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Origin

the m-Tamari lattices were introduced by Bergeron and
Préville-Ratelle in order to express the Frobenius
characteristics of the space of higher diagonal harmonics

Bousquet-Mélou, Fusy and Préville-Ratelle proved the lattice
property and a formula for the number of intervals

combinatorial realization via m-Dyck paths

we are interested in topological properties of T (m)
n , which can

be determined with the help of EL-shellability
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D(m)
n : set of m-Dyck paths of height n

associate an integer sequence αp = (a1, a2, . . . , an) to

p ∈ D(m)
n that satisfies

a1 ≤ a2 ≤ · · · ≤ an, and

ai ≤ m(i − 1), 1 ≤ i ≤ n
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m-Dyck subpath at position i : the unique subpath of p that
begins at the i-th upstep of p and is an m-Dyck path again

primitive subsequence at position i : unique subsequence
(ai , ai+1, . . . , ak) of αp that satisfies

aj − ai < m(j − i), i < j ≤ k , and

either k = n or ak+1 − ai ≥ m(k + 1− i)
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let p ∈ D(m)
n , let u be an upstep of p that is preceded by a

rightstep r

say u is the i-th upstep of p, and let pi be the m-Dyck
subpath of p at position i

define p l q if and only if q is obtained from p by exchanging
r and pi
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say u is the i-th upstep of p, and let pi be the m-Dyck
subpath of p at position i

define p l q if and only if q is obtained from p by exchanging
r and pi

p3
r

(0, 0, 3, 4, 4, 15)

l
p3

r

(0, 0, 2, 3, 3, 15)
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let ≤ denote the transitive and reflexive
closure of l
m-Tamari lattice: T (m)

n =
(
D(m)

n ,≤
)

this is T (2)
3
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The Main Question

Theorem (Björner & Wachs, 1997)

There exists an EL-labeling for T (1)
n such that each interval has at

most one falling chain.

Can this result be generalized to T (m)
n for m ≥ 1?

Henri Mühle EL-Shellability of the m-Tamari Lattices 10 / 26



Preliminaries
EL-Shellability of T (m)

n
Topological Properties of T (m)

n

m-Tamari Lattices
EL-Shellability of Posets

The Main Question

Theorem (Björner & Wachs, 1997)

There exists an EL-labeling for T (1)
n such that each interval has at

most one falling chain.

Can this result be generalized to T (m)
n for m ≥ 1?

Henri Mühle EL-Shellability of the m-Tamari Lattices 10 / 26



Preliminaries
EL-Shellability of T (m)

n
Topological Properties of T (m)

n

m-Tamari Lattices
EL-Shellability of Posets

Basics on Posets

bounded poset: a poset that has a unique minimal and a
unique maximal element

let P = (P,≤P) be a bounded poset

P is the poset that arises from P by removing the maximal
and minimal element (the so-called proper part of P)

chain: linearly ordered subset c of P
notation: c : p0 <P p1 <P · · · <P ps

maximal chain in [p, q]: there is no p′ ∈ [p, q] and no
0 ≤ i < s such that
p = p0 <P p1 <P · · · <P pi <P p′ <P pi+1 <P · · · <P ps = q
is a chain
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Edge-Labelings

cover relation p lP q: p <P q and there is no p′ ∈ P with
p <P p′ <P q

E(P) =
{

(p, q) | p lP q
}

is the set of covering relations on P
edge-labeling λ: map λ : E(P)→ Λ, for some poset Λ

λ(c) =
(
λ(p0, p1), λ(p1, p2), . . . , λ(ps−1, ps)

)
is the

label-sequence of c

rising chain: a chain c such that λ(c) is strictly increasing

ER-labeling: an edge-labeling such that for every interval of
P there is exactly one rising maximal chain

EL-labeling: an ER-labeling such that the rising chain in
every interval is lexicographically first among all maximal
chains
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EL-Shellability

EL-shellable poset: a bounded poset that admits an
EL-labeling

the order complex ∆(P) of an EL-shellable poset P is shellable
and hence Cohen-Macaulay

the geometric realization of ∆(P) is homotopy equivalent to a
wedge of spheres

the i-th Betti number of ∆(P) is given by the number of
falling maximal chains of length i + 2

hence, the Euler characteristic χ
(
∆(P)

)
can be computed

from the labeling

if 0P is the unique minimal element and 1P the unique
maximal element of P, we have χ

(
∆(P)

)
= µ(0P, 1P)
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n

A natural Edge-Labeling
Constructing Rising Chains

An Edge-Labeling

an edge (p, p′) in T (m)
n is determined by the two sequences αp

and αp′ , which satisfy

αp = αp′ + (0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k−i+1

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k

)

the value k is uniquely determined by i

given αp = (a1, a2, . . . , an) and i , we can uniquely determine
αp′ , and hence the covering pair (p, p′)
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An Edge-Labeling

however, the position i is not enough
to distinguish the edges properly

(0, 2, 4)

(0, 1, 4)

(0, 0, 4) (0, 1, 3)

(0, 0, 3) (0, 2, 3)

(0, 0, 2) (0, 1, 2) (0, 2, 2)

(0, 0, 1) (0, 1, 1)

(0, 0, 0)

2

3

2

3

3 2

3

3
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3
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3 2
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An Edge-Labeling

to overcome this, we also take the value ai into account and
consider the edge-labeling

λ : E
(
T (m)
n

)
→ N× N

(p, p′) 7→ (i , ai ),

where αp = (a1, a2, . . . , an) and

αp = αp′ + (0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 1, . . . , 1, 0, 0, . . . , 0)

we consider the following linear order on the set of edge-labels

(i , ai ) < (j , aj) if and only if i < j or i = j and ai > aj
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(0, 2, 4)

(0, 1, 4)

(0, 0, 4) (0, 1, 3)

(0, 0, 3) (0, 2, 3)
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let αp = (0, 0, 3, 4, 4, 15) and αq = (0, 0, 1, 1, 1, 13)
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EL-Shellability of T (m)
n

Theorem

For every m, n ∈ N, the edge-labeling λ is an EL-labeling for T (m)
n .
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n

Falling Maximal Chains

Topological Consequences

Proposition (Björner & Wachs, 1996)

Let P be a bounded poset and [p, q] an interval in P. If P is
EL-shellable, then

µ(p, q) = number of even length falling maximal chains in [p, q]

− number of odd length falling maximal chains in [p, q]

Theorem (Björner & Wachs, 1996)

Let P be an EL-shellable poset. Then, the order complex ∆(P) of
P has the homotopy type of a wedge of spheres, and the dimension
of the i-th homology group of ∆(P) is given by the number of
falling maximal chains of length i + 2.
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Falling Maximal Chains

Theorem

Let [p, q] be an interval in T (m)
n . There is at most one falling

maximal chain in [p, q].

let αp = (a1, a2, . . . , an), αq = (b1, b2, . . . , bn) and let
D = {j | aj 6= bj and aj ≥ aj−1 + m} = {j1, j2, . . . , js}
if αp(0) l αp(1) l · · ·l αp(s) is a falling maximal chain in [p, q],
it must have the label sequence

(js , a
(0)
js

), (js−1, a
(1)
js−1

), . . . , (j1, a
(s−1)
j1

)

this follows, since each of the values aj1 , aj2 , . . . , ajs must be
decreased along a maximal chain in [p, q] at least once
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Conclusions

Corollary

Let p ≤ q in T (m)
n . Then, µ(p, q) ∈ {−1, 0, 1}.

Corollary

Each open interval in T (m)
n has the homotopy type of either a

sphere or a point.
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n
Topological Properties of T (m)

n

Falling Maximal Chains

Thank you!
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