Universal behavior of context-free grammars: complete characterization of the critical exponent

Hanane Tafat Bouzid
Laboratoire d'Informatique Paris Nord,
joint work with Cyril Banderier (Paris 13) and Michael Drmota (TU Wien).

March 262012
SLC, Ottrott

Plan

(1) Introduction

(2) Algebraic grammar

- Definitions
- Asymptotics
- Critical exponent of strongly connected graph
- Critical exponent of non-strongly connected graph

Motivations

- Grammars are a fundamental structure in computer science: information theory, language theory, compilation, bioinformatics, combinatorics (Schützenberger methodology)...
- Challenge: is it easy to test if a given generating function is \mathbb{N}-algebraic? (i.e. is it associated to a context-free grammar?)
- Can we find an easy criterion?

$$
1-(1-4 z)^{1 / 3}+O\left((1-4 z)^{2 / 3}\right), 1-(1-4 z)^{1 / 4}+O\left((1-4 z)^{3 / 4}\right)
$$

Flajolet and Sedgewick, Analytic Combinatorics, p.493:
"It would at least be desirable to determine directly, from a positive (but reducible) system, the type of singular behaviour of the solution, but the systematic research involved in such a programme is yet to be carried out."

Plan

(1) Introduction

(2) Algebraic grammar

- Definitions
- Asymptotics
- Critical exponent of strongly connected graph
- Critical exponent of non-strongly connected graph

(3) Conclusion

Combinatorial object

Super-bicolored trees $\quad \mathcal{B}=2 z \mathcal{T} \operatorname{Seq}(\mathcal{B})$

Specification Grammar

$$
\mathcal{B}=2 z \mathcal{T} \operatorname{Seq}(\mathcal{B}) \quad\left\{\begin{array}{c}
\mathcal{B} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{U} \mid b \cdot \mathcal{T} \cdot \mathcal{U} \\
\mathcal{U}
\end{array} \rightarrow \mathcal{B} \cdot \mathcal{U}|\epsilon| \begin{array}{c}
\mathcal{T} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{A} \mid a \\
\mathcal{A} \rightarrow \mathcal{T} \cdot \mathcal{A} \mid \epsilon
\end{array}\right.
$$

- Closure properties: union, concatenation, star, shuffle...
- Non closure properties: complement, intersection

$$
(\Rightarrow \text { no minus sign!) }
$$

- The generating function of an algebraic grammar is called \mathbb{N}-algebraic. (reminiscent of the set of \mathbb{N}-rational generating functions associated to automata.)

Algebraic branches

Combinatorial Algebraic object grammar
Functional equation
Branches
Binary trees

$$
T \rightarrow a \cdot T \cdot T \left\lvert\, a \quad T(z)=z+z T^{2}(z) \quad\left\{\begin{array}{l}
\frac{1+\sqrt{1-4 z^{2}}}{2 z} \\
\frac{1-\sqrt{1-4 z^{2}}}{2 z}
\end{array}\right.\right.
$$

Algebraic grammar with m non-terminals (well-founded system):
(1) Polynomial system of equations $\left\{Y_{j}=P_{j}\left(z, Y_{1}, \ldots, Y_{m}\right)\right\}_{j}$,
(2) P_{j} have nonnegative coefficients,
(3) $\overrightarrow{Y^{(0)}}=(0, \ldots, 0), \overrightarrow{Y^{(t+1)}}=P_{j}\left(\overrightarrow{Y^{(t)}}\right), \vec{Y}=\lim _{t \rightarrow \infty} \overrightarrow{Y^{(t)}}$
\Rightarrow unique branch analytic with nonnegative Taylor coefficients around 0 .

Asymptotics of algebraic grammars

Theorem: asymptotics of the function via Puiseux expansion [Newton-Puiseux]
Let $f(z)$ the branch of an algebraic equation $P(z, f(z))=0$, near its singularities $\rho, f(z)$ admits a convergent fractional series expansion of the form: $f(z)=\sum_{k \geq k_{0}} c_{k} \cdot(z-\rho)^{\frac{k}{K}}$ with $k_{0} \in \mathbb{Z}$ and $K \geq 1$.

Theorem: asymptotics of coefficients via singularity analysis [Darboux, Flajolet-Odlyzko]
$f(z) \sim c_{0}+C .(z-\rho)^{\alpha}$

$$
\Rightarrow f_{n} \sim C \frac{1}{\Gamma(-\alpha)} \rho^{-n} n^{\gamma} \text { with } \gamma=-\alpha-1
$$

What are the possible values of the "critical exponent" γ ?
It is just known: $\gamma \in \mathbb{Q} /\{-\mathbb{N}\}$. (+problem also tackled by Schaeffer \& Bousquet-Mélou)

A strongly connected graph is a directed graph that has a path from each vertex to every other vertex.

$$
\begin{array}{ll}
\text { Language } & \text { Grammar } \\
& \\
& \\
\mathcal{L}=\left\{\left(a^{n} \cdot b^{2 n}\right)^{*}, n \geq 0\right\} & A \rightarrow a A B \mid \epsilon \\
& B \rightarrow b b A \mid \epsilon \\
& \\
\mathcal{L}=\left\{a^{n} b^{m} a^{m} b^{n},\right. & A \rightarrow a A b \mid B \\
n \geq 0, m \geq 0\} & B \rightarrow b B a \mid \epsilon
\end{array}
$$

Dependency graph

strongly connected graph.

non-strongly
connected graph.

Critical exponent of strongly connected graph

Theorem of [Drmota-Lalley-Woods, 97-93-97]
Let $\left\{Y_{j}=P_{j}\left(z, Y_{1}, \ldots, Y_{m}\right)\right\}_{j}$ a system satisfying:
(1) all polynomials P_{i} have positive coefficients and $\frac{\partial^{2} P_{i}}{\partial Y_{i}} \neq 0$;
(2) the system admits a fixed point \vec{Y};
(3) the dependency graph of the system is strongly connected.

Then:
(1) $Y(z)=C_{0}-C .\left(1-\frac{z}{\rho}\right)^{\frac{1}{2}}+O\left(1-\frac{z}{\rho}\right)$ for $z \sim \rho$,
(2) $\left[z^{n}\right] Y(z) \sim C \cdot \frac{1}{2 \sqrt{\pi}} \cdot \rho^{-n} . n^{-\frac{3}{2}}$ with ρ, C_{0}, C algebraic numbers.

Examples

One single non-terminal \Rightarrow universality of the $-3 / 2$ exponent (e.g., simple families of trees [Meir and Moon]).

$$
\left\{\begin{array} { l }
{ \mathcal { A } \rightarrow a \cdot \mathcal { A } | b \cdot \mathcal { B } \cdot \mathcal { B } | c } \\
{ \mathcal { B } \rightarrow b \cdot \mathcal { A } | a \cdot \mathcal { B } \cdot \mathcal { B } | c }
\end{array} \quad \left\{\begin{array}{l}
A(z)=z A(z)+z B(z)^{2}+z \\
B(z)=z A(z)+z B(z)^{2}+z
\end{array}\right.\right.
$$

- Algebraic equation: $z A(z)^{2}+(z-1) A(z)+z=0$
- Branches of $A(z)$:

$$
-\frac{z-1+\sqrt{-3 z^{2}-2 z+1}}{2 z}, \quad \frac{-z+1+\sqrt{-3 z^{2}-2 z+1}}{2 z}
$$

- The singularities: $-1,0,1 / 3$
- Puiseux expansion: $A(z)=\frac{5}{2}-(3(1-3 z))^{1 / 2}+O(1-3 z)$

Sketch of proof [Drmota-Lalley-Woods Theorem, 97-93-97]

- Each component solution is an algebraic function with a positive radius of convergence (proof: combinatorial reason),
- each component has a unique branch with positive coefficients (proof: by construction, well-founded system),
- the Y_{j} 's have the same dominant singularity (proof: if not, contradiction between $\lim _{x \rightarrow \rho} \partial_{x}^{m} Y_{j}(x)=\infty$),
- the Y_{j} 's have a square root behavior (proof: via the implicit function theorem + Taylor expansion).

Critical exponent of non-strongly connected graph

general trees
$\mathcal{T}=z \operatorname{Seq}(\mathcal{T})$

$$
\left\{\begin{array}{c}
\mathcal{T} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{A} \mid a \\
\mathcal{A} \rightarrow \mathcal{T} \cdot \mathcal{A} \mid \epsilon
\end{array}\right.
$$

strongly connected.
super-bicolored trees:
$\mathcal{B}=\mathcal{T}[(z+z) \cdot \mathcal{T}]$
$\mathcal{B}=2 z \mathcal{T} \operatorname{Seq}(\mathcal{B})$

$$
\left\{\begin{array}{c}
\mathcal{B} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{U} \mid b \cdot \mathcal{T} \cdot \mathcal{U} \\
\mathcal{U} \rightarrow \mathcal{B} \cdot \mathcal{U} \mid \epsilon \\
\mathcal{T} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{A} \mid a \\
\mathcal{A} \rightarrow \mathcal{T} \cdot \mathcal{A} \mid \epsilon
\end{array}\right.
$$

non-strongly connected.
Branch: $B(z)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 z+4 z \sqrt{1-4 z}}$
Puiseux expansion: $B(z)=\frac{1}{2}-\frac{1}{2}(1-4 z)^{1 / 4}+O\left((1-4 z)^{1 / 2}\right)$
Can be automatized via the Algolib Maple library [Flajolet-Salvy-Zimmermann].

Explicit construction of critical behavior in $1 / 2^{k}$

- The critical behavior of bicolored trees \mathcal{T} is $1 / 2$
- super-bicolored trees: $\mathcal{B}=\mathcal{T}[(z+z) . \mathcal{T}]$
- algebraic grammar,
- schema of critical composition,
- $\frac{1}{2^{2}}$ is the critical behavior.
- k-super-bicolored trees: $\mathcal{B}_{k}=\mathcal{T}\left[(z+z) \cdot \mathcal{B}_{k-1}\right]$
- algebraic grammar,
- schema of k nested critical compositions,
- $\frac{1}{2^{k+1}}$ is the critical behavior.

Explicit construction of critical behavior in $1 / 2^{k}$ (proof)

- k-super-bicolored trees:

$$
\begin{aligned}
& \mathcal{B}_{k}=\mathcal{T}\left[(z+z) \cdot \mathcal{B}_{k-1}\right] \\
& \quad=\left((z+z) \cdot \mathcal{B}_{k-1} \cdot \operatorname{Seq}\left(\mathcal{B}_{k}\right)\right.
\end{aligned}
$$

- Grammar of \mathcal{B}_{k} is algebraic:

$$
\left\{\begin{array}{c}
\mathcal{B}_{k} \rightarrow a \cdot \mathcal{B}_{k-1} \cdot \mathcal{S}_{k} \mid b \cdot \mathcal{B}_{k-1} \cdot \mathcal{S}_{k} \\
\mathcal{S}_{k} \rightarrow \mathcal{B}_{k} \cdot \mathcal{S}_{k} \mid \epsilon
\end{array}\right.
$$

The dependency graph of \mathcal{B}_{k} is a non strongly connected graph.

- The composition is always a critical composition: (i.e. $h(z)=f(g(z))$ with $\rho_{h}=\rho_{g}$ and $\left.\rho_{f}=g\left(\rho_{g}\right)\right)$.

$$
B_{k}(z)=T\left(2 z B_{k-1}(z)\right)=\frac{1}{2} \sqrt{1-8 z B_{k-1}(z)} .
$$

A first generalization of the Drmota-Lalley-Woods theorem
Let $\left\{Y_{j}=P_{j}\left(z, Y_{1}, \ldots, Y_{m}\right)\right\}_{j}$ a system satisfying:
(1) all polynomials P_{i} have positive coefficients and $\frac{\partial^{2} P_{i}}{\partial Y_{i}} \neq 0$;
(2) the system admits a fixed point \vec{Y};
(0) the dependency graph of the system is strongly connected.

Then:
(1) $Y(z)=\sum_{i \geq 0} c_{i} \cdot\left(1-\frac{z}{\rho}\right)^{\frac{i}{2^{k}}}$,
(2) $\left[z^{n}\right] Y(z) \sim C \cdot \frac{1}{2 \sqrt{\pi}} \cdot \rho^{-n} \cdot n^{-\frac{1}{2^{k}-1}}$ with ρ, C_{0}, C algebraic numbers.

A second generalization of the Drmota-Lalley-Woods theorem

Let $\left\{Y_{j}=P_{j}\left(z, Y_{1}, \ldots, Y_{m}\right)\right\}_{j}$ a system satisfying:
(1) all polynomials P_{i} have positive coefficients
and P Pid \mid IHID $\frac{\partial P_{j}}{\partial Y_{i}} \neq 0$ and $\frac{\partial^{2} P_{j}}{\partial Y_{i} \partial Y_{h}} \neq 0$ for all (i, j);
(2) the system admits a fixed point \vec{Y};
(3) the dependency graph of the system is strongly-connected.

Then:
(1) $Y(z)=\sum_{i \geq 0} c_{i} \cdot\left(1-\frac{z}{\rho}\right)^{\frac{i}{2^{k}}-d}$,
(2) $\left[z^{n}\right] Y(z) \sim C \cdot \frac{1}{2 \sqrt{\pi}} \cdot \rho^{-n} \cdot n^{-\frac{1}{2^{k}-d-1}}$ with ρ, C algebraic numbers.

Proof: closure by sum, product and substitution.

Example 1

- The generating function of super-bicolored trees:

$$
\begin{aligned}
& B(z)=\frac{1}{2}-\frac{1}{2}(1-4 z)^{1 / 4}+O\left((1-4 z)^{3 / 4}\right) \\
& \frac{\partial}{\partial z} B(z)=\frac{1}{2}(1-4 z)^{-3 / 4}+O\left((1-4 z)^{-1 / 4}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\mathcal{B}^{\prime} \rightarrow \mathcal{T} \cdot \mathcal{U}\left|a \cdot \mathcal{T}^{\prime} \cdot \mathcal{U}\right| a \cdot \mathcal{T} \cdot \mathcal{U}^{\prime}\left|b \cdot \mathcal{T}^{\prime} \cdot \mathcal{U}\right| b \cdot \mathcal{T} \cdot \mathcal{U}^{\prime} \\
\mathcal{B} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{U} \mid b \cdot \mathcal{T} \cdot \mathcal{U} \\
\mathcal{T}^{\prime} \rightarrow \mathcal{T} \mathcal{A}\left|a \cdot \mathcal{T}^{\prime} \cdot \mathcal{A}\right| a \cdot \mathcal{T} \cdot \mathcal{A}^{\prime} \mid \epsilon \\
\mathcal{T} \rightarrow a \cdot \mathcal{T} \cdot \mathcal{A} \mid a \\
\mathcal{U}^{\prime} \rightarrow \mathcal{B}^{\prime} \cdot \mathcal{U}\left|\mathcal{B} \cdot \mathcal{U}^{\prime}\right| \epsilon \\
\mathcal{U} \rightarrow \mathcal{B} \cdot \mathcal{U} \mid \epsilon \\
\mathcal{A}^{\prime} \rightarrow \mathcal{T}^{\prime} \cdot \mathcal{A}\left|\mathcal{T} \cdot \mathcal{A}^{\prime}\right| \epsilon \\
\mathcal{A} \rightarrow \mathcal{T} \cdot \mathcal{A} \mid \epsilon
\end{array}\right.
$$

non-strongly
connected.
The dependency graph is non-strongly connected.

Example 2

$$
\left\{\begin{array}{c}
\mathcal{A} \rightarrow a \cdot \mathcal{A} \cdot \mathcal{A} \cdot \mathcal{A} \mid b \cdot \mathcal{A} \\
\mathcal{B} \rightarrow a|a \cdot \mathcal{B C}| b \cdot \mathcal{B C} \\
\mathcal{C} \rightarrow a \mid b \cdot \mathcal{C C}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
A(z)=\frac{z^{4}\left(1-4 z^{2}\right)^{-3 / 2}}{1-z} \\
B(z)=z\left(1-4 z^{2}\right)^{-1 / 2} \\
C(z)=\frac{1-\left(1-4 z^{2}\right)^{1 / 2}}{2 z}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
A(z)=\frac{\sqrt{2}}{32}(1-2 z)^{-3 / 2}+\ldots \\
B(z)=\frac{\sqrt{2}}{4}(1-2 z)^{-1 / 2}+\ldots \\
C(z)=1-\sqrt{2}(1-2 z)^{1 / 2}+\ldots
\end{array}\right.
$$

$$
\left[z^{n}\right] A(z) \sim \frac{\sqrt{2}}{56 \sqrt{\pi}} 2^{n} n^{1 / 2}
$$

Counter-example

- walks in the quarter-plane: Kreweras (1965), Gessel (2001) [Bostan \& Kauers, 2010]: algebraic GF, asymptotics compatible with \mathbb{N}-algebraicity ... but non \mathbb{N}-algebraic (proof via Ogden's pumping lemma).
- Some families of maps: algebraicity proven via the kernel method (Tutte, Brown, Bousquet-Mélou, ...) but non \mathbb{N}-algebraic because their critical exponents are not in our set of dyadic possible exponents.

Plan

(1) Introduction

(2) Algebraic grammar

- Definitions
- Asymptotics
- Critical exponent of strongly connected graph
- Critical exponent of non-strongly connected graph

(3) Conclusion

Conclusion

- We gave a characterization of the critical exponents for \mathbb{N}-algebraic functions (generating function associated to an algebraic grammar).
- Other work done: Perron-Frobenius "multivariate" generalisation= the possible limit laws in non strongly connected context-free linear grammars (=automata) ? Answer = "we can asymptotically get any limit law" [Banderier-Bodini-Ponty-Tafat, 2011] + applications to bioinformatics, Boltzmann random generation.
- Work in progress: the possible limit laws in non strongly connected context free-grammars? (Gaussian case: [Bender, Drmota, Soria, Flajolet, Hwang], what else?)
- A description of the ring of the algebraic constants C, ρ, \ldots in $f_{n} \sim C \rho^{-n} / \Gamma(\gamma+1) n^{\gamma}$.

Conclusion (implementations)

- an effective Soittola-like theorem for \mathbb{N}-algebraic functions:
- Input: algebraic equation
- Output: context-free grammar.
(decidable in the case of 2 non-terminals $=$ genus 0 [Abhyankar]) (decidable for \mathbb{N}-rational functions [Soittola, implementation: Koutschan \& Strehl])
- Future implementation (in SageMath):
- Input: language, pattern,
- Output: asymptotics, limit law.

