Preliminaries EL-Shellability of $\mathcal{T}_{n}^{(m)}$

EL-Shellability of the *m*-Tamari Lattices

Henri Mühle

Universität Wien

March 26, 2012

- the *m*-Tamari lattices were introduced by Bergeron and Préville-Ratelle in order to express the Frobenius characteristics of the space of higher diagonal harmonics
- Bousquet-Mélou, Fusy and Préville-Ratelle proved the lattice property and a formula for the number of intervals
- combinatorial realization via *m*-Dyck paths

- the *m*-Tamari lattices were introduced by Bergeron and Préville-Ratelle in order to express the Frobenius characteristics of the space of higher diagonal harmonics
- Bousquet-Mélou, Fusy and Préville-Ratelle proved the lattice property and a formula for the number of intervals
- combinatorial realization via *m*-Dyck paths
- we are interested in topological properties of $\mathcal{T}_n^{(m)}$, which can be determined with the help of EL-shellability

Outline

- *m*-Tamari Lattices
- EL-Shellability of Posets

2 EL-Shellability of $\mathcal{T}_n^{(m)}$

- A natural Edge-Labeling
- Constructing Rising Chains

7-Tamari Lattices IL-Shellability of Posets

Outline

Preliminaries

- *m*-Tamari Lattices
- EL-Shellability of Posets

2 EL-Shellability of $\mathcal{T}_n^{(m)}$

- A natural Edge-Labeling
- Constructing Rising Chains
- Topological Properties of *T_n^(m)* Falling Maximal Chains

n-**Tamari Lattices** EL-Shellability of Posets

- *m*-Dyck path: lattice path in \mathbb{Z}^2 from (0,0) to (*mn*, *n*) that stays above the line y = mx
- only up-steps and right-steps are allowed

n-**Tamari Lattices** EL-Shellability of Posets

- *m*-Dyck path: lattice path in Z² from (0,0) to (*mn*, *n*) that stays above the line *y* = *mx*
- only up-steps and right-steps are allowed
- a 4-Dyck path of height 6

n-**Tamari Lattices** EL-Shellability of Posets

- *m*-Dyck path: lattice path in Z² from (0,0) to (*mn*, *n*) that stays above the line *y* = *mx*
- only up-steps and right-steps are allowed
- not a 4-Dyck path

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence $\alpha_p = (a_1, a_2, \dots, a_n)$ to $p \in \mathcal{D}_n^{(m)}$ that satisfies

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
, and $a_i \leq m(i-1), \quad 1 \leq i \leq n$

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence $\alpha_p = (a_1, a_2, \dots, a_n)$ to $p \in \mathcal{D}_n^{(m)}$ that satisfies

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
, and
 $a_i \leq m(i-1), \quad 1 \leq i \leq n$

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence $\alpha_p = (a_1, a_2, \dots, a_n)$ to $p \in \mathcal{D}_n^{(m)}$ that satisfies

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
, and $a_i \leq m(i-1), \quad 1 \leq i \leq n$

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence α_p = (a₁, a₂, ..., a_n) to *p* ∈ D_n^(m) that satisfies

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence α_p = (a₁, a₂, ..., a_n) to *p* ∈ D_n^(m) that satisfies

n-Tamari Lattices EL-Shellability of Posets

- $\mathcal{D}_n^{(m)}$: set of *m*-Dyck paths of height *n*
- associate an integer sequence α_p = (a₁, a₂, ..., a_n) to *p* ∈ D_n^(m) that satisfies

n-Tamari Lattices EL-Shellability of Posets

m-Dyck Paths

• *m*-**Dyck subpath at position** *i*: the unique subpath of *p* that begins at the *i*-th upstep of *p* and is an *m*-Dyck path again

n-Tamari Lattices EL-Shellability of Posets

m-Dyck Paths

• *m*-Dyck subpath at position *i*: the unique subpath of *p* that begins at the *i*-th upstep of *p* and is an *m*-Dyck path again

n-Tamari Lattices EL-Shellability of Posets

m-Dyck Paths

• *m*-Dyck subpath at position *i*: the unique subpath of *p* that begins at the *i*-th upstep of *p* and is an *m*-Dyck path again

n-Tamari Lattices EL-Shellability of Posets

m-Dyck Paths

m-Dyck subpath at position *i*: the unique subpath of *p* that begins at the *i*-th upstep of *p* and is an *m*-Dyck path again

0 3 4 15 • primitive subsequence at position *i*: unique subsequence $(a_i, a_{i+1}, \ldots, a_k)$ of α_p that satisfies

$$a_j - a_i < m(j - i), \quad i < j \le k, \text{and}$$

either $k = n$ or $a_{k+1} - a_i \ge m(k + 1 - i)$

n-Tamari Lattices EL-Shellability of Posets

A Covering Relation on $\mathcal{D}_n^{(m)}$

- let $p \in \mathcal{D}_n^{(m)}$, let u be an upstep of p that is preceded by a rightstep r
- say *u* is the *i*-th upstep of *p*, and let *p_i* be the *m*-Dyck subpath of *p* at position *i*
- define $p \lt q$ if and only if q is obtained from p by exchanging r and p_i

 $\begin{array}{c} \textbf{Preliminaries}\\ \textbf{EL-Shellability of }\mathcal{T}_{1}^{(m)}\\ \hline \textbf{opological Properties of }\mathcal{T}_{n}^{(m)} \end{array}$

n-Tamari Lattices EL-Shellability of Posets

A Covering Relation on $\mathcal{D}_n^{(m)}$

- let $p \in \mathcal{D}_n^{(m)}$, let u be an upstep of p that is preceded by a rightstep r
- say *u* is the *i*-th upstep of *p*, and let *p_i* be the *m*-Dyck subpath of *p* at position *i*
- define p ≤ q if and only if q is obtained from p by exchanging r and p_i

n-Tamari Lattices EL-Shellability of Posets

The *m*-Tamari Lattice

- let \leq denote the transitive and reflexive closure of \ll
- *m*-Tamari lattice: $\mathcal{T}_n^{(m)} = \left(\mathcal{D}_n^{(m)}, \leq\right)$

m-**Tamari Lattices** EL-Shellability of Posets

The *m*-Tamari Lattice

- let \leq denote the transitive and reflexive closure of \ll
- *m*-Tamari lattice: $\mathcal{T}_n^{(m)} = (\mathcal{D}_n^{(m)}, \leq)$

n-**Tamari Lattices** EL-Shellability of Posets

The Main Question

Theorem (Björner & Wachs, 1997)

There exists an EL-labeling for $\mathcal{T}_n^{(1)}$ such that each interval has at most one falling chain.

n-**Tamari Lattices** EL-Shellability of Posets

The Main Question

Theorem (Björner & Wachs, 1997)

There exists an EL-labeling for $\mathcal{T}_n^{(1)}$ such that each interval has at most one falling chain.

• Can this result be generalized to $\mathcal{T}_n^{(m)}$ for $m \ge 1$?

n-Tamari Lattices EL-Shellability of Posets

Basics on Posets

- bounded poset: a poset that has a unique minimal and a unique maximal element
- let $\mathbb{P} = (P, \leq_{\mathbb{P}})$ be a bounded poset
- ₱ is the poset that arises from P by removing the maximal and minimal element (the so-called proper part of P)
- chain: linearly ordered subset c of P notation: c : p₀ <_ℙ p₁ <_ℙ ··· <_ℙ p_s
- maximal chain in [p, q]: there is no $p' \in [p, q]$ and no $0 \le i < s$ such that $p = p_0 \le p_1 \le p_2 \le p_1 \le p_2 \le p_1 \le p_2 \le p_2$

 $p = p_0 <_{\mathbb{P}} p_1 <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_i <_{\mathbb{P}} p' <_{\mathbb{P}} p_{i+1} <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_s = q$ is a chain

n-Tamari Lattices EL-Shellability of Posets

Edge-Labelings

- cover relation $p \leq_{\mathbb{P}} q$: $p <_{\mathbb{P}} q$ and there is no $p' \in P$ with $p <_{\mathbb{P}} p' <_{\mathbb{P}} q$
- $\mathcal{E}(\mathbb{P}) = ig\{(p,q) \mid p \lessdot_{\mathbb{P}} qig\}$ is the set of covering relations on \mathbb{P}
- edge-labeling λ : map $\lambda : \mathcal{E}(\mathbb{P}) \to \Lambda$, for some poset Λ
- $\lambda(c) = (\lambda(p_0, p_1), \lambda(p_1, p_2), \dots, \lambda(p_{s-1}, p_s))$ is the label-sequence of c
- rising chain: a chain c such that $\lambda(c)$ is strictly increasing
- **ER-labeling**: an edge-labeling such that for every interval of \mathbb{P} there is exactly one rising maximal chain
- **EL-labeling**: an ER-labeling such that the rising chain in every interval is lexicographically first among all maximal chains

n-Tamari Lattices EL-Shellability of Posets

EL-Shellability

• **EL-shellable poset**: a bounded poset that admits an EL-labeling

n-Tamari Lattices EL-Shellability of Posets

EL-Shellability

- **EL-shellable poset**: a bounded poset that admits an EL-labeling
- the order complex $\Delta(\overline{\mathbb{P}})$ of an EL-shellable poset \mathbb{P} is shellable and hence Cohen-Macaulay
- the geometric realization of $\Delta(\overline{\mathbb{P}})$ is homotopy equivalent to a wedge of spheres
- the *i*-th Betti number of Δ(ℙ) is given by the number of falling maximal chains of length *i* + 2
- hence, the Euler characteristic $\chi\bigl(\Delta(\overline{\mathbb{P}})\bigr)$ can be computed from the labeling
- if $0_{\mathbb{P}}$ is the unique minimal element and $1_{\mathbb{P}}$ the unique maximal element of \mathbb{P} , we have $\chi(\Delta(\overline{\mathbb{P}})) = \mu(0_{\mathbb{P}}, 1_{\mathbb{P}})$

n-Tamari Lattices EL-Shellability of Posets

Möbius Function and Falling Chains

n-Tamari Lattices EL-Shellability of Posets

Möbius Function and Falling Chains

n-Tamari Lattices EL-Shellability of Posets

Möbius Function and Falling Chains

A natural Edge-Labeling Constructing Rising Chains

Outline

Preliminaries

- *m*-Tamari Lattices
- EL-Shellability of Posets

2 EL-Shellability of $\mathcal{T}_n^{(m)}$

- A natural Edge-Labeling
- Constructing Rising Chains
- Topological Properties of T_n^(m)
 Falling Maximal Chains

A natural Edge-Labeling Constructing Rising Chains

An Edge-Labeling

• an edge (p, p') in $\mathcal{T}_n^{(m)}$ is determined by the two sequences α_p and $\alpha_{p'}$, which satisfy

$$\alpha_{p} = \alpha_{p'} + (\underbrace{0, 0, \dots, 0}_{i-1}, \underbrace{1, 1, \dots, 1}_{k-i+1}, \underbrace{0, 0, \dots, 0}_{n-k})$$

- the value k is uniquely determined by i
- given $\alpha_p = (a_1, a_2, \dots, a_n)$ and *i*, we can uniquely determine $\alpha_{p'}$, and hence the covering pair (p, p')

EL-Shellability of $\mathcal{T}_{n}^{(m)}$

A natural Edge-Labeling Constructing Rising Chains

An Edge-Labeling

EL-Shellability of $\mathcal{T}_{n}^{(m)}$

An Edge-Labeling

• to overcome this, we also take the value *a_i* into account and consider the edge-labeling

$$\lambda: \mathcal{E}(\mathcal{T}_n^{(m)}) \to \mathbb{N} \times \mathbb{N}$$

 $(p, p') \mapsto (i, a_i),$

where
$$\alpha_p = (a_1, a_2, \dots, a_n)$$
 and

$$\alpha_{p} = \alpha_{p'} + (\underbrace{0, 0, \dots, 0}_{i-1}, 1, 1, \dots, 1, 0, 0, \dots, 0)$$

• we consider the following linear order on the set of edge-labels

$$(i,a_i) < (j,a_j)$$
 if and only if $i < j$ or $i = j$ and $a_i > a_j$

A natural Edge-Labeling Constructing Rising Chains

An Edge-Labeling

A natural Edge-Labeling Constructing Rising Chains

Constructing Rising Chains

• let $\alpha_{p} = (0, 0, 3, 4, 4, 15)$ and $\alpha_{q} = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

Constructing Rising Chains

• let $\alpha_p = (0, 0, 3, 4, 4, 15)$ and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

A natural Edge-Labeling Constructing Rising Chains

• let
$$\alpha_p = (0, 0, 3, 4, 4, 15)$$
 and $\alpha_q = (0, 0, 1, 1, 1, 13)$

EL-Shellability of $\mathcal{T}_{n}^{(m)}$

A natural Edge-Labeling Constructing Rising Chains

Theorem

For every $m, n \in \mathbb{N}$, the edge-labeling λ is an EL-labeling for $\mathcal{T}_n^{(m)}$.

Falling Maximal Chains

Outline

Preliminaries

- *m*-Tamari Lattices
- EL-Shellability of Posets

2 EL-Shellability of $\mathcal{T}_n^{(m)}$

- A natural Edge-Labeling
- Constructing Rising Chains

Falling Maximal Chains

Topological Consequences

Proposition (Björner & Wachs, 1996)

Let $\mathbb P$ be a bounded poset and [p,q] an interval in $\mathbb P.$ If $\mathbb P$ is EL-shellable, then

 $\mu(p,q) =$ number of even length falling maximal chains in [p,q]- number of odd length falling maximal chains in [p,q]

Falling Maximal Chains

Topological Consequences

Proposition (Björner & Wachs, 1996)

Let $\mathbb P$ be a bounded poset and [p,q] an interval in $\mathbb P.$ If $\mathbb P$ is EL-shellable, then

 $\mu(p,q) =$ number of even length falling maximal chains in [p,q]- number of odd length falling maximal chains in [p,q]

Theorem (Björner & Wachs, 1996)

Let \mathbb{P} be an EL-shellable poset. Then, the order complex $\Delta(\overline{\mathbb{P}})$ of $\overline{\mathbb{P}}$ has the homotopy type of a wedge of spheres, and the dimension of the *i*-th homology group of $\Delta(\overline{\mathbb{P}})$ is given by the number of falling maximal chains of length i + 2.

Falling Maximal Chains

Falling Maximal Chains

Theorem

Let [p, q] be an interval in $\mathcal{T}_n^{(m)}$. There is at most one falling maximal chain in [p, q].

Falling Maximal Chains

Theorem

Let [p, q] be an interval in $\mathcal{T}_n^{(m)}$. There is at most one falling maximal chain in [p, q].

- let $\alpha_p = (a_1, a_2, ..., a_n), \alpha_q = (b_1, b_2, ..., b_n)$ and let $D = \{j \mid a_j \neq b_j \text{ and } a_j \ge a_{j-1} + m\} = \{j_1, j_2, ..., j_s\}$
- if $\alpha_{p^{(0)}} < \alpha_{p^{(1)}} < \cdots < \alpha_{p^{(s)}}$ is a falling maximal chain in [p, q], it must have the label sequence

$$(j_s, a_{j_s}^{(0)}), (j_{s-1}, a_{j_{s-1}}^{(1)}), \dots, (j_1, a_{j_1}^{(s-1)})$$

 this follows, since each of the values a_{j1}, a_{j2},..., a_{js} must be decreased along a maximal chain in [p, q] at least once

Conclusions

Falling Maximal Chains

Corollary

Let $p \leq q$ in $\mathcal{T}_n^{(m)}$. Then, $\mu(p,q) \in \{-1,0,1\}$.

Falling Maximal Chains

Conclusions

Corollary

Let
$$p \leq q$$
 in $\mathcal{T}_n^{(m)}$. Then, $\mu(p,q) \in \{-1,0,1\}$.

Corollary

Each open interval in $\mathcal{T}_n^{(m)}$ has the homotopy type of either a sphere or a point.

Falling Maximal Chains

Thank you!