	{3,4}
(c, d)	1	{3}
(<i>a</i> , <i>e</i>)	4	$\{1, 2, 3, 4\}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Combinatorial interpretation of the Postnikov hook length formula

$$\underbrace{\#\left\{\begin{array}{l} \text{permutation } \sigma \text{ of } \{1, \dots, n\} \\ \text{and for every } k \text{ an interval } I_k \\ \text{such that } \max_{l_k} \sigma = \sigma(k) \\ \hline I_k \\ \hline \prod h_v \prod_{\text{except root}} (1+h_v) \end{array}\right\}}_{\frac{n!}{\prod h_v} \prod_{\text{except root}} (1+h_v)} = \underbrace{\#\left\{\begin{array}{l} \text{oriented trees with} \\ n \text{ labelled edges} \\ 2^n(n+1)^{n-2} \end{array}\right\}}_{2^n(n+1)^{n-2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combinatorial interpretation of the Postnikov hook length formula

$$\underbrace{\#\left\{\begin{array}{l} \text{permutation } \sigma \text{ of } \{1, \dots, n\} \\ \text{and for every } k \text{ an interval } I_k \\ \text{such that } \max_{l_k} \sigma = \sigma(k) \end{array}\right\}}_{\frac{n!}{\prod h_v} \prod_{\text{except root}} (1+h_v)} = \underbrace{\#\left\{\begin{array}{l} \text{oriented trees with} \\ n \text{ labelled edges} \end{array}\right\}}_{2^n(n+1)^{n-2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Generating function of connected edge labeled oriented graphs

 $s^{e(\gamma)} \chi^{v(\gamma)} \lambda^{e(\gamma)-v(\gamma)+1}$

 $e(\gamma)!$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$F(s, x, \lambda) =$$

 $\sum_{\substack{\gamma \text{ connected oriented graph}\\ \text{with labeled edges}}}$

with $e(\gamma) = #\{\text{edges of } \gamma\}$ and $v(\gamma) = #\{\text{vertices of } \gamma\}$

Generating function of connected edge labeled oriented graphs

$$F(s, x, \lambda) =$$

 γ connected oriented graph with labeled edges

$$\frac{e^{(\gamma)} \chi^{\nu(\gamma)} \lambda^{e(\gamma) - \nu(\gamma) + 1}}{e(\gamma)!}$$

with
$$e(\gamma) = #\{ edges of \gamma \}$$
 and $v(\gamma) = #\{ vertices of \gamma \}$

Addition of an edge

Differential equation

$$\frac{\partial F}{\partial s} = \left(x\frac{\partial F}{\partial x}\right)^2 + \lambda x \frac{\partial}{\partial x} \left(x\frac{\partial F}{\partial x}\right)$$

Graphical intepretation

$$\sum_{\substack{\text{plane unary-binary trees}\\ \text{of order }n}} \frac{n!}{\prod_{v \text{ vertex}} (k_v + l_v)} \prod_{v \text{ bivalent vertex}} (1 + k_v) \prod_{v \text{ univalent vertex}} (1 + k_v)^2$$

$$= \#\{ \text{ connected and oriented graphs with } n \text{ labeled edges} \}$$
with
$$k_v = \#\{\text{bivalent vertices below } v \text{ (included)} \}$$

$$k_v = \#\{\text{univalent vertices below } v \text{ (included)} \}$$

(ロ)、(型)、(E)、(E)、 E) のQの

$$\sum_{\substack{\text{plane unary-binary trees of order n}}} \frac{n!}{\prod_{v \text{ vertex}} (k_v + l_v)} \prod_{v \text{ bivalent vertex but root}} (1 + k_v) \prod_{v \text{ univalent vertex}} (1 + k_v)^2$$

$$= \#\{ \text{ connected and oriented graphs with } n \text{ labeled edges} \}$$
with $k_v = \#\{\text{bivalent vertices below } v \text{ (included)} \}$

$$l_v = \#\{\text{univalent vertices below } v \text{ (included)} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\rightarrow$$
 \bigcirc

$$\sum_{\substack{\text{plane unary-binary trees}\\ \text{of order }n}} \frac{n!}{\prod_{v \text{ vertex}} (k_v + l_v)} \prod_{v \text{ bivalent vertex}} (1 + k_v) \prod_{v \text{ univalent vertex}} (1 + k_v)^2$$

$$= \#\{ \text{ connected and oriented graphs with } n \text{ labeled edges} \}$$
with
$$k_v = \#\{\text{bivalent vertices below } v \text{ (included)} \}$$

$$l_v = \#\{\text{univalent vertices below } v \text{ (included)} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{array}{c} \bullet \rightarrow \bigcirc \\ 2 & \bullet \rightarrow 4 \end{array}$$

$$\sum_{\substack{\text{plane unary-binary trees}\\ \text{of order } n}} \frac{n!}{\prod_{v \text{ vertex}} (k_v + l_v)} \prod_{v \text{ bivalent vertex}} (1 + k_v) \prod_{v \text{ univalent vertex}} (1 + k_v)^2$$

$$= \#\{ \text{ connected and oriented graphs with } n \text{ labeled edges} \}$$
with
$$k_v = \#\{ \text{bivalent vertices below } v \text{ (included)} \}$$

$$l_v = \#\{ \text{ univalent vertices below } v \text{ (included)} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{\substack{\text{plane unary-binary tree \\ \text{of order } n}}} \frac{n!}{\prod_{\substack{v \text{ vertex}}} (k_v + l_v)} \prod_{\substack{v \text{ bivlent vertex}}} (1 + k_v) \prod_{\substack{v \text{ univalent vertex}}} (1 + k_v)^2$$

$$= \#\{ \text{ connected and oriented graphs with } n \text{ labeled edges} \}$$
with
$$k_v = \#\{\text{bivalent vertices below } v \text{ (included)}\}$$

$$\downarrow \rightarrow \bigcirc$$

$$2 \not \rightarrow 4 \quad \bullet \bullet \bullet$$

$$2 \not \rightarrow 2 \quad \bullet \bigcirc$$

$$\downarrow \rightarrow 2 \quad \bullet \bigcirc$$

$$\downarrow \rightarrow 2 \quad \bullet \bigcirc$$

もってい 山 くばっ 人間々 人口々

• edge attached to different connected components

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\rightarrow \prod (1+k_{\nu})$$

bivalent except root

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

bivalent except root

• edge attached to the same connected component

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\rightarrow \prod (1+k_v)^2$$

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

bivalent except root

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

univalent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

• edge attached to different connected components

$$\rightarrow \prod (1+k_{v})$$

bivalent except root

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

univalent

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

• edge attached to different connected components

$$\rightarrow \prod (1+k_{v})$$

bivalent except root

• edge attached to the same connected component

$$\rightarrow \prod (1+k_{\nu})^2$$

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

bivalent except root

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

univalent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• edge attached to different connected components

$$\rightarrow \prod (1+k_v)$$

• edge attached to the same connected component

$$\rightarrow \prod (1+k_v)^2$$

univalent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A more complicated example

