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Monotone Triangles

Definition (Monotone Triangle)

Triangular array of integers with

@ weak increase along North-East diagonals and South-East
diagonals

@ strict increase along rows
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Monotone Triangles

Example (The seven MTs with bottom row (1,2, 3))
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MTs with bottom row k1 < kry < --- < k,

How many MTs with bottom row (ki, ko, ..., k,) are there?
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For each n > 1, there exists a polynomial o((n; ki, ka, ..., kn) of
degree n — 1 in each of the n variables




MTs with bottom row k1 < kry < --- < k,

How many MTs with bottom row (ki, ko, ..., k,) are there?

n=2: # MTs with bottom row (ki, k2)

— ko — k1 + 1 possibilities

Theorem (I. Fischer (2005))

For each n > 1, there exists a polynomial o((n; ki, ka, ..., kn) of
degree n — 1 in each of the n variables satisfying

a(n; ki, ky, ... ky) = #MTs with bottom row (ky, ka, ..., kn),

whenever ki < ko < --- < k.
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Decreasing Monotone Triangles

What does a(n; ki, ka, ..., k) count for ky > ko > -+ > kp?

Definition (Decreasing Monotone Triangle)

Triangular array of integers with
@ weak decrease along NE- and SE-diagonals

@ each row contains an entry at most twice




Decreasing Monotone Triangles

What does a(n; ki, ka, ..., k) count for ky > ko > -+ > kp?

Definition (Decreasing Monotone Triangle)

Triangular array of integers with
@ weak decrease along NE- and SE-diagonals
@ each row contains an entry at most twice

@ two consecutive rows do not contain the same entry exactly
once




Example (The five DMTs with bottom row (6,3, 3,2,1))

2 3
2 2 3 3
3 2 2 3 3 2
3 3 2 2 3 3 2 2
6 3 3 2 1 6 3 3 2 1
3 2
3 3 2 2
3 3 2 4 2 2
4 3 2 2 5 3 2 2
6 3 8 2 1 6 3 3 2 1
3
3 3
3 B 2
5 3 2 2
6 3 3 2 1




Two consecutive equal entries (x, x) in a row are called pair.
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Two consecutive equal entries (x, x) in a row are called pair.
A duplicate-descendant is a pair (x, x), which is either
@ in the bottom row, or

@ the row below contains the same pair (x, x).




Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either
@ in the bottom row, or

@ the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let ky > ko > --- > ky, and Dy (ki, ..., k) denote the set of
DMTs with bottom row (ki, ..., k).
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Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either
@ in the bottom row, or

@ the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let ky > ko > --- > ky, and Dy (ki, ..., k) denote the set of
DMTs with bottom row (ki, ..., kn). Then

a(n; ki, ... ky) = (—1)(5) Z (_1)dd(A)’

A€E€D(ki,...,kn)

where dd(A) is the number of duplicate-descendants in A.
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Example (Ds(6,3,3,2,1))

2 3
2 2 3 3
3 2 2 3 3 2
3 3 2 2 3 3 2 2
6 3 3 2 1 6 3 3 2 1
3 2
3 3 2 2
3 3 2 4 2 2
4 3 2 2 5 3 2 2
6 3 3 2 1 6 3 3 2 1
3
3 3
3 3 2
5 3 2 2
6 3 3 2 1
5
a(5:6,3,3,21) = (-1 Y (~1)HD =3
A€D5(6,3,3,2,1)
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Number of Alternating Sign Matrices of size n
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Alternating Sign Matrices

Definition (Alternating Sign Matrix of size n)

@ (n x n)-matrix
@ entries in {0,1, -1}

@ in each row/column: non-zero entries alternate in sign and

sum up to 1
Example (The seven ASMs of size 3)
1 0 0 1 00 010
o1 0 |, 00 1 |, 1 00|,
00 1 010 00 1
01 0 00 1 00 1
o0 1|, 1 00|, o1 0 |,
1 0 0 010 100
0o 1 0
1 -1 1
0o 1 0




Connection between ASMs and MTs

Bijection: ASMs of size n < MTs with bottom row (1,2,...,n)



Connection between ASMs and MTs

Bijection: ASMs of size n < MTs with bottom row (1,2,...,n)

0 1 0 0 O 2

1 -1 0 1 O 1 4

0 0 1 -11 == 1 3 5

01 -1 1 O 1 2 4 5

0 0 1 0 O 1 2 3 4 5




Some motivation. ..

a(2n;n,n,n—1,n—-1,...,1,1)=7

n= 1
n= 2
n=3: 7
n=4: 42
n=5: 429

‘ al2nmn,n,n—1,n—1,...,1,1)=a(n;1,2,...,n) ‘




Towards a bijective proof
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TRl 1)) 3 (—1)dd(A)
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Towards a bijective proof

a(2mn,n,n—1,n—1,...,11)
TRl 1)) 3 (—1)dd(A)

A€Dy,(n,n,n—1,n—1,...,1,1)

éa(n;l,Q,...,n)

—  find suitable partition of Da,(n,n,n—1,n—1,...,1,1)



A
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2
2 2
3 2 1 - 123
3 3 1 1 1 5 3
3 3 2 1 1
3 3 2 2 1 1




2
2 2
3 2 1 - 123
3 3 1 1 1 5 3
3 3 2 1 1
3 3 2 2 1 1

Open problem:

Sign-reversing involution on the remaining set of DMTs?



Overview of involved combinatorial objects

‘ Monotone Triangles with bottom row (1,2,..., n)‘

)
(n x n)-ASMs

DMTs with bottom row (n,n,n—1,n—1,...,1,1)




Alternating Sign Matrices

Definition (Alternating Sign Matrix of size n)

@ (n x n)-matrix

@ entries in {0,1, -1}

@ in each row/column: non-zero entries alternate in sign and
sum up to 1

[Length = n]

Figure: Machine generating rows and columns of ASMs



2-ASMs

Definition (2-ASM of size n)

@ (2n) x n-matrix
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Definition (2-ASM of size n)

@ (2n) x n-matrix

@ rows generated by ASM-machine




2-ASMs

Definition (2-ASM of size n)

@ (2n) x n-matrix

@ rows generated by ASM-machine

@ columns generated by

0 0

[Length = 2n]




Example (DMT < 2-ASM)




The set Dop(n,n,n—1,n—1,...,1,1) is in bijection with the set
of 2-ASMs of size n.




The set Dop(n,n,n—1,n—1,...,1,1) is in bijection with the set
of 2-ASMs of size n.

Monotone Triangles with bottom row (1,2,...,n)

0
(n x n)-ASMs

DMTs with bottom row (n,n,n—1,n—1,...,1,1) ‘

)

‘Q—ASMS of size n‘




Theorem 2 (I. Fischer, L. Riegler (2011))

Let A, ; denote the number of ASMs with the first row’s unique 1
in column i. Then

a2n—Lin—1+in—1n—-1...,1,1)=(-1)"1A,;

holds fori=1,...,2n—1, n> 1.
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Let A, ; denote the number of ASMs with the first row’s unique 1
in column i. Then

a2n—Lin—1+in—1n—-1...,1,1)=(-1)"1A,;

holds fori=1,...,2n—1, n> 1.

a(2nmn,n,n—1,n—-1...,11)=a(n;1,2,...,n)
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a(2nmn,n,n—1,n—1,...,1,1) =a(n;1,2,...,n)

a(n;1,2,...,n) = Ant11
22 (~1)"a(2n+ L;n+1,n,n,n—1,n—1,...,1,1)

Th.1 3 (—1)%dA)

A€D2n+1(n+17n7n7”’7171)

_ Z (_1)dd(A)+n

A€Dy,(n,n,...,1,1)

Tgla(2n;n,n,n—1,n—1,...,1,1).
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By Theorem 1, if n even, then
a(mnn—1,...,1)=0.

What about n odd?



By Theorem 1, if n even, then
a(mnn—1,...,1)=0.

What about n odd?

Conjecture

Forn=2m+ 1, m > 1, the equation

a(mnn—1...,1)=(-1)"a(m;2,4,...,2m)
= (—1)™ # vertically symmetric ASMs of size 2m + 1

seems to hold.
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