Bijective proof of the Postnikov formula

Thomas Krajewski
Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr
"Séminaire Lotharingien de Combinatoire"
Domaine Saint Jacques, Ottrott March, 2012

Postnikov's hook length formula

$$
\sum_{\substack{\text { Plane binayy trees } \\ \text { of order }}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

Postnikov's hook length formula

$$
\sum_{\substack{\text { Plane binary trees } \\ \text { of order }}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

Postnikov's hook length formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

- introduced by Postnikov in his study of the volume of permutohedra

Postnikov's hook length formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

- introduced by Postnikov in his study of the volume of permutohedra
- algebraic proofs by Hivert, Novelli and Thibon

Postnikov's hook length formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

- introduced by Postnikov in his study of the volume of permutohedra
- algebraic proofs by Hivert, Novelli and Thibon
- generalizations by Guo-Niu Han

Postnikov's hook length formula

$$
\sum_{\substack{\text { plane binary trees } \\ \text { of order } n}} \prod_{v}\left(1+\frac{1}{h_{v}}\right)=(n+1)^{n-1} \frac{2^{n}}{n!}
$$

with hook length $h_{v}=\#\{$ vertices below v (included) $\}$

- introduced by Postnikov in his study of the volume of permutohedra
- algebraic proofs by Hivert, Novelli and Thibon
- generalizations by Guo-Niu Han
- combinatorial proofs by Chen and Yang and Seo

Hook length formula for trees

$$
\sum_{\substack{\text { Plane binary, trees } \\ \text { of order } n}} \frac{n!}{\prod_{\substack{\text { vertex }}} h_{v}} \prod_{\substack{\text { veverex } \\ \text { but root }}}\left(1+h_{v}\right)=2^{n}(n+1)^{n-2}
$$

Hook length formula for trees

$$
\sum_{\substack{\text { Plane binary trees } \\ \text { of or order } n}} \frac{n!}{\prod_{\substack{\text { vertex }}} h_{v}} \prod_{\substack{\text { veverex } \\ \text { but root }}}\left(1+h_{v}\right)=2^{n}(n+1)^{n-2}
$$

- Oriented trees with labels on the edges (Cayley's formula)

$$
2^{n}(n+1)^{n-2}==\#\{\text { oriented trees with } n \text { labeled edges }\}
$$

$(n+1)^{n-1}$ trees with $n+1$ labeled vertices
2^{n} orientations of the edges

Hook length formula for trees

$$
\sum_{\substack{\text { Plane binary trees } \\ \text { of ofrder } n}} \frac{n!}{\prod_{\substack{\text { vertex }}} h_{v}} \prod_{\substack{\text { vever } \\ \text { but root }}}\left(1+h_{v}\right)=2^{n}(n+1)^{n-2}
$$

- Oriented trees with labels on the edges (Cayley's formula)

$$
2^{n}(n+1)^{n-2}==\#\{\text { oriented trees with } n \text { labeled edges }\}
$$

$(n+1)^{n-1}$ trees with $n+1$ labeled vertices
2^{n} orientations of the edges

- Decreasing trees and permutations (see next slide)

$$
\begin{aligned}
\frac{n!}{\prod h_{v}} & =\#\{\text { decreasing binary trees of order } n\} \\
& =\#\{\text { permutations of }\{1,2, \ldots, n\}\}
\end{aligned}
$$

Hook length formula for trees

$$
\sum_{\substack{\text { plane binard trees } \\ \text { of forter } n}} \frac{n!}{\prod_{\substack{\text { vertex }}} h_{v}} \prod_{\substack{\text { vererex } \\ \text { but root }}}\left(1+h_{v}\right)=2^{n}(n+1)^{n-2}
$$

- Oriented trees with labels on the edges (Cayley's formula)

$$
2^{n}(n+1)^{n-2}==\#\{\text { oriented trees with } n \text { labeled edges }\}
$$

$(n+1)^{n-1}$ trees with $n+1$ labeled vertices
2^{n} orientations of the edges

- Decreasing trees and permutations (see next slide)

$$
\begin{aligned}
\frac{n!}{\prod h_{v}} & =\#\{\text { decreasing binary trees of order } n\} \\
& =\#\{\text { permutations of }\{1,2, \ldots, n\}\}
\end{aligned}
$$

- Problem: find a combinatorial interpretation of

$$
\prod_{\substack{\text { vererex } \\ \text { but root }}}\left(1+h_{v}\right)
$$

Bijection between decreasing trees and permutations of $\{1, \ldots, n\}$

Bijection between decreasing trees and permutations of $\{1, \ldots, n\}$
Recursive definition starting with the interval $\{1, \ldots, n\}$

Bijection between decreasing trees and permutations of $\{1, \ldots, n\}$

Recursive definition starting with the interval $\{1, \ldots, n\}$

- for any interval $\{i, i+1, \ldots, k, \ldots, j\}$ of $\{1, \ldots, n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval

Bijection between decreasing trees and permutations of $\{1, \ldots, n\}$

Recursive definition starting with the interval $\{1, \ldots, n\}$

- for any interval $\{i, i+1, \ldots, k, \ldots, j\}$ of $\{1, \ldots, n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval
- proceed similarly with the intervals $\{i, \ldots, k-1\}$ and $\{k+1, \ldots, j\}$ associated to the left and right subtrees

Bijection between decreasing trees and permutations of $\{1, \ldots, n\}$
Recursive definition starting with the interval $\{1, \ldots, n\}$

- for any interval $\{i, i+1, \ldots, k, \ldots, j\}$ of $\{1, \ldots, n\}$ label the root $\sigma(k)$ where $\sigma(k)$ is the maximum of σ on that interval
- proceed similarly with the intervals $\{i, \ldots, k-1\}$ and $\{k+1, \ldots, j\}$ associated to the left and right subtrees

i	1	2	3	4
$\sigma(i)$	2	4	1	3

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\prod_{v \text { vertex }} \overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$
- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\prod_{v \text { vertex }} \overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$
- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v $\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$ vex

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$

- decreasing binary trees \leftrightarrow oriented edge labeled trees
- labeled vertices of $t \leftrightarrow$ labeled edges of T oriented form left to right
- leaves of $t \leftrightarrow$ vertices of T
leaves below v
$\overbrace{\left(1+h_{v}\right)}=\#\left\{\begin{array}{l}\text { for every } v \text { choice of a leaf in the left subtree } \\ \text { and a leaf in the right subtree branching at } v\end{array}\right\}$

A more complicated example

pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$

decreasing tree
pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$
permutation

$$
\begin{aligned}
& \text { permutation } \sigma \text { of }\{1, \ldots, n\} \\
& \text { and for every } k \text { an interval } I_{k} \\
& \text { such that } \max _{l_{k}} \sigma=\sigma(k)
\end{aligned}
$$

decreasing tree
pair of leaves each in one of the subtrees branching at vertex $\sigma(k)$
permutation
permutation σ of $\{1, \ldots, n\}$ and for every k an interval I_{k} such that $\max \sigma=\sigma(k)$

leaves	vertex	interval
(a, d)	4	$\{1,2,3\}$
(c, e)	3	$\{3,4\}$
(c, d)	1	$\{3\}$
(a, e)	4	$\{1,2,3,4\}$

Combinatorial interpretation of the Postnikov hook length formula

$$
\underbrace{\#\left\{\begin{array}{c}
\text { permutation } \sigma \text { of }\{1, \ldots, n\} \\
\text { and for every } k \text { an interval } I_{k} \\
\text { such that } \max _{k} \sigma=\sigma(k)
\end{array}\right\}}_{\frac{n!}{\prod h_{v}} \prod_{\text {exeept root }}\left(1+h_{v}\right)}=\underbrace{\#\left\{\begin{array}{c}
\text { oriented trees with } \\
n \text { labelled edges }
\end{array}\right\}}_{2^{n}(n+1)^{n-2}}
$$

Combinatorial interpretation of the Postnikov hook length formula

$$
\underbrace{\left.\# \begin{array}{c}
\text { permutation } \sigma \text { of }\{1, \ldots, n\} \\
\text { and for every } k \text { an interval } I_{k} \\
\text { such that } \max _{k} \sigma=\sigma(k)
\end{array}\right\}}_{\frac{n!}{\prod h_{v}} \prod_{\text {exeept root }}\left(1+h_{v}\right)}=\underbrace{\#\left\{\begin{array}{c}
\text { oriented trees with } \\
n \text { labelled edges }
\end{array}\right\}}_{2^{n}(n+1)^{n-2}}
$$

Generating function of connected edge labeled oriented graphs

$$
F(s, x, \lambda)=\sum_{\gamma \text { connected oriented graph }} \frac{s^{e(\gamma)} X^{v(\gamma)} \lambda^{e(\gamma)-v(\gamma)+1}}{e(\gamma)!}
$$

with $e(\gamma)=\#\{$ edges of $\gamma\}$ and $v(\gamma)=\#\{$ vertices of $\gamma\}$

Generating function of connected edge labeled oriented graphs

$$
F(s, x, \lambda)=\sum_{\substack{\gamma \text { connected oriented graph } \\ \text { with labeled edges }}} \frac{s^{e(\gamma)} \chi^{v(\gamma)} \lambda^{e(\gamma)-v(\gamma)+1}}{e(\gamma)!}
$$

with $e(\gamma)=\#\{$ edges of $\gamma\}$ and $v(\gamma)=\#\{$ vertices of $\gamma\}$

Addition of an edge

Differential equation

$$
\frac{\partial F}{\partial s}=\left(x \frac{\partial F}{\partial x}\right)^{2}+\lambda x \frac{\partial}{\partial x}\left(x \frac{\partial F}{\partial x}\right)
$$

Graphical intepretation

A generalized hook length formula counting connected graphs

with $k_{v}=\#\{$ bivalent vertices below v (included) $\}$
$I_{v}=\#\{$ univalent vertices below v (included) $\}$

A generalized hook length formula counting connected graphs

$$
\begin{aligned}
& =\#\{\text { connected and oriented graphs with } n \text { labeled edges }\}
\end{aligned}
$$

with $k_{v}=\#\{$ bivalent vertices below v (included) $\}$
$I_{v}=\#\{$ univalent vertices below v (included) $\}$

$$
: \rightarrow \infty
$$

A generalized hook length formula counting connected graphs

$$
\begin{aligned}
& =\#\{\text { connected and oriented graphs with } n \text { labeled edges }\}
\end{aligned}
$$

with $k_{v}=\#\{$ bivalent vertices below v (included) $\}$
$I_{v}=\#\{$ univalent vertices below v (included) $\}$

A generalized hook length formula counting connected graphs

$$
\begin{aligned}
& =\#\{\text { connected and oriented graphs with } n \text { labeled edges }\}
\end{aligned}
$$

with $k_{v}=\#\{$ bivalent vertices below v (included) $\}$
$I_{v}=\#\{$ univalent vertices below v (included) $\}$

$$
\begin{aligned}
& \vdots \rightarrow \bigcirc \\
& 2 \quad \rightarrow \\
& 2 \quad 4 \quad 2
\end{aligned}
$$

A generalized hook length formula counting connected graphs

$$
\begin{aligned}
& =\#\{\text { connected and oriented graphs with } n \text { labeled edges }\}
\end{aligned}
$$

with $k_{v}=\#\{$ bivalent vertices below v (included) $\}$
$I_{v}=\#\{$ univalent vertices below v (included) $\}$

$$
\begin{aligned}
: & \rightarrow 0 \\
2 & \rightarrow 4 \bullet \\
2 & \rightarrow 2 \bullet \\
& \rightarrow 2 \bullet \longrightarrow+2
\end{aligned}
$$

Iterative construction of the graph

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \prod_{\text {bivalent except root }}\left(1+k_{v}\right)
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \prod_{\text {bivalent except root }}\left(1+k_{v}\right)
$$

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \prod_{\text {bivalent except root }}\left(1+k_{v}\right)
$$

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

Iterative construction of the graph

- edge attached to different connected components

$$
\rightarrow \quad \prod \quad\left(1+k_{v}\right)
$$

bivalent except root

- edge attached to the same connected component

$$
\rightarrow \prod_{\text {univalent }}\left(1+k_{v}\right)^{2}
$$

A more complicated example

