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Motivations

Grammars are a fundamental structure in computer science:
information theory, language theory, compilation, bioinformatics,
combinatorics (Schützenberger methodology). . .

Challenge: is it easy to test if a given generating function is
N-algebraic? (i.e. is it associated to a context-free grammar?)

Can we find an easy criterion?

1− (1− 4z)1/3 + O((1− 4z)2/3), 1− (1− 4z)1/4 + O((1− 4z)3/4).

Flajolet and Sedgewick, Analytic Combinatorics, p.493:
“It would at least be desirable to determine directly,
from a positive (but reducible) system,
the type of singular behaviour of the solution,
but the systematic research involved in such a programme
is yet to be carried out.”
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Combinatorial object Specification Grammar

Super-bicolored trees B = 2zT Seq(B)


B → a · T · U|b · T · U

U → B · U|ε
T → a · T · A|a
A → T · A|ε

Closure properties: union, concatenation, star, shuffle. . .

Non closure properties: complement, intersection
(⇒ no minus sign!)

The generating function of an algebraic grammar is called N-algebraic.
(reminiscent of the set of N-rational generating functions associated
to automata.)
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Algebraic branches

Combinatorial
object

Algebraic
grammar

Functional
equation Branches

Binary trees T → a ·T ·T |a T (z) = z+zT 2(z)


1+
√

1−4z2

2z
1−
√

1−4z2

2z

Algebraic grammar with m non-terminals (well-founded system):

1 Polynomial system of equations {Yj = Pj(z ,Y1, . . . ,Ym)}j ,
2 Pj have nonnegative coefficients,

3
−−→
Y (0) = (0, . . . , 0),

−−−−→
Y (t+1) = Pj(

−−→
Y (t)),

−→
Y = lim

t→∞

−−→
Y (t)

⇒ unique branch analytic with nonnegative Taylor coefficients around 0.
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Asymptotics of algebraic grammars

Theorem: asymptotics of the function via Puiseux expansion
[Newton-Puiseux]
Let f (z) the branch of an algebraic equation P(z , f (z)) = 0, near its
singularities ρ, f (z) admits a convergent fractional series expansion of the
form: f (z) =

∑
k≥k0

ck . (z − ρ)
k
K with k0 ∈ Z and K ≥ 1.

Theorem: asymptotics of coefficients via singularity
analysis [Darboux, Flajolet–Odlyzko]
f (z) ∼ c0 + C .(z − ρ)α

⇒ fn ∼ C
1

Γ(−α)
ρ−nnγ with γ = −α− 1

What are the possible values of the "critical exponent" γ?
It is just known: γ ∈ Q/{−N}. (+problem also tackled by Schaeffer & Bousquet-Mélou)
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A strongly connected graph is a directed graph that has a path from each
vertex to every other vertex.

Language Grammar Dependency graph

L = {(an.b2n)∗, n ≥ 0} A→ aAB | ε
B → bbA | ε A B

strongly connected graph.

L = {anbmambn,
n ≥ 0,m ≥ 0}

A→ aAb | B
B → bBa | ε

A B

non-strongly

connected graph.
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Critical exponent of strongly connected graph

Theorem of [Drmota–Lalley–Woods, 97–93–97]
Let {Yj = Pj(z ,Y1, . . . ,Ym)}j a system satisfying:

1 all polynomials Pi have positive coefficients and ∂2Pi
∂Yi
6= 0;

2 the system admits a fixed point ~Y ;
3 the dependency graph of the system is strongly connected.

Then:
1 Y (z) = C0 − C .(1− z

ρ)
1
2 + O(1− z

ρ) for z ∼ ρ,

2 [zn]Y (z) ∼ C . 1
2
√
π
.ρ−n.n−

3
2 with ρ,C0,C algebraic numbers.
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Examples

One single non-terminal ⇒ universality of the −3/2 exponent (e.g., simple
families of trees [Meir and Moon]).{

A → a · A|b · B · B|c
B → b · A|a · B · B|c

{
A(z) = zA(z) + zB(z)2 + z
B(z) = zA(z) + zB(z)2 + z

Algebraic equation: zA(z)2 + (z − 1)A(z) + z = 0

Branches of A(z):

−z − 1 +
√
−3z2 − 2z + 1
2z

,
−z + 1 +

√
−3z2 − 2z + 1
2z

The singularities: −1, 0, 1/3

Puiseux expansion: A(z) = 5
2 − (3(1− 3z))1/2 + O(1− 3z)
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Sketch of proof [Drmota–Lalley–Woods Theorem, 97–93–97]

Each component solution is an algebraic function with a positive
radius of convergence
(proof: combinatorial reason),

each component has a unique branch with positive coefficients
(proof: by construction, well-founded system),

the Yj ’s have the same dominant singularity
(proof: if not, contradiction between lim

x→ρ
∂m

x Yj(x) =∞),

the Yj ’s have a square root behavior
(proof: via the implicit function theorem + Taylor expansion).
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Critical exponent of non-strongly connected graph

general trees
T = z Seq(T )

{
T → a · T · A|a
A → T · A|ε

T A

strongly connected.

super-bicolored trees:
B = T [(z + z).T ]
B = 2zT Seq(B)


B → a · T · U|b · T · U

U → B · U|ε
T → a · T · A|a
A → T · A|ε

B T

U A

non-strongly connected.

Branch: B(z) = 1
2 −

1
2

√
1− 4z + 4z

√
1− 4z

Puiseux expansion: B(z) = 1
2 −

1
2(1− 4z)1/4 + O((1− 4z)1/2)

Can be automatized via the Algolib Maple library [Flajolet–Salvy–Zimmermann].
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Explicit construction of critical behavior in 1/2k

The critical behavior of bicolored trees T is 1/2

super-bicolored trees: B = T [(z + z).T ]
I algebraic grammar,
I schema of critical composition,
I 1

22 is the critical behavior.

k-super-bicolored trees: Bk = T [(z + z).Bk−1]
I algebraic grammar,
I schema of k nested critical compositions,
I 1

2k+1 is the critical behavior.
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Explicit construction of critical behavior in 1/2k (proof)

k-super-bicolored trees:
Bk = T [(z + z).Bk−1]

= ((z + z).Bk−1. Seq(Bk)

Grammar of Bk is algebraic:{
Bk → a · Bk−1 · Sk |b · Bk−1 · Sk

Sk → Bk · Sk |ε

Bk Uk

Bk−1 Uk−1

B1 U1

T A

The dependency graph of Bk is a non strongly connected graph.

The composition is always a critical composition: (i.e. h(z) = f (g(z))
with ρh = ρg and ρf = g(ρg )).

Bk(z) = T (2zBk−1(z)) = 1
2

√
1− 8zBk−1(z).

Hanane Tafat (Paris Nord) Asymptotics of Algebraic Grammar SLC, Ottrott 14 / 22



A first generalization of the Drmota–Lalley–Woods theorem
Let {Yj = Pj(z ,Y1, . . . ,Ym)}j a system satisfying:

1 all polynomials Pi have positive coefficients and ∂2Pi
∂Yi
6= 0;

2 the system admits a fixed point ~Y ;
3 the dependency graph of the system is strongly connected.

Then:
1 Y (z) =

∑
i≥0 ci . (1− z

ρ)
i
2k ,

2 [zn]Y (z) ∼ C . 1
2
√
π
.ρ−n.n−

1
2k
−1 with ρ,C0,C algebraic numbers.
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A second generalization of the Drmota–Lalley–Woods theorem
Let {Yj = Pj(z ,Y1, . . . ,Ym)}j a system satisfying:

1 all polynomials Pi have positive coefficients
and ///////////∂2Pi

∂Yi
6= 0 ∂Pj

∂Yi
6= 0 and ∂2Pj

∂Yi∂Yh
6= 0 for all (i , j);

2 the system admits a fixed point ~Y ;
3 the dependency graph of the system is strongly connected.

Then:
1 Y (z) =

∑
i≥0 ci . (1− z

ρ)
i
2k
−d ,

2 [zn]Y (z) ∼ C . 1
2
√
π
.ρ−n.n−

1
2k
−d−1 with ρ,C algebraic numbers.

Proof: closure by sum, product and substitution.
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Example 1

The generating function of super-bicolored trees:
B(z) = 1

2 −
1
2(1− 4z)1/4 + O((1− 4z)3/4)

∂
∂z B(z) = 1

2(1− 4z)−3/4 + O((1− 4z)−1/4)



B′ → T · U|a · T ′ · U|a · T · U ′|b · T ′ · U|b · T · U ′
B → a · T · U|b · T · U

T ′ → T A|a · T ′ · A|a · T · A′|ε
T → a · T · A|a
U ′ → B′ · U|B · U ′|ε
U → B · U|ε

A′ → T ′ · A|T · A′|ε
A → T · A|ε

A A′

T T ′

B B ′

U U ′

non-strongly

connected.
The dependency graph is non-strongly connected.
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Example 2


A → a · A · A · A|b · A
B → a|a · BC|b · BC
C → a|b · CC

A B

C


A(z) = z4(1−4z2)−3/2

1−z
B(z) = z(1− 4z2)−1/2

C (z) = 1−(1−4z2)1/2
2z


A(z) =

√
2

32 (1− 2z)−3/2 + . . .

B(z) =
√

2
4 (1− 2z)−1/2 + . . .

C (z) = 1−
√
2(1− 2z)1/2 + . . .

[zn]A(z) ∼
√
2

56
√
π
2nn1/2
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Counter-example

walks in the quarter-plane: Kreweras (1965), Gessel (2001) [Bostan &
Kauers, 2010]: algebraic GF, asymptotics compatible with
N-algebraicity . . . but non N-algebraic (proof via Ogden’s pumping
lemma).

Some families of maps: algebraicity proven via the kernel method
(Tutte, Brown, Bousquet-Mélou, . . . ) but non N-algebraic because
their critical exponents are not in our set of dyadic possible exponents.
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Conclusion

We gave a characterization of the critical exponents for N-algebraic
functions (generating function associated to an algebraic grammar).

Other work done: Perron-Frobenius "multivariate" generalisation= the
possible limit laws in non strongly connected context-free linear
grammars (=automata) ? Answer = "we can asymptotically get any
limit law" [Banderier–Bodini–Ponty–Tafat, 2011] + applications to
bioinformatics, Boltzmann random generation.

Work in progress: the possible limit laws in non strongly connected
context free-grammars? (Gaussian case: [Bender, Drmota, Soria,
Flajolet, Hwang], what else?)

A description of the ring of the algebraic constants C , ρ, . . . in
fn ∼ Cρ−n/Γ(γ + 1)nγ .
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Conclusion (implementations)

an effective Soittola-like theorem for N-algebraic functions:
I Input: algebraic equation
I Output: context-free grammar.

(decidable in the case of 2 non-terminals = genus 0 [Abhyankar])
(decidable for N-rational functions [Soittola, implementation:
Koutschan & Strehl])

Future implementation (in SageMath):
I Input: language, pattern,
I Output: asymptotics, limit law.
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