Combinatorial Reciprocity for Monotone Triangles

Lukas Riegler (joint work with Ilse Fischer)

March 26, 2012

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Monotone Triangles

Definition (Monotone Triangle)

Triangular array of integers with

weak increase along North-East diagonals and South-East diagonals

ヘロト ヘ部ト ヘヨト ヘヨト

э

strict increase along rows

Monotone Triangles

Definition (Monotone Triangle)

Triangular array of integers with

- weak increase along North-East diagonals and South-East diagonals
- strict increase along rows

Monotone Triangles

Definition (Monotone Triangle)

Triangular array of integers with

- weak increase along North-East diagonals and South-East diagonals
- strict increase along rows

Example (The seven MTs with bottom row (1,2,3))

How many MTs with bottom row (k_1, k_2, \ldots, k_n) are there?

Example

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, ..., k_n)$ of degree n - 1 in each of the n variables satisfying

 $\alpha(n; k_1, k_2, \ldots, k_n) = \#MTs \text{ with bottom row } (k_1, k_2, \ldots, k_n),$

How many MTs with bottom row (k_1, k_2, \ldots, k_n) are there?

Example n = 2: # MTs with bottom row (k_1, k_2)

?
$$\rightarrow k_2 - k_1 + 1$$
 possibilities k_2

Theorem (I. Fischer (2005))

 k_1

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, ..., k_n)$ of degree n - 1 in each of the n variables satisfying

 $\alpha(n; k_1, k_2, \ldots, k_n) = \#MTs$ with bottom row (k_1, k_2, \ldots, k_n) ,

How many MTs with bottom row (k_1, k_2, \ldots, k_n) are there?

Example

$$n = 2$$
: # MTs with bottom row (k_1, k_2)

$$k_1 = k_2 \longrightarrow k_2 - k_1 + 1$$
 possibilities

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, ..., k_n)$ of degree n - 1 in each of the n variables satisfying

 $\alpha(n; k_1, k_2, \ldots, k_n) = \#MTs$ with bottom row (k_1, k_2, \ldots, k_n) ,

How many MTs with bottom row (k_1, k_2, \ldots, k_n) are there?

Example

$$n = 2$$
: # MTs with bottom row (k_1, k_2)

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, ..., k_n)$ of degree n - 1 in each of the n variables satisfying

 $\alpha(n; k_1, k_2, \dots, k_n) = \#MTs$ with bottom row (k_1, k_2, \dots, k_n) ,

How many MTs with bottom row (k_1, k_2, \ldots, k_n) are there?

Example

$$n = 2$$
: # MTs with bottom row (k_1, k_2)

?
$$\rightarrow \quad k_2-k_1+1$$
 possibilities k_2

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, ..., k_n)$ of degree n - 1 in each of the n variables satisfying

$$\alpha(n; k_1, k_2, \dots, k_n) = \#MTs$$
 with bottom row (k_1, k_2, \dots, k_n) ,

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Example (The five DMTs w	ith bottom row ((6, 3, 3, 2, 1))
--------------------------	------------------	------------------

				2									3					1
			2		2							3		3				
		3		2		2					3		3		2			
	3		3		2		2			3		3		2		2		
6		3		3		2		1	6		3		3		2		1	
				3									2					
			3		3							2		2				
		3		3		2					4		2		2			
	4		3		2		2			5		3		2		2		
6		3		3		2		1	6		3		3		2		1	
				3														
			3		3													
		3		3		2												
	5		3		2		2											
6		3		3		2		1										

Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \dots, k_n)$ denote the set of DMTs with bottom row (k_1, \dots, k_n) . Then

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\mathsf{dd}(A)}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \dots, k_n)$ denote the set of DMTs with bottom row (k_1, \dots, k_n) . Then

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\mathsf{dd}(A)}$$

Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \dots, k_n)$ denote the set of DMTs with bottom row (k_1, \dots, k_n) . Then

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\mathsf{dd}(A)}$$

Two consecutive equal entries (x, x) in a row are called pair.

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Theorem 1 (I. Fischer, L. Riegler (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \ldots, k_n)$ denote the set of DMTs with bottom row (k_1, \ldots, k_n) . Then

$$lpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\mathsf{dd}(A)}$$

Example $(\mathcal{D}_5(6,3,3,2,1))$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1: 1n = 2: 2n = 3: 7n = 4: 42n = 5: 429$$

Number of Alternating Sign Matrices of size n

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1: 1 n = 2: 2 n = 3: 7 n = 4: 42 n = 5: 429

Number of Alternating Sign Matrices of size n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1: 1n = 2: 2n = 3: 7n = 4: 42n = 5: 429

Number of Alternating Sign Matrices of size n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1: 1n = 2: 2n = 3: 7n = 4: 42n = 5: 429

Number of Alternating Sign Matrices of size n

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1: 1n = 2: 2n = 3: 7n = 4: 42n = 5: 429

Number of Alternating Sign Matrices of size n

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1: 1n = 2: 2n = 3: 7n = 4: 42n = 5: 429

Number of Alternating Sign Matrices of size n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1 : 1 n = 2 : 2 n = 3 : 7 n = 4 : 42n = 5 : 429

Number of Alternating Sign Matrices of size n

- $(n \times n)$ -matrix
- entries in $\{0, 1, -1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

- $(n \times n)$ -matrix
- \bullet entries in $\{0,1,-1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

- $(n \times n)$ -matrix
- \bullet entries in $\{0,1,-1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

- $(n \times n)$ -matrix
- \bullet entries in $\{0,1,-1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

Bijection: ASMs of size $n \Leftrightarrow$ MTs with bottom row $(1, 2, \dots, n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bijection: ASMs of size $n \Leftrightarrow$ MTs with bottom row $(1, 2, \dots, n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

n = 1 : 1 n = 2 : 2 n = 3 : 7 n = 4 : 42n = 5 : 429

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\alpha(2n; n, n, n - 1, n - 1, \dots, 1, 1)$$

$$\stackrel{\text{Th.1}}{=} (-1)^{\binom{2n}{2}} \sum_{A \in \mathcal{D}_{2n}(n, n, n - 1, n - 1, \dots, 1, 1)} (-1)^{\text{dd}(A)}$$

$$\stackrel{!}{=} \alpha(n; 1, 2, \dots, n)$$

ightarrow find suitable partition of $\mathcal{D}_{2n}(n,n,n-1,n-1,\ldots,1,1)$
$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1)$$

$$\stackrel{\text{Th.1}}{=} (-1)^{\binom{2n}{2}} \sum_{A \in \mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)} (-1)^{\text{dd}(A)}$$

$$\stackrel{!}{=} \alpha(n; 1, 2, \dots, n)$$

 \rightarrow find suitable partition of $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$

Example
$\begin{array}{ccc} & & 2 \\ & & 3 \\ & & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 &$

Open problem:

Sign-reversing involution on the remaining set of DMTs?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Example								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Open problem:

Sign-reversing involution on the remaining set of DMTs?

Overview of involved combinatorial objects

Monotone Triangles with bottom row (1, 2, ..., n)

$$(n \times n)\text{-ASMs}$$

DMTs with bottom row $(n, n, n-1, n-1, \dots, 1, 1)$

↕

?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Alternating Sign Matrices

Definition (Alternating Sign Matrix of size *n*)

- $(n \times n)$ -matrix
- \bullet entries in $\{0,1,-1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

Figure: Machine generating rows and columns of ASMs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (2-ASM of size *n*)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• columns generated by

Definition (2-ASM of size *n*)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• columns generated by

2-ASMs

Definition (2-ASM of size *n*)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine
- columns generated by

Example (DMT \Leftrightarrow 2-ASM)

							2								
						2		2							
					3		2		2						
				4		2		2		1					
			4		4		2		1		1				\Leftrightarrow
		4		4		2		2		1		1			
	4		4		3		2		2		1		1		
4		4		3		3		2		2		1		1	

 $\Leftrightarrow \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$

Theorem

The set $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$ is in bijection with the set of 2-ASMs of size n.

2-ASMs of size n

Theorem

The set $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$ is in bijection with the set of 2-ASMs of size n.

Monotone Triangles with bottom row $(1, 2, \ldots, n)$

 $(n \times n)\text{-ASMs}$

DMTs with bottom row $(n, n, n-1, n-1, \dots, 1, 1)$

\uparrow

2-ASMs of size
$$n$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem 2 (I. Fischer, L. Riegler (2011))

Let $A_{n,i}$ denote the number of ASMs with the first row's unique 1 in column *i*. Then

$$\alpha(2n-1; n-1+i, n-1, n-1, \dots, 1, 1) = (-1)^{n-1}A_{n,i}$$

holds for $i = 1, \ldots, 2n - 1$, $n \ge 1$.

Corollary

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem 2 (I. Fischer, L. Riegler (2011))

Let $A_{n,i}$ denote the number of ASMs with the first row's unique 1 in column *i*. Then

$$\alpha(2n-1; n-1+i, n-1, n-1, \dots, 1, 1) = (-1)^{n-1}A_{n,i}$$

holds for $i = 1, \ldots, 2n - 1$, $n \ge 1$.

Corollary

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

Proof.

$$\begin{aligned} \alpha(n; 1, 2, \dots, n) &= A_{n+1,1} \\ \stackrel{\text{Th.2}}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, \dots, 1, 1) \\ \stackrel{\text{Th.1}}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, \dots, 1, 1)} (-1)^{\text{dd}(A)} \\ &= \sum_{A \in \mathcal{D}_{2n}(n, n, \dots, 1, 1)} (-1)^{\text{dd}(A)+n} \\ \stackrel{\text{Th.1}}{=} \alpha(2n; n, n, n-1, n-1, \dots, 1, 1). \end{aligned}$$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

Proof.

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\text{Th.2}}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\text{Th.1}}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\text{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\text{dd}(A)+n}$$

$$\stackrel{\text{Th.1}}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

Proof.

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\text{Th}.^2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\text{Th}.^1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\text{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\text{dd}(A)+n}$$

$$\stackrel{\text{Th}.^1}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

Proof.

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\text{Th.2}}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\text{Th.1}}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\text{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\text{dd}(A)+n}$$

$$\stackrel{\text{Th.1}}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

Proof.

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\text{Th}.2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\text{Th}.1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\text{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\text{dd}(A)+n}$$

$$\stackrel{\text{Th}.1}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

By Theorem 1, if n even, then

$$\alpha(n; n, n-1, \ldots, 1) = 0.$$

What about *n* odd?

Conjecture

For n = 2m + 1, $m \ge 1$, the equation

$$\alpha(n; n, n-1, \dots, 1) = (-1)^m \alpha(m; 2, 4, \dots, 2m)$$

= $(-1)^m$ # vertically symmetric ASMs of size $2m + 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

seems to hold.

By Theorem 1, if *n* even, then

$$\alpha(n; n, n-1, \ldots, 1) = 0.$$

What about *n* odd?

Conjecture

For n = 2m + 1, $m \ge 1$, the equation

$$\alpha(n; n, n - 1, \dots, 1) = (-1)^m \alpha(m; 2, 4, \dots, 2m)$$

= $(-1)^m$ # vertically symmetric ASMs of size $2m + 1$

seems to hold.

R. E. Behrend, P. Di Francesco, and P. Zinn-Justin. On the weighted enumeration of alternating sign matrices and descending plane partitions. arXiv:1103.1176v1, 2011.

I. Fischer.

The number of monotone triangles with prescribed bottom row.

Adv. Appl. Math., no.2, 37:249-267, 2006.

I. Fischer.

A new proof of the refined alternating sign matrix theorem. J. Comb. Theory Ser. A, 114:253–264, 2007.

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1989.