# The local $h$-vector of the cluster subdivision of a simplex 

Christos A. Athanasiadis - Christina Savvidou
University of Athens
March 26, 2012

## Basic Definitions

An abstract simplicial complex is a geometric subdivision $\Gamma$ of the simplex $2^{V}$ if it has a geometric realization which subdivides the simplex.

## Basic Definitions

An abstract simplicial complex is a geometric subdivision $\Gamma$ of the simplex $2^{V}$ if it has a geometric realization which subdivides the simplex.

Example:


## Basic Definitions

An abstract simplicial complex is a geometric subdivision $\Gamma$ of the simplex $2^{V}$ if it has a geometric realization which subdivides the simplex.

Example:


## Basic Definitions

A simplicial complex is called flag if every minimal non-face of $\Gamma$ has at most two elements.

## Basic Definitions

A simplicial complex is called flag if every minimal non-face of $\Gamma$ has at most two elements.

Example of a non-flag subdivision:

$\{a, b, c\}$ is a minimal non-face

## Basic Definitions

Let $f_{i}$ be the number of the $i$-dimensional faces of a simplicial complex $\Gamma$.
$f$-vector: $f(\Gamma)=\left(f_{0}, \ldots, f_{d-1}\right)$
$f$-polynomial: $f(\Gamma, x)=f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$

## Basic Definitions

Let $f_{i}$ be the number of the $i$-dimensional faces of a simplicial complex $\Gamma$.
$f$-vector: $f(\Gamma)=\left(f_{0}, \ldots, f_{d-1}\right)$
$f$-polynomial: $f(\Gamma, x)=f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$
Example:


$$
f(\Gamma, x)=
$$

## Basic Definitions

Let $f_{i}$ be the number of the $i$-dimensional faces of a simplicial complex $\Gamma$.
$f$-vector: $f(\Gamma)=\left(f_{0}, \ldots, f_{d-1}\right)$
$f$-polynomial: $f(\Gamma, x)=f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$
Example:


$$
f(\Gamma, x)=6
$$

## Basic Definitions

Let $f_{i}$ be the number of the $i$-dimensional faces of a simplicial complex $\Gamma$.
$f$-vector: $f(\Gamma)=\left(f_{0}, \ldots, f_{d-1}\right)$
$f$-polynomial: $f(\Gamma, x)=f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$
Example:


$$
f(\Gamma, x)=6+10 x
$$

## Basic Definitions

Let $f_{i}$ be the number of the $i$-dimensional faces of a simplicial complex $\Gamma$.
$f$-vector: $f(\Gamma)=\left(f_{0}, \ldots, f_{d-1}\right)$
$f$-polynomial: $f(\Gamma, x)=f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$
Example:


## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=1
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=1+x
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=1+2 x
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=1+3 x
$$

## Basic Definitions

The $h$-vector $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ and the $h$-polynomial $h(\Gamma, x)=h_{0}+h_{1} x+\cdots+h_{d} x^{d}$ are defined by

$$
h(\Gamma, x)=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}, \text { where } f_{-1}=0
$$

Example:


$$
h(\Gamma, x)=1+3 x+x^{2}
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

where $\Gamma_{F}$ is the restriction of $\Gamma$ to the face $F$ of $2^{V}$.

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{v}(\Gamma, x)=1+3 x+x^{2}
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{v}(\Gamma, x)=1+3 x+x^{2}-(1+x)
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{V}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{V}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)-1
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{V}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)-1+1
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{v}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)-1+1+1
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\ell_{v}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)-1+1+1+1
$$

## Basic Definitions

For a geometric subdivision $\Gamma$ of the simplex $2^{V}$ the local $h$-polynomial $\ell_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ is defined as follows:

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{d} \ell_{i} x^{i}=\sum_{F \subseteq V}(-1)^{d-|F|} h\left(\Gamma_{F}, x\right)
$$

Example:


$$
\begin{gathered}
\ell_{V}(\Gamma, x)=1+3 x+x^{2}-(1+x)-(1+x)-1+1+1+1-1 \\
\ell_{V}(\Gamma, x)=x+x^{2}
\end{gathered}
$$

## Basic Definitions

## Theorem (Stanley)

The local h-polynomial $\ell_{V}(\Gamma, x)$ has nonnegative and symmetric coefficients, equivalently $\ell_{i} \geq 0$ and $\ell_{i}=\ell_{d-i}$ for every $0 \leq i \leq d$.

## Basic Definitions

## Theorem (Stanley)

The local h-polynomial $\ell_{V}(\Gamma, x)$ has nonnegative and symmetric coefficients, equivalently $\ell_{i} \geq 0$ and $\ell_{i}=\ell_{d-i}$ for every $0 \leq i \leq d$.

Thus the local $\gamma$-polynomial $\xi_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ can be uniquely defined by

$$
\ell_{V}(\Gamma, x)=(1+x)^{d} \xi_{V}\left(\Gamma, \frac{x}{(1+x)^{2}}\right)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

## Basic Definitions

## Theorem (Stanley)

The local h-polynomial $\ell_{V}(\Gamma, x)$ has nonnegative and symmetric coefficients, equivalently $\ell_{i} \geq 0$ and $\ell_{i}=\ell_{d-i}$ for every $0 \leq i \leq d$.

Thus the local $\gamma$-polynomial $\xi_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ can be uniquely defined by

$$
\ell_{V}(\Gamma, x)=(1+x)^{d} \xi_{v}\left(\Gamma, \frac{x}{(1+x)^{2}}\right)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

Example:

$$
\ell_{v}(\Gamma, x)=x+x^{2}
$$

## Basic Definitions

## Theorem (Stanley)

The local h-polynomial $\ell_{V}(\Gamma, x)$ has nonnegative and symmetric coefficients, equivalently $\ell_{i} \geq 0$ and $\ell_{i}=\ell_{d-i}$ for every $0 \leq i \leq d$.

Thus the local $\gamma$-polynomial $\xi_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ can be uniquely defined by

$$
\ell_{V}(\Gamma, x)=(1+x)^{d} \xi_{v}\left(\Gamma, \frac{x}{(1+x)^{2}}\right)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

Example:

$$
\ell_{v}(\Gamma, x)=x+x^{2}=x(1+x)
$$

## Basic Definitions

## Theorem (Stanley)

The local h-polynomial $\ell_{V}(\Gamma, x)$ has nonnegative and symmetric coefficients, equivalently $\ell_{i} \geq 0$ and $\ell_{i}=\ell_{d-i}$ for every $0 \leq i \leq d$.

Thus the local $\gamma$-polynomial $\xi_{V}(\Gamma, x)$ of $\Gamma$ with respect to $V$ can be uniquely defined by

$$
\ell_{V}(\Gamma, x)=(1+x)^{d} \xi_{v}\left(\Gamma, \frac{x}{(1+x)^{2}}\right)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

Example:

$$
\ell_{v}(\Gamma, x)=x+x^{2}=x(1+x) \Rightarrow \xi_{v}(\Gamma, x)=x
$$

## Motivation

## Conjecture (Athanasiadis)

For every flag geometric subdivision $\Gamma$ of the simplex $2^{V}$ we have $\xi_{v}(\Gamma) \geq 0$.

## Motivation

## Conjecture (Athanasiadis)

For every flag geometric subdivision $\Gamma$ of the simplex $2^{V}$ we have $\xi_{v}(\Gamma) \geq 0$.

- Its validity implies the validity of Gal's Conjecture and the monotonicity property for the $\gamma$-vector.


## Motivation

## Conjecture (Athanasiadis)

For every flag geometric subdivision $\Gamma$ of the simplex $2^{V}$ we have $\xi_{v}(\Gamma) \geq 0$.

- Its validity implies the validity of Gal's Conjecture and the monotonicity property for the $\gamma$-vector.
- It is proven in dimension 3 and for iterated edge subdivisions.


## Main Results

- For every root system $\Phi$ the local $\gamma$-vector of the cluster subdivision $\Gamma(\Phi)$ is nonnegative.
- Combinatorial interpretations to the entries of the local $\gamma$-vector of the barycentric subdivision.


## Cluster Subdivision

Given a root system $\Phi$, the cluster complex $\Delta(\Phi)$ is a simplicial complex on the vertex set $\Phi_{\geq-1}$ of almost positive roots, having faces defined by a compatibility relation.

## Cluster Subdivision

Given a root system $\Phi$, the cluster complex $\Delta(\Phi)$ is a simplicial complex on the vertex set $\Phi_{\geq-1}$ of almost positive roots, having faces defined by a compatibility relation.
Example for type $A_{2}$ :

$\Phi=\left\{a_{1}, a_{2}, a_{1}+a_{2},-a_{1},-a_{2},-a_{1}-a_{2}\right\}$

## Cluster Subdivision

Given a root system $\Phi$, the cluster complex $\Delta(\Phi)$ is a simplicial complex on the vertex set $\Phi_{\geq-1}$ of almost positive roots, having faces defined by a compatibility relation.
Example for type $A_{2}$ :

$$
\Phi=\left\{a_{1}, a_{2}, a_{1}+a_{2},-a_{1},-a_{2},-a_{1}-a_{2}\right\} \quad \Pi=\left\{a_{1}, a_{2}\right\}
$$

## Cluster Subdivision

Given a root system $\Phi$, the cluster complex $\Delta(\Phi)$ is a simplicial complex on the vertex set $\Phi_{\geq-1}$ of almost positive roots, having faces defined by a compatibility relation.
Example for type $A_{2}$ :


$$
\begin{array}{ll}
\Phi=\left\{a_{1}, a_{2}, a_{1}+a_{2},-a_{1},-a_{2},-a_{1}-a_{2}\right\} & \Pi=\left\{a_{1}, a_{2}\right\} \\
\Phi^{+}=\left\{a_{1}, a_{2}, a_{1}+a_{2}\right\} &
\end{array}
$$

## Cluster Subdivision

Given a root system $\Phi$, the cluster complex $\Delta(\Phi)$ is a simplicial complex on the vertex set $\Phi_{\geq-1}$ of almost positive roots, having faces defined by a compatibility relation.
Example for type $A_{2}$ :


$$
\begin{aligned}
& \Phi=\left\{a_{1}, a_{2}, a_{1}+a_{2},-a_{1},-a_{2},-a_{1}-a_{2}\right\} \quad \Pi=\left\{a_{1}, a_{2}\right\} \\
& \Phi^{+}=\left\{a_{1}, a_{2}, a_{1}+a_{2}\right\}
\end{aligned} \Phi_{\geq-1}=\left\{a_{1}, a_{2}, a_{1}+a_{2},-a_{1},-a_{2}\right\}, ~ l
$$

## Cluster Subdivision



The cluster complex of type $A_{2}$

## Cluster Subdivision



The cluster complex of type $A_{2}$


The cluster complex of type $A_{3}$

## Cluster Subdivision



The cluster complex of type $A_{2}$


The cluster complex of type $A_{3}$

The positive cluster complex $\Delta^{+}(\Phi)$ is the restriction of $\Delta(\Phi)$ on the positive roots $\Phi^{+}$. It naturally defines a geometric subdivision of the simplex, the cluster subdivision $Г(\Phi)$.

## Cluster Subdivision



The positive cluster complex of type $A_{2}$


The cluster complex of type $A_{3}$

The positive cluster complex $\Delta^{+}(\Phi)$ is the restriction of $\Delta(\Phi)$ on the positive roots $\Phi^{+}$. It naturally defines a geometric subdivision of the simplex, the cluster subdivision $Г(\Phi)$.

## Cluster Subdivision



The positive cluster complex of type $A_{2}$
The positive cluster complex of type $A_{3}$
The positive cluster complex $\Delta^{+}(\Phi)$ is the restriction of $\Delta(\Phi)$ on the positive roots $\Phi^{+}$. It naturally defines a geometric subdivision of the simplex, the cluster subdivision $Г(\Phi)$.

## Cluster Subdivision

## Theorem (Athanasiadis, Tzanaki)

$$
h\left(\Delta_{+}(\Phi), x\right)= \begin{cases}\sum_{i=0}^{n} \frac{1}{i+1}\binom{n}{i}\binom{n-1}{i} x^{i}, & \text { if } \Phi=A_{n} \\ \sum_{i=0}^{n}\binom{n}{i}\binom{n-1}{i} x^{i}, & \text { if } \Phi=B_{n} \text { or } C_{n} \\ \sum_{i=0}^{n}\left(\binom{n}{i}\binom{n-2}{i}+\binom{n-2}{i-2}\binom{n-1}{i}\right) x^{i}, & \text { if } \Phi=D_{n}\end{cases}
$$

## Cluster Subdivision

For the type $A_{n}$ the $h$-polynomial is equal to the Narayana polynomial $C_{n}(x)$.

$$
C_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ 1+3 x+x^{2}, & \text { if } n=3 \\ 1+6 x+6 x^{2}+x^{3}, & \text { if } n=4 \\ 1+10 x+20 x^{2}+10 x^{3}+x^{4}, & \text { if } n=5 \\ 1+15 x+50 x^{2}+50 x^{3}+15 x^{4}+x^{5}, & \text { if } n=6\end{cases}
$$

## Cluster Subdivision

For the type $A_{n}$ the $h$-polynomial is equal to the Narayana polynomial $C_{n}(x)$.

$$
C_{n}(x)= \begin{cases}1, & \text { if } n=1 \\ 1+x, & \text { if } n=2 \\ 1+3 x+x^{2}, & \text { if } n=3 \\ 1+6 x+6 x^{2}+x^{3}, & \text { if } n=4 \\ 1+10 x+20 x^{2}+10 x^{3}+x^{4}, & \text { if } n=5 \\ 1+15 x+50 x^{2}+50 x^{3}+15 x^{4}+x^{5}, & \text { if } n=6\end{cases}
$$

The coefficient of $x^{i}, 0 \leq i \leq n$, is the number of $\pi \in \mathrm{NC}^{A}(n)$ which have $n-i$ blocks.

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|/ \backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right)
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right)
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right)
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=C_{3}(x)
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right)
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=C_{3}(x)-C_{2}(x)
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)-C_{2}(x)
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|\backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\begin{aligned}
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i} & =C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)-C_{2}(x) \\
+ & C_{1}(x)
\end{aligned}
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|/ \backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\begin{aligned}
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i} & =C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)-C_{2}(x) \\
+ & C_{1}(x)+C_{1}(x)
\end{aligned}
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|/ \backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\begin{aligned}
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i} & =C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)-C_{2}(x) \\
+ & C_{1}(x)+C_{1}(x)+C_{1}(x)
\end{aligned}
$$

## Cluster Subdivision

Let $I$ be an $n$-element index set and $\Pi=\left\{a_{i}: i \in I\right\}$. The local $h$-polynomial $\ell_{I}(\Gamma(\Phi), x)$ is given by

$$
\ell_{l}(\Gamma(\Phi), x)=\sum_{J \subseteq l}(-1)^{|/ \backslash J|} h\left(\Delta_{+}\left(\Phi_{J}\right), x\right),
$$

where $\Phi_{J}$ is the standard parabolic root subsystem of $\Phi$ corresponding to $J$.
Example for $\Phi=A_{3}$ :

$$
\begin{gathered}
\sum_{i=0}^{3} \ell_{i}\left(A_{3}\right) x^{i}=C_{3}(x)-C_{2}(x)-C_{1}(x) \cdot C_{1}(x)-C_{2}(x) \\
+C_{1}(x)+C_{1}(x)+C_{1}(x)-C_{0}(x)
\end{gathered}
$$

## Cluster Subdivision - Type $A$

$$
\sum_{i=0}^{n} \ell_{i}(\Phi) x^{i}= \begin{cases}0, & \text { if } n=1 \\ x, & \text { if } n=2 \\ x+x^{2}, & \text { if } n=3 \\ x+4 x^{2}+x^{3}, & \text { if } n=4 \\ x+8 x^{2}+8 x^{3}+x^{4}, & \text { if } n=5 \\ x+13 x^{2}+29 x^{3}+13 x^{4}+x^{5}, & \text { if } n=6 \\ x+19 x^{2}+73 x^{3}+73 x^{4}+19 x^{5}+x^{6}, & \text { if } n=7 \\ x+26 x^{2}+151 x^{3}+266 x^{4}+151 x^{5}+26 x^{6}+x^{7}, & \text { if } n=8\end{cases}
$$

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}0, & \text { if } n=1 \\ x, & \text { if } n=2,3 \\ x+2 x^{2}, & \text { if } n=4 \\ x+5 x^{2}, & \text { if } n=5 \\ x+9 x^{2}+5 x^{3}, & \text { if } n=6 \\ x+14 x^{2}+21 x^{3}, & \text { if } n=7 \\ x+20 x^{2}+56 x^{3}+14 x^{4}, & \text { if } n=8\end{cases}
$$

## Cluster Subdivision - Type $A$

Nested and nonnested singletons in $\mathrm{NC}^{A}(n)$ :


The singleton block $\{3\}$ is nested, while $\{7\}$ is nonnested.

## Cluster Subdivision - Type $A$

## Proposition

For the root system $\Phi$ of type $A_{n}$ the following hold:

- $\ell_{i}(\Phi)$ is equal to the number of partitions $\pi \in \mathrm{NC}^{A}(n)$ with $i$ blocks, such that every singleton block of $\pi$ is nested,
- $\xi_{i}(\Phi)$ is equal to the number of partitions $\pi \in \mathrm{NC}^{A}(n)$ which have no singleton block and a total of $i$ blocks.
Moreover, we have the explicit formulas

$$
\xi_{i}(\Phi)= \begin{cases}0, & \text { if } i=0 \\ \frac{1}{n-i+1}\binom{n}{i}\binom{n-i-1}{i-1}, & \text { if } 1 \leq i \leq\lfloor n / 2\rfloor\end{cases}
$$

and

$$
\ell_{i}(\Phi)=\sum_{j=1}^{i} \frac{1}{n-j+1}\binom{n}{j}\binom{n-j-1}{j-1}\binom{n-2 j}{i-j}\binom{n-2 j}{i-j}
$$

## Cluster Subdivision - Type $A$

For the combinatorial interpretation of the local $\gamma$-polynomial given by

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

an equivalence relation in $\mathrm{NC}^{A}(n)$ is defined.

## Cluster Subdivision - Type $A$

For the combinatorial interpretation of the local $\gamma$-polynomial given by

$$
\ell_{V}(\Gamma, x)=\sum_{i=0}^{\lfloor d / 2\rfloor} \xi_{i} x^{i}(1+x)^{d-2 i}
$$

an equivalence relation in $\mathrm{NC}^{A}(n)$ is defined. Example:

$\{1,3\},\{2\},\{4,5,6\}$
$\{1,3\},\{2\},\{4,6\},\{5\}$
$\{1,2,3\},\{4,6\},\{5\}$
$\{1,2,3\},\{4,5,6\}$

## Cluster Subdivision - Type $B$

$$
\sum_{i=0}^{n} \ell_{i}(\Phi) x^{i}= \begin{cases}2 x, & \text { if } n=2 \\ 3 x+3 x^{2}, & \text { if } n=3 \\ 4 x+14 x^{2}+4 x^{3}, & \text { if } n=4 \\ 5 x+35 x^{2}+35 x^{3}+5 x^{4}, & \text { if } n=5 \\ 6 x+69 x^{2}+146 x^{3}+69 x^{4}+6 x^{5}, & \text { if } n=6 \\ 7 x+119 x^{2}+427 x^{3}+427 x^{4}+119 x^{5}+7 x^{6}, & \text { if } n=7\end{cases}
$$

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}2 x, & \text { if } n=2 \\ 3 x, & \text { if } n=3 \\ 4 x+6 x^{2}, & \text { if } n=4 \\ 5 x+20 x^{2}, & \text { if } n=5 \\ 6 x+45 x^{2}+20 x^{3}, & \text { if } n=6 \\ 7 x+84 x^{2}+105 x^{3}, & \text { if } n=7 \\ 8 x+140 x^{2}+336 x^{3}+70 x^{4}, & \text { if } n=8\end{cases}
$$

## Cluster Subdivision - Type $B$

$$
\sum_{i=0}^{n} \ell_{i}(\Phi) x^{i}= \begin{cases}2 x, & \text { if } n=2 \\ 3 x+3 x^{2}, & \text { if } n=3 \\ 4 x+14 x^{2}+4 x^{3}, & \text { if } n=4 \\ 5 x+35 x^{2}+35 x^{3}+5 x^{4}, & \text { if } n=5 \\ 6 x+69 x^{2}+146 x^{3}+69 x^{4}+6 x^{5}, & \text { if } n=6 \\ 7 x+119 x^{2}+427 x^{3}+427 x^{4}+119 x^{5}+7 x^{6}, & \text { if } n=7\end{cases}
$$

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}2 x, & \text { if } n=2 \\ 3 x, & \text { if } n=3 \\ 4 x+6 x^{2}, & \text { if } n=4 \\ 5 x+20 x^{2}, & \text { if } n=5 \\ 6 x+45 x^{2}+20 x^{3}, & \text { if } n=6 \\ 7 x+84 x^{2}+105 x^{3}, & \text { if } n=7 \\ 8 x+140 x^{2}+336 x^{3}+70 x^{4}, & \text { if } n=8\end{cases}
$$

The Dynkin diagram for type $B$ is of the form

## Cluster Subdivision - Type $B$

## Proposition

For the root system $\Phi$ of type $B_{n}$ the following hold:

- $\ell_{i}(\Phi)$ is equal to the number of partitions $\pi \in \mathrm{NC}^{B}(n)$ with no zero block and $i$ pairs $\{B,-B\}$ of nonzero blocks, such that every positive singleton block of $\pi$ is nested,
- $\xi_{i}(\Phi)$ is equal to the number of partitions $\pi \in \mathrm{NC}^{B}(n)$ which have no zero block, no singleton block and a total of $i$ pairs $\{B,-B\}$ of nonzero blocks.

Moreover, we have the explicit formula

$$
\xi_{i}(\Phi)= \begin{cases}0, & \text { if } i=0 \\ \binom{n}{i}\binom{n-i-1}{i-1}, & \text { if } 1 \leq i \leq\lfloor n / 2\rfloor\end{cases}
$$

## Cluster Subdivision - Type $D$

$$
\begin{gathered}
\sum_{i=0}^{n} \ell_{i}(\Phi) x^{i}= \begin{cases}2 x+6 x^{2}+2 x^{3}, & \text { if } n=4 \\
3 x+18 x^{2}+18 x^{3}+3 x^{4}, & \text { if } n=5 \\
4 x+40 x^{2}+80 x^{3}+40 x^{4}+4 x^{5}, & \text { if } n=6 \\
5 x+75 x^{2}+250 x^{3}+250 x^{4}+75 x^{5}+5 x^{6}, & \text { if } n=7\end{cases} \\
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}2 x+2 x^{2}, & \text { if } n=4 \\
3 x+9 x^{2}, & \text { if } n=5 \\
4 x+24 x^{2}+8 x^{3}, & \text { if } n=6 \\
5 x+50 x^{2}+50 x^{3}, & \text { if } n=7 \\
6 x+90 x^{2}+180 x^{3}+30 x^{4}, & \text { if } n=8\end{cases}
\end{gathered}
$$

## Cluster Subdivision - Type $D$

$$
\begin{gathered}
\sum_{i=0}^{n} \ell_{i}(\Phi) x^{i}= \begin{cases}2 x+6 x^{2}+2 x^{3}, & \text { if } n=4 \\
3 x+18 x^{2}+18 x^{3}+3 x^{4}, & \text { if } n=5 \\
4 x+40 x^{2}+80 x^{3}+40 x^{4}+4 x^{5}, & \text { if } n=6 \\
5 x+75 x^{2}+250 x^{3}+250 x^{4}+75 x^{5}+5 x^{6}, & \text { if } n=7\end{cases} \\
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}2 x+2 x^{2}, & \text { if } n=4 \\
3 x+9 x^{2}, & \text { if } n=5 \\
4 x+24 x^{2}+8 x^{3}, & \text { if } n=6 \\
5 x+50 x^{2}+50 x^{3}, & \text { if } n=7 \\
6 x+90 x^{2}+180 x^{3}+30 x^{4}, & \text { if } n=8\end{cases}
\end{gathered}
$$

The Dynkin diagram for type $D$ is of the form


## Cluster Subdivision - Type $D$

## Proposition

For the root system $\Phi$ of type $D_{n}$ we have

$$
\ell_{l}(\Gamma(\Phi), x)=(n-2) \cdot x C_{n-1}(x) .
$$

Moreover, we have the explicit formulas

$$
\ell_{i}(\Phi)= \begin{cases}0, & \text { if } i=0 \\ \frac{n-2}{i}\binom{n-1}{i-1}\binom{n-2}{i-1}, & \text { if } 1 \leq i \leq n\end{cases}
$$

and

$$
\xi_{i}(\Phi)=\frac{n-2}{i}\binom{2 i-2}{i-1}\binom{n-2}{2 i-2} \text {, for } 1 \leq i \leq\lfloor n / 2\rfloor .
$$

## Cluster Subdivision

For the exceptional types we have

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}(m-2) x, & \text { if } \Phi=I_{2}(m) \\ 8 x, & \text { if } \Phi=H_{3} \\ 42 x+40 x^{2}, & \text { if } \Phi=H_{4} \\ 10 x+9 x^{2}, & \text { if } \Phi=F_{4} \\ 7 x+35 x^{2}+13 x^{3}, & \text { if } \Phi=E_{6} \\ 16 x+124 x^{2}+112 x^{3}, & \text { if } \Phi=E_{7} \\ 44 x+484 x^{2}+784 x^{3}+120 x^{4}, & \text { if } \Phi=E_{8} .\end{cases}
$$

## Cluster Subdivision

For the exceptional types we have

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i}(\Phi) x^{i}= \begin{cases}(m-2) x, & \text { if } \Phi=I_{2}(m) \\ 8 x, & \text { if } \Phi=H_{3} \\ 42 x+40 x^{2}, & \text { if } \Phi=H_{4} \\ 10 x+9 x^{2}, & \text { if } \Phi=F_{4} \\ 7 x+35 x^{2}+13 x^{3}, & \text { if } \Phi=E_{6} \\ 16 x+124 x^{2}+112 x^{3}, & \text { if } \Phi=E_{7} \\ 44 x+484 x^{2}+784 x^{3}+120 x^{4}, & \text { if } \Phi=E_{8} .\end{cases}
$$

## Corollary

For every root system $\Phi$ the local $\gamma$-vector of $\Gamma(\Phi)$ is nonnegative.

## Barycentric Subdivision

Vertices of $\operatorname{sd}\left(2^{V}\right): F \subseteq V$ Faces of $\operatorname{sd}\left(2^{V}\right)$ : Chains $F_{1} \subset F_{2} \subset \ldots \subset F_{n}$ of subsets of $V$

## Barycentric Subdivision

Vertices of $\operatorname{sd}\left(2^{V}\right): F \subseteq V$
Faces of $\operatorname{sd}\left(2^{V}\right)$ : Chains $F_{1} \subset F_{2} \subset \ldots \subset F_{n}$ of subsets of $V$

## Example:



## Barycentric Subdivision

Vertices of $\operatorname{sd}\left(2^{V}\right): F \subseteq V$
Faces of $\operatorname{sd}\left(2^{V}\right)$ : Chains $F_{1} \subset F_{2} \subset \ldots \subset F_{n}$ of subsets of $V$

Example:


## Barycentric Subdivision

Vertices of $\operatorname{sd}\left(2^{V}\right): F \subseteq V$
Faces of $\operatorname{sd}\left(2^{V}\right)$ : Chains $F_{1} \subset F_{2} \subset \ldots \subset F_{n}$ of subsets of $V$

Example:


## Barycentric Subdivision

## Theorem (Stanley)

$$
\ell v\left(\operatorname{sd}\left(2^{V}\right), x\right)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{ex}(w)}
$$

where $\mathcal{D}_{n}$ is the set of derangements (permutations with no fixed points) in $\mathcal{S}_{n}$ and $\operatorname{ex}(w)=|\{i: w(i)>i\}|$.

## Barycentric Subdivision

## Theorem (Stanley)

$$
\ell_{v}\left(\operatorname{sd}\left(2^{V}\right), x\right)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{ex}(w)}
$$

where $\mathcal{D}_{n}$ is the set of derangements (permutations with no fixed points) in $\mathcal{S}_{n}$ and $\operatorname{ex}(w)=|\{i: w(i)>i\}|$.

This polynomial, known as the derangement polynomial $d_{n}(x)$ of order $n$, has been studied by

- Brenti (1990)


## Barycentric Subdivision

## Theorem (Stanley)

$$
\ell_{v}\left(\operatorname{sd}\left(2^{V}\right), x\right)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{ex}(w)}
$$

where $\mathcal{D}_{n}$ is the set of derangements (permutations with no fixed points) in $\mathcal{S}_{n}$ and $\operatorname{ex}(w)=|\{i: w(i)>i\}|$.

This polynomial, known as the derangement polynomial $d_{n}(x)$ of order $n$, has been studied by

- Brenti (1990)
- Stembridge (1992)


## Barycentric Subdivision

## Theorem (Stanley)

$$
\ell v\left(\operatorname{sd}\left(2^{V}\right), x\right)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{ex}(w)}
$$

where $\mathcal{D}_{n}$ is the set of derangements (permutations with no fixed points) in $\mathcal{S}_{n}$ and $\operatorname{ex}(w)=|\{i: w(i)>i\}|$.

This polynomial, known as the derangement polynomial $d_{n}(x)$ of order $n$, has been studied by

- Brenti (1990)
- Stembridge (1992)
- Zhang (1995)


## Barycentric Subdivision

## Theorem (Stanley)

$$
\ell_{v}\left(\operatorname{sd}\left(2^{V}\right), x\right)=\sum_{w \in \mathcal{D}_{n}} x^{\operatorname{ex}(w)}
$$

where $\mathcal{D}_{n}$ is the set of derangements (permutations with no fixed points) in $\mathcal{S}_{n}$ and $\operatorname{ex}(w)=|\{i: w(i)>i\}|$.

This polynomial, known as the derangement polynomial $d_{n}(x)$ of order $n$, has been studied by

- Brenti (1990)
- Stembridge (1992)
- Zhang (1995)
- Chen, Tang, Zhao (2009).


## Barycentric Subdivision

For the first few values of $n$ we have

$$
d_{n}(x)= \begin{cases}x, & \text { if } n=2 \\ x+x^{2}, & \text { if } n=3 \\ x+7 x^{2}+x^{3}, & \text { if } n=4 \\ x+21 x^{2}+21 x^{3}+x^{4}, & \text { if } n=5 \\ x+51 x^{2}+161 x^{3}+51 x^{4}+x^{5}, & \text { if } n=6\end{cases}
$$

## Barycentric Subdivision

## Theorem

Let $\left(\xi_{0}, \xi_{1}, \ldots, \xi_{\lfloor n / 2\rfloor}\right)$ be the local $\gamma$-vector of the barycentric subdivision $\operatorname{sd}\left(2^{V}\right)$ of the $(n-1)$-dimensional simplex $2^{V}$. Then $\xi_{i}$ is equal to each of the following:
(i) the number of permutations $w \in \mathcal{S}_{n}$ with i runs and no run of length one,
(ii) the number of derangements $w \in \mathcal{D}_{n}$ with $i$ excedances and no double excedance,
(iii) the number of permutations $w \in \mathcal{S}_{n}$ with $i$ descents and no double descent, such that every left to right maximum of $w$ is a descent.

## Barycentric Subdivision

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i} x^{i}= \begin{cases}x, & \text { if } n=2,3 \\ x+5 x^{2}, & \text { if } n=4 \\ x+18 x^{2}, & \text { if } n=5 \\ x+47 x^{2}+61 x^{3}, & \text { if } n=6\end{cases}
$$

## Barycentric Subdivision

$$
\sum_{i=0}^{\lfloor n / 2\rfloor} \xi_{i} x^{i}= \begin{cases}x, & \text { if } n=2,3 \\ x+5 x^{2}, & \text { if } n=4 \\ x+18 x^{2}, & \text { if } n=5 \\ x+47 x^{2}+61 x^{3}, & \text { if } n=6\end{cases}
$$

For example we have the following permutations in $\mathcal{S}_{4}$ with no run of length one

$$
\begin{array}{lll}
1234 & 13.24 & 14.23 \\
23.14 & 24.13 & 34.12 .
\end{array}
$$

Such permutations have been studied by Gessel.

## Open Problems

- A more conceptual proof for the cluster subdivision of type $D$ in the spirit of those of type $A$ and $B$.


## Open Problems

- A more conceptual proof for the cluster subdivision of type $D$ in the spirit of those of type $A$ and $B$.
- Uniform interpretations for $\ell_{i}(\Phi)$ and $\xi_{i}(\Phi)$ for all types $\Phi$.


## Open Problems

- A more conceptual proof for the cluster subdivision of type $D$ in the spirit of those of type $A$ and $B$.
- Uniform interpretations for $\ell_{i}(\Phi)$ and $\xi_{i}(\Phi)$ for all types $\Phi$.
- Real-rootness for the local $h$-polynomial and the local $\gamma$-polynomial of the cluster subdivision.


## Open Problems

- A more conceptual proof for the cluster subdivision of type $D$ in the spirit of those of type $A$ and $B$.
- Uniform interpretations for $\ell_{i}(\Phi)$ and $\xi_{i}(\Phi)$ for all types $\Phi$.
- Real-rootness for the local $h$-polynomial and the local $\gamma$-polynomial of the cluster subdivision.
- The local $h$-polynomial and the local $\gamma$-polynomial of the barycentric subdivision of an arbitrary subdivision of the simplex.


## Thank you all for your attention!



## European Union European Social Fund



Co-financed by Greece and the European Union

