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> 11 <1+ hlv) = (n+1)"*1%

plane binary trees
of order n

with hook length h, = #{vertices below v (included)}

@ introduced by Postnikov in his study of the volume of permutohedra
@ algebraic proofs by Hivert, Novelli and Thibon

@ generalizations by Guo-Niu Han

@ combinatorial proofs by Chen and Yang and Seo
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Hook length formula for trees

n|
(L+h,)=2"(n+1)""?
i IT 1L @by =2n+)

of order n but root
v vertex

@ Oriented trees with labels on the edges (Cayley's formula)
2"(n+1)""? == #{oriented trees with n labeled edges}

(n+1)""! trees with n+ 1 labeled vertices
2" orientations of the edges
@ Decreasing trees and permutations (see next slide)

HT = #{decreasmg binary trees of order n}
= #{permutations of {1,2,..., n}}

@ Problem: find a combinatorial interpretation of

II @a+h)

v vertex
but root
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decreasing tree permutation

pair of leaves each in permutation o of {1,..., n}
one of the subtrees o and for every k an interval /i
branching at vertex o (k) such that maxo = o (k)

leaves vertex interval
(a,d) 4 {1,2,3}
(c,e) 3 {3,4}
(c,d) 1 {3}
(a,€) 4 {1,2,3,4}
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Generating function of connected edge labeled oriented graphs

s€(7) xv(7) \e(n)—v(7)+1

F(s,x,\) = Z

: e(7)!
~ connected oriented graph
with labeled edges

with e(y) = #{edges of v} and v(vy) = #{vertices of v}

Addition of an edge

Differential equation

OF _(OF\’, | 0 (0F
ds Xc’)x XBX X@x

Graphical intepretation
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A generalized hook length formula counting connected graphs
[
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plane unary-binary trees | | (kv + /V) v bivalent vertex v univalent vertex

of order n but root
v vertex

= #{ connected and oriented graphs with n labeled edges}

with k, = #{bivalent vertices below v (included)}
l, = F#{univalent vertices below v (included)}

! - GO
2;—>4._._.
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