
Séminaire Lotharingien de Combinatoire 69 (2013), Article B69b

CYCLIC SIEVING PHENOMENA ON ANNULAR NONCROSSING

PERMUTATIONS

JANG SOO KIM

Abstract. We show cyclic sieving phenomena on annular noncrossing permutations with
given cycle types. We define annular q-Kreweras numbers, annular q-Narayana numbers,
and annular q-Catalan numbers, and show that a sum of annular q-Kreweras numbers be-
comes an annular q-Narayana number and a sum of annular q-Narayana numbers becomes
an annular q-Catalan number. We also show that these polynomials are closely related to
the cyclic sieving phenomena on annular noncrossing permutations.

1. Introduction

Let π be a permutation of [n] = {1, 2, . . . , n}. One can represent π inside a disk as
shown in Figure 1. If the arrows of the diagram of π are noncrossing and if every cycle
of π is oriented clockwise, then π is called a noncrossing permutation. If we replace each
cycle by a block, then we get a bijection from noncrossing permutations to noncrossing
partitions. Thus, as far as enumeration is concerned, one can use “noncrossing permuta-
tion” and “noncrossing partition” interchangeably. In fact, “noncrossing partition” is more
commonly used than “noncrossing permutation”. However in this paper we use “noncross-
ing permutation” because we will consider annular noncrossing permutations which are
different from annular noncrossing partitions.
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Figure 1. A representation of the permutation (1, 3, 4, 5)(2)(6, 10)(7, 8, 9)
inside a disk.



2 JANG SOO KIM

It is well known that the number of noncrossing permutations of [n] is the Catalan

number

Cat(n) =
1

n+ 1

(
2n

n

)
,

and the number of noncrossing permutations of [n] with k cycles is the Narayana number

Nara(n, k) =
1

n

(
n

k − 1

)(
n

k

)
.

We use the standard notations

[n]q =
1− qn

1− q
, [n]q! = [1]q[2]q · · · [n]q,

[
n1 + · · ·+ nk

n1, . . . , nk

]

q

=
[n1 + · · ·+ nk]q!

[n1]q! · · · [nk]q!
,

[
n

k

]

q

=
[n]q!

[k]q![n− k]q!
.

We denote by Par(n, k) the set of integer partitions of n with k parts. If λ has mi parts
of size i for i = 1, 2, . . . , ℓ with largest part ℓ, then we also write λ = (1m1 , 2m2 , . . . , ℓmℓ).
If λ = (1m1 , 2m2, . . . , ℓmℓ) has k parts, i.e., m1 +m2 + · · ·+mℓ = k, we define

(
k

λ

)
=

(
k

m1, m2, . . . , mℓ

)
,

[
k

λ

]

q

=

[
k

m1, m2, . . . , mℓ

]

q

,

The cycle type of a permutation π is the partition λ = (1m1 , 2m2 , . . . ), where mi is the
number of cycles with i elements. Kreweras [11] showed that the number of noncrossing
permutations (noncrossing partitions in the original paper) of [n] with cycle type λ =
(1m1 , 2m2 , . . . ) ∈ Par(n, k) is equal to the Kreweras number

Kre(λ) :=
1

k

(
n

k − 1

)(
k

λ

)
.

Bessis and Reiner [4, Theorem 6.2] showed that if X is the set of noncrossing permuta-
tions (noncrossing partitions in the original paper) of [n] with type λ = (1m1 , 2m2, . . . ) ∈
Par(n, k),

X(q) =
1

[k]q

[
n

k − 1

]

q

[
k

λ

]

q

,

and C is the cyclic group of rotations acting on X , then (X,X(q), C) exhibits the cyclic
sieving phenomenon, see Section 2 for the definition.

Reiner and Sommers [14] defined the q-Kreweras number for λ = (1m1 , 2m2, . . . ) ∈
Par(n, k) by

Kreq(λ) =
q(n+1)(n−k)−τ(λ)

[k]q

[
n

k − 1

]

q

[
k

λ

]

q

,

where τ(λ) =
∑

i≥1 λ
′
iλ

′
i+1, and the q-Narayana number by

Naraq(n, k) =
q(n−k)(n+1−k)

[n]q

[
n

k − 1

]

q

[
n

k

]

q

,
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and showed that ∑

λ∈Par(n,k)

Kreq(λ) = Naraq(n, k)

and
n∑

k=0

Naraq(n, k) = Catq(n),

where Catq(n) is the q-Catalan number defined by

Catq(n) =
1

[n + 1]q

[
2n

n

]

q

.

In this paper we prove analogous results for annular noncrossing permutations.
Annular noncrossing permutations (respectively partitions) are an annulus-analog of

noncrossing permutations (respectively partitions). It should be noted that annular non-
crossing permutations are not in bijection with annular noncrossing partitions. However,
these two objects can be identified in most cases. See Remark 2.1 for more details about
their difference.

Annular noncrossing partitions were introduced by King [10] in the study of a statistical
physics model. Annular noncrossing permutations were considered by Mingo and Nica [12]
and studied further in [7, 13]. Recently Kim, Seo, and Shin [9] used annular noncrossing
permutations to give a combinatorial proof of Goulden and Jackson’s formula [6] for the
number of minimal transitive factorizations of a product of two cycles.

This paper is organized as follows. In Section 2 we define annular noncrossing permu-
tations and state the main result Theorem 2.2 which gives cyclic sieving phenomena on
annular noncrossing permutations. In Section 3 we define annular q-Kreweras numbers,
three types of annular q-Narayana numbers, and annular q-Catalan numbers and show
that a sum of annular q-Kreweras numbers becomes an annular q-Narayana number, and a
sum of annular q-Narayana numbers becomes an annular q-Catalan numbers. In Section 4
these numbers multiplied by 2 are shown to be polynomials in q with nonnegative inte-
ger coefficients. In Section 5 we prove Theorem 2.2. In Section 6 we enumerate annular
noncrossing matchings.

2. Cyclic sieving phenomena

Let n and m be positive integers. An (n,m)-annulus is an annulus in which 1, 2, . . . , n
are arranged in clockwise order on the exterior circle and n+1, n+2, . . . , n+m are arranged
in counter-clockwise order on the interior circle.

Let (a1, . . . , ak) be a cycle whose elements are contained in [n+m]. We will represent this
cycle inside an (n,m)-annulus by drawing an arrow from ai to ai+1 for each i = 1, 2, . . . k,
where ak+1 = a1. An interior cycle (respectively exterior cycle) is a cycle all of whose
elements are on the interior (respectively exterior) circle. A connected cycle is a cycle
which contains both an element in the interior circle and an element in the exterior cycle.
Suppose {e1 < e2 < · · · < eu} = {a1, . . . , ak}∩ [n] and {i1 < i2 < · · · < iv} = {a1, . . . , ak}∩
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Figure 2. A representation of the annular noncrossing permutation
(1, 2, 3, 6, 15, 10, 11)(4, 5)(7, 8, 9, 13, 14)(12).

{n + 1, n+ 2, . . . , n +m}. Then we say that the cycle (a1, . . . , ak) is oriented clockwise if
we can express

(a1, . . . , ak) = (er, er+1, . . . , eu, e1, e2, . . . , er−1, is, is+1, . . . , iv, i1, i2, . . . , is−1)

for some integers 1 ≤ r ≤ u and 1 ≤ s ≤ v. In this case we say that the cycle (a1, . . . , ak)
is of size k, of exterior size u and of interior size v.

A permutation of [n+m] is called an (n,m)-annular noncrossing permutation if we can
draw its cycles inside an (n,m)-annulus in such a way that every cycle is oriented clockwise
and there are no crossing arrows, see Figure 2.

Remark 2.1. Unlike noncrossing permutations, the map changing each cycle to a block
is not a one-to-one correspondence between annular noncrossing permutations and annu-
lar noncrossing partitions. For instance the two (2, 1)-annular noncrossing permutations
(1, 2, 3) and (2, 1, 3) get sent to the (2, 1)-annular noncrossing partition with only one block
{1, 2, 3}. However, as is shown in [12, Proposition 4.4], if there are at least two connected
cycles, then this map becomes a bijection. Thus every result in this paper on annular
noncrossing permutations with at least two connected cycles works as well for annular
noncrossing partitions.

If an (n,m)-annular noncrossing permutation has a connected cycle, it is called con-

nected. Since a disconnected annular noncrossing permutation is essentially a disjoint
union of two noncrossing permutations, in this paper we will only consider connected an-
nular noncrossing permutations.

We denote by ANC(n,m) the set of connected (n,m)-annular noncrossing permutations.
For π ∈ ANC(n,m), the exterior cycle type (respectively interior cycle type) of π is the
partition (1m1, 2m2 , . . . ) where mi is the number of exterior cycles (respectively interior
cycles) of size i. The connected exterior cycle type (respectively connected interior cycle

type) of π is the partition (1m1 , 2m2 , . . . ) where mi is the number of connected cycles of
exterior size (respectively interior size) i.
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For integers n,m, c, r, s, R, S ≥ 0 and α ∈ Par(R, r), β ∈ Par(S, s), λ ∈ Par(n − R, c),
and µ ∈ Par(m− S, c), we define the following:

• ANC(n,m; c) is the set of π ∈ ANC(n,m) with c connected cycles.
• ANC(n,m; c, r, s) is the set of π ∈ ANC(n,m; c) with r exterior cycles and s interior
cycles.

• ANC(n,m; c, r, s, R, S) is the set of π ∈ ANC(n,m; c, r, s) such that the total size
of exterior cycles is R and the total size of interior cycles is S.

• ANC(n,m; c, r, s, R, S;α, β, λ, µ) is the set of π ∈ ANC(n,m) with exterior cycle
type α ∈ Par(R, r), interior cycle type β ∈ Par(S, s), connected exterior cycle type
λ ∈ Par(n− R, c), and connected interior cycle type µ ∈ Par(m− S, c).

Definition 2.1. Suppose a cyclic group C of order n acts on a finite set X . Let X(q) be
a polynomial in q with nonnegative integer coefficients. We say that (X,X(q), C) exhibits
the cyclic sieving phenomenon (CSP) if X(ω(c)) = |{x ∈ X : c(x) = x}| for all c ∈ C.
Here, ω : C → C× is a group homomorphism of C into the multiplicative group C× of
nonzero complex numbers sending a cyclic generator of C to a primitive nth root of unity.

The CSP was first introduced by Reiner, Stanton, and White [15]. Recently many
instances of the CSP have been found. In [16], Sagan gives a nice survey on the CSP.

The goal of this section is to find cyclic sieving phenomena for ANC(n,m). To this
end, let C1 × C2 be the product of two cyclic groups C1 acting on the exterior circle and
C2 acting on the interior circle. Then C1 × C2 gives a bicyclic action on ANC(n,m) by
(c1, c2)π = c1(c2(π)) = c2(c1(π)). One may wonder if this bicyclic action gives a “bicyclic
sieving phenomenon” as in [3]. However, this is not the case because of the next proposition.

Proposition 2.1. Let (c1, c2) ∈ C1 × C2. Then (c1, c2) has no fixed points in ANC(n,m)
unless c1 and c2 have the same order.

Proof. Let d1 and d2 be the orders of c1 and c2, respectively. Suppose π ∈ ANC(n,m) is
a fixed point, i.e., (c1, c2)π = π. Let k1 = n/d1 and k2 = m/d2. We can assume that c1
is the map sending i ∈ [n] to j ∈ [n] with j ≡ i + k1 mod n, and c2 is the map sending
n + i ∈ {n + 1, . . . , n +m} to n + j ∈ {n + 1, . . . , n + m} with j ≡ i − k2 mod m. Note

that for each i ∈ [n], c
(t)
1 (i) = i implies that t is divisible by d1 because if t = s · d1+ r with

0 < r < d1, then

c
(t)
1 (i) ≡ i+ k1 · t ≡ i+ n ·

r

d1
6≡ i mod n.

Similarly for each i ∈ {n+ 1, . . . , n+m}, c
(t)
2 (i) = i implies that t is divisible by d2.

Consider a connected cycle γ = (a1, . . . , au, b1, . . . , bv) of π where a1, . . . , au ∈ [n] and
b1, . . . , bv ∈ {n + 1, . . . , n + m}. Note that u > 0 and v > 0. Since (c1, c2)

(d1)(π) =

π and (c1, c2)
(d1)(γ) = (a1, . . . , au, c

(d1)
2 (b1), . . . , c

(d1)
2 (bv)), we have (c1, c2)

(d1)(γ) = γ. In

particular, c
(d1)
2 (b1) = b1, which implies that d1 is divisible by d2. Similarly we get that d2

is divisible by d1. Thus d1 = d2. �

Thus we will only consider the elements (c1, c2) for which c1 and c2 have the same order.
We call such pair (c1, c2) an (n,m)-annular rotation, or simply an annular rotation. Note
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that if (c1, c2) is an (n,m)-annular rotation, then the order d of this action divides both n
and m.

Now we state the main theorem of this paper. The proof is given in Section 5.

Theorem 2.2. Let n,m, c, r, s, R, S be nonnegative integers and α ∈ Par(R, r), β ∈
Par(S, s), λ ∈ Par(n− R, c), and µ ∈ Par(m − S, c). Let C be the cyclic group of (n,m)-
annular rotations. Then the following exhibit the cyclic sieving phenomenon:

(2.1)(
ANC(n,m; c, r, s, R, S;α, β, λ, µ),

[(n− R)(m− S)]q
[c]q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

λ

]

q

[
c

µ

]

q

, C

)
,

(2.2)

(
ANC(n,m; c, r, s, R, S), c

[
n

r

]

q

[
m

s

]

q

[
R− 1

r − 1

]

q

[
S − 1

s− 1

]

q

[
n−R

c

]

q

[
m− S

c

]

q

, C

)
,

(2.3)

(
ANC(n,m; c, r, s), c

[
n

r

]

q

[
m

s

]

q

[
n

r + c

]

q

[
m

s + c

]

q

, C

)
,

(2.4)

(
ANC(n,m; c), c

[
2n

n− c

]

q

[
2m

m− c

]

q

, C

)
,

(2.5)

(
ANC(n,m),

[2nm]q
[m+ n]q

[
2n− 1

n

]

q

[
2m− 1

m

]

q

, C

)
.

Considering the annular rotation of order 1 in Theorem 2.2, i.e., the identity action, we
obtain the following enumeration results.

Corollary 2.3. We have

#ANC(n,m; c, r, s, R, S;α, β, λ, µ) =
(n− R)(m− S)

c

(
n

r

)(
m

s

)(
r

α

)(
s

β

)(
c

λ

)(
c

µ

)
,

(2.6)

#ANC(n,m; c, r, s, R, S) = c

(
n

r

)(
m

s

)(
R− 1

r − 1

)(
S − 1

s− 1

)(
n−R

c

)(
m− S

c

)
,(2.7)

#ANC(n,m; c, r, s) = c

(
n

r

)(
m

s

)(
n

r + c

)(
m

s+ c

)
,(2.8)

#ANC(n,m; c) = c

(
2n

n− c

)(
2m

m− c

)
,(2.9)

#ANC(n,m) =
2nm

m+ n

(
2n− 1

n

)(
2m− 1

m

)
.(2.10)
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If an annular noncrossing permutation is invariant under an annular rotation of order 2,
it is called an annular noncrossing permutation of type B. We define ANCB(n,m) to be
the set of connected (2n, 2m)-annular noncrossing permutations of type B. We then define

ANCB(n,m; c) = ANCB(n,m) ∩ ANC(2n, 2m; 2c),

ANCB(n,m; c, r, s) = ANCB(n,m) ∩ ANC(2n, 2m; 2c, 2r, 2s),

ANCB(n,m; c, r, s, R, S) = ANCB(n,m) ∩ ANC(2n, 2m; 2c, 2r, 2s, 2R, 2S),

ANCB(n,m; c, r, s, R, S;α, β, λ, µ) = ANCB(n,m)

∩ ANC(2n, 2m; 2c, 2r, 2s, 2R, 2S; 2α, 2β, 2λ, 2µ),

where 2λ = (2λ1, 2λ2, . . . ).
Notice that every connected annular noncrossing permutation of type B contains at least

two connected cycles. Thus annular noncrossing permutations of type B are in bijection
with annular noncrossing partitions of type B.

Considering an annular rotation of order 2 in Theorem 2.2 we obtain the enumeration
results below.

Corollary 2.4. We have

#ANCB(n,m; c, r, s, R, S;α, β, λ, µ) =
2(n−R)(m− S)

c

(
n

r

)(
m

s

)(
r

α

)(
s

β

)(
c

λ

)(
c

µ

)
,

(2.11)

#ANCB(n,m; c, r, s, R, S) = 2c

(
n

r

)(
m

s

)(
R− 1

r − 1

)(
S − 1

s− 1

)(
n− R

c

)(
m− S

c

)
,(2.12)

#ANCB(n,m; c, r, s) = 2c

(
n

r

)(
m

s

)(
n

r + c

)(
m

s+ c

)
,(2.13)

#ANCB(n,m; c) = 2c

(
2n

n− c

)(
2m

m− c

)
,(2.14)

#ANCB(n,m) =
nm

m+ n

(
2n

n

)(
2m

m

)
.(2.15)

We note that (2.10) was first proved by Mingo and Nica [12, Corollary 6.7] and (2.13),
(2.14), and (2.15) were first proved by Goulden, Nica and Oancea [7, Equations (4.6), (4.7),
(4.9)].

3. Annular q-Kreweras numbers

In this section we define annular versions of q-analogs of Kreweras, Narayana, and Cata-
lan numbers, and evaluate their sums. These numbers are closely related to the polynomials
in Theorem 2.2.
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For brevity we will use the following abbreviations throughout this section:

X = c(c− 1),

Y = r(c+ r) + s(c+ s),

Z = r(n− c− R) + s(m− c− S),

W = r(R− r) + s(S − s) + c(n− R− c) + c(m− S − c)− τ(α)− τ(β)− τ(λ)− τ(µ).

Definition 3.1. The annular q-Kreweras number

Kreann = Kreann(n,m; c, r, s, R, S;α, β, λ, µ)

is defined by

Kreann = qXqY qZqW
[nm]q
[n]q[m]q

[2c]q
2

[n− R]q[m− S]q
[c]2q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

λ

]

q

[
c

µ

]

q

.

The annular q-Narayana number Naraann1 = Naraann1 (n,m; c, r, s, R, S) of type 1 is defined
by

Naraann1 = qXqY qZ
[nm]q
[n]q[m]q

[2c]q
2

[
n

r

]

q

[
m

s

]

q

[
R− 1

r − 1

]

q

[
S − 1

s− 1

]

q

[
n−R

c

]

q

[
m− S

c

]

q

.

The annular q-Narayana number Naraann2 = Naraann2 (n,m; c, r, s) of type 2 is defined by

Naraann2 = qXqY
[nm]q
[n]q[m]q

[2c]q
2

[
n

r

]

q

[
m

s

]

q

[
n

r + c

]

q

[
m

s+ c

]

q

.

The annular q-Narayana number Naraann3 = Naraann3 (n,m; c) of type 3 is defined by

Naraann3 = qX
[nm]q
[n]q[m]q

[2c]q
2

[
2n

n− c

]

q

[
2m

m− c

]

q

.

The annular q-Catalan number Catann = Catann(n,m) is defined by

Catann =
[nm]q

2[m+ n]q

[
2n

n

]

q

[
2m

m

]

q

.

In the introduction we saw that the sum of q-Kreweras numbers is equal to the q-
Narayana number, and the sum of q-Narayana numbers is equal to the q-Catalan number.
We show that annular versions of these numbers have similar properties. In order to do
this, we prove three lemmas.

The first lemma is due to Reiner and Sommers [14]. We include their elegant proof as
well.

Lemma 3.1. [14] Let τ(λ) =
∑

i≥1 λ
′
iλ

′
i+1, where λ′ is the transpose of λ. Then

∑

λ∈Par(n,k)

qk(n−k)−τ(λ)

[
k

λ

]

q

=

[
n− 1

k − 1

]

q

.
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} k = µ1

{
µ4

{
µ3

{
µ2

P4 P3 P2

P1

Q4

Q3

Q2

Q1 = P0

q(k−µ3)µ4

q(k−µ2)µ3

[
µ1

µ2

]
q

[
µ2

µ3

]
q

[
µ3

µ4

]
q

Figure 3. We decompose ν and get µ.

Proof. Let λ = (1m1 , 2m2 , . . . ). Then m1 + 2m2 + · · · = n and m1 +m2 + · · · = k. Since
λ′
i = mi +mi+1 + · · · , we have

qk(n−k)−τ(λ)

[
k

λ

]

q

= q(k−λ′

1
)λ′

2

[
λ′
1

λ′
2

]

q

q(k−λ′

2
)λ′

3

[
λ′
2

λ′
3

]

q

· · · .

Thus we can rewrite the identity as follows.

(3.1)

[
n− 1

k − 1

]

q

=
∑

µ∈Par(n),µ1=k

q(k−µ1)µ2

[
µ1

µ2

]

q

q(k−µ2)µ3

[
µ2

µ3

]

q

· · · .

The left hand side of (3.1) is the sum of q|ν| for all partitions ν contained in a k×(n−k) rec-
tangle where the kth part of ν is 0. For such a partition ν we define points Q1, P1, Q2, P2, . . .
as follows. Let Q1 be the upper right corner of the rectangle. When Qi is defined, let Pi be
the point on the base of the rectangle which is vertically below Qi. When Pi is defined, let
Qi+1 be the intersection of the border of ν and the northwest diagonal ray starting from
Pi. We define the sequence of points until we reach the bottom-left corner of the rectangle.
Since ν has no cells in the kth row of the rectangle, we can always complete this sequence.
Let µ be the partition whose ith part is equal to the length of the segment Pi−1Pi, where
P0 = Q1. Then µ ∈ Par(n) and µ1 = k. It is easy to see that the sum of q|ν| for partitions
ν which give µ is equal to the summand in (3.1), see Figure 3. This proves (3.1). �
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Lemma 3.2. For fixed integers n, r, c, we have

∑

R≥0

qr(n−c−R)

[
R− 1

r − 1

]

q

[
n− R

c

]

q

=

[
n

r + c

]

q

.

Proof. This can be proved by a standard technique considering the largest rectangle with
width r contained in partitions inside an (n− r − c)× (r + c) rectangle. This can also be
proved by using the q-Chu-Vandermonde theorem [5, II.7]. �

Lemma 3.3. Let n, m, and k be nonnegative integers. Then

∑

c≥0

qc(c−1+k)[2c+ k]q

[
2n+ k

n− c

]

q

[
2m+ k

m− c

]

q

=
[n + k]q[m+ k]q
[n+m+ k]q

[
2n + k

n+ k

]

q

[
2m+ k

m+ k

]

q

.

Proof. It is straightforward to check that

(3.2) qc(c−1+k)[n+m+k]q[2c+k]q = qc(c−1+k)[n+c+k]q[m+c+k]q−q(c+1)(c+k)[n−c]q[m−c]q.

Let σ(c) = c(c− 1 + k). Then by (3.2) the left hand side is equal to

1

[n+m+ k]q

×
∑

c≥0

(
qσ(c)[n + c+ k]q[m+ c + k]q − qσ(c+1)[n− c]q[m− c]q

)[2n+ k

n− c

]

q

[
2m+ k

m− c

]

q

=
[2n+ k]q[2m+ k]q

[n+m+ k]q

×
∑

c≥0

(
qσ(c)

[
2n+ k − 1

n− c

]

q

[
2m+ k − 1

m− c

]

q

− qσ(c+1)

[
2n+ k − 1

n− c− 1

]

q

[
2m+ k − 1

m− c− 1

]

q

)

=
[2n+ k]q[2m+ k]q

[n+m+ k]q

[
2n+ k − 1

n

]

q

[
2m+ k − 1

m

]

q

=
[n + k]q[m+ k]q
[n +m+ k]q

[
2n+ k

n+ k

]

q

[
2m+ k

m+ k

]

q

.

We note that this can also be proved by using the very-well-poised 6φ5 summation formula
[5, II.21] with c = aqn+1. �
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Theorem 3.4. We have∑

α∈Par(R,r)
β∈Par(S,s)

λ∈Par(n−R,c)
µ∈Par(m−S,c)

Kreann(n,m; c, r, s, R, S;α, β, λ, µ) = Naraann1 (n,m; c, r, s, R, S),

∑

R,S≥0

Naraann1 (n,m; c, r, s, R, S) = Naraann2 (n,m; c, r, s),

∑

r,s≥0

Naraann2 (n,m; c, r, s) = Naraann3 (n,m; c),

∑

c≥0

Naraann3 (n,m; c) = Catann(n,m).

Proof. The first, second, and fourth identities follow from Lemmas 3.1, 3.2, and 3.3, re-
spectively. The third identity follows from the q-Chu–Vandermonde identity:

∑

i≥0

qi(m−k+i)

[
m

k − i

]

q

[
n

i

]

q

=

[
m+ n

k

]

q

.

�

In the next section we show that the annular q-Kreweras numbers, the three types
of annular q-Narayana numbers, and the annular q-Catalan numbers, when multiplied
by 2, are polynomials in q with nonnegative integer coefficients. See Proposition 4.4.
Unfortunately, these numbers are not polynomials with integer coefficients. For instance,
Catann(1, 1) = (1 + q)/2.

4. Polynomiality and nonnegativity

A polynomial f(x) = a0 + a1x + · · · + anx
n is called symmetric if ai = an−i for i =

0, 1, . . . , n, and unimodal if a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an for some j. We denote
by Z[q] (respectively N[q]) the set of polynomials in q with integer coefficients (respectively
nonnegative integer coefficients).

We will use the following three lemmas.

Lemma 4.1. [1, Theorem 3.9] If f(x) and g(x) are symmetric, unimodal polynomials,

then so is f(x)g(x).

Lemma 4.2. [15, Proposition 10.1 (iii)] If f(q) = h(q)/[k]q ∈ Z[q], and h(q) ∈ N[q] has a

symmetric, unimodal coefficient sequence, then f(q) ∈ N[q].

As is mentioned in [15], the above lemma is also derived implicitly in [2].

Lemma 4.3. For nonnegative integers N, n, k with N ≥ n and a partition λ ∈ Par(n, k),
we have

[n]q
[k]q

[
k

λ

]

q

∈ N[q],
[N − n]q
[N ]q

[
N

k

]

q

[
k

λ

]

q

∈ N[q].
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Proof. We claim that

(4.1)
[n]q
[k]q

[
k

λ

]

q

=
1− qn

1− qk

[
k

λ

]

q

∈ Z[q].

Assuming the claim let us show the lemma. By (4.1) and the fact [N ]q = [N−n]q+qN−n[n]q
we also have

[N − n]q
[N ]q

[
N

k

]

q

[
k

λ

]

q

=
[N ]q − qN−n[n]q

[N ]q

[
N

k

]

q

[
k

λ

]

q

=

[
N

k

]

q

[
k

λ

]

q

− qN−n

[
N − 1

k − 1

]

q

·
[n]q
[k]q

[
k

λ

]

q

∈ Z[q].

It is known that q-multinomial coefficients
[
m1+···+mℓ

m1,...,mℓ

]
q
are symmetric and unimodal. See for

instance [17]. Thus by Lemmas 4.1 and 4.2 we get [n]q
[k]q

[
k
λ

]
q
∈ N[q] and [N−n]q

[N ]q

[
N
k

]
q

[
k
λ

]
q
∈ N[q].

We now show (4.1). We will use the q-Pochhammer symbol

(q; q)r = (1− q)(1− q2) · · · (1− qr).

Note that
[
n
k

]
q
= (q;q)n

(q;q)k(q;q)n−k
.

Since

qk − 1 =
k∏

j=1

(q − ωj),

where ω1, ω2, . . . , ωk are the kth roots of unity, in order to prove (4.1), it is sufficient to
show that q − ωj divides (1 − qn)

[
k
λ

]
q
for all j = 1, 2, . . . , k. Fix an integer j and suppose

ωj is a primitive rth root of unity. Then r divides k. Note that q−ωj divides q
s− 1 if and

only if r divides s. Note also that the multiplicity of q− ωj as a factor of qs − 1 is at most
1. Thus the multiplicity of the factor q−ωj in (q; q)s is equal to ⌊s/r⌋. We have two cases
as follows.

Case 1: r divides n. Then q − ωj divides q
n − 1 and we are done.

Case 2: r does not divide n. Let λ = (1m1 , 2m2 , . . . , ℓmℓ). Then we have n =
∑ℓ

i=1 i ·mi,

k =
∑ℓ

i=1mi, and

(4.2)

[
k

λ

]

q

=
(q; q)m1+m2+···+mℓ

(q; q)m1
(q; q)m2

· · · (q; q)mℓ

.

The multiplicities of the factor q−ωj in the numerator and denominator of (4.2) are ⌊k/r⌋
and ⌊m1/r⌋+ ⌊m2/r⌋+ · · ·+ ⌊mℓ/r⌋, respectively. Since r does not divide n, at least one
of m1, m2, . . . , mℓ is not a multiple of r. Thus we have

⌊m1

r

⌋
+
⌊m2

r

⌋
+ · · ·+

⌊mℓ

r

⌋
<

m1

r
+

m2

r
+ · · ·+

mℓ

r
=

k

r
=

⌊
k

r

⌋
,

which implies that q − ωj divides
[
k
λ

]
q
. This finishes the proof of (4.1). �
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Proposition 4.4. We have

2Kreann(n,m; c, r, s, R, S;α, β, λ, µ) ∈ N[q],

2Naraann1 (n,m; c, r, s, R, S) ∈ N[q],

2Naraann2 (n,m; c, r, s) ∈ N[q],

2Naraann3 (n,m; c) ∈ N[q],

2Catann(n,m) ∈ N[q].

Proof. By Theorem 3.4, it is sufficient to show the first statement for the annular q-
Kreweras numbers. Since 2Kreann(n,m; c, r, s, R, S;α, β, λ, µ) is equal to

qXqY qZqW
[2c]q
[c]q

(
[n− R]q
[n]q

[
n

r

]

q

[
r

α

]

q

)(
[m− S]q

[c]q

[
c

µ

]

q

)(
[nm]q
[m]q

[
m

s

]

q

[
s

β

]

q

[
c

λ

]

q

)
,

we are done by Lemma 4.3. �

We now prove that the rational functions in Theorem 2.2 are actually polynomials in q
with nonnegative integer coefficients.

Proposition 4.5. We have

[(n− R)(m− S)]q
[c]q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

λ

]

q

[
c

µ

]

q

∈ N[q],

[2nm]q
[m+ n]q

[
2n− 1

n

]

q

[
2m− 1

m

]

q

∈ N[q].

Proof. By Lemma 4.3, [m−S]q
[c]q

[
c
µ

]
q
is a polynomial. Since

(4.3)
[(n− R)(m− S)]q

[m− S]q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

λ

]

q

[m− S]q
[c]q

[
c

µ

]

q

,

and [ab]q = [a]q[b]qa = [b]q[a]qb , we obtain the first statement.
For the second statement, by Lemmas 4.1 and 4.2, it is sufficient to show that

[2nm]q
[m+ n]q

[
2n− 1

n

]

q

[
2m− 1

m

]

q

=
1− q2nm

1− qn+m

[
2n− 1

n

]

q

[
2m− 1

m

]

q

∈ Z[q].

We will use the same idea as in the proof of Lemma 4.3. Let ω1, ω2, . . . , ωn+m be the
(n +m)th roots of unity. We need to show that (q − ωj) divides (1− q2nm)

[
2n−1
n

]
q

[
2m−1
m

]
q

for j = 1, 2, . . . , n +m. Fix j and suppose ωj is a primitive pth root of unity. If p divides
nm, then q − ωj divides 1 − q2nm. Suppose p does not divide nm. Then we can write
n = A1p+ B1 and m = A2p+ B2, where 0 < B1, B2 < p. Since p divides n +m, we must
have B1 +B2 = p. Without loss of generality we can assume that B1 ≥

p
2
. Since

(1− q2nm)

[
2n− 1

n

]

q

[
2m− 1

m

]

q

=
1− q2nm

1− q2n
(1− qn)

[
2n

n

]

q

[
2m− 1

m

]

q

,
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and the multiplicity of q − ωj in
[
2n
n

]
q
is
⌊
2n
p

⌋
−
⌊
n
p

⌋
−
⌊
n
p

⌋
= 2A1 + 1 − A1 − A1 = 1, we

obtain that q − ωj divides (1 − q2nm)
[
2n−1
n

]
q

[
2m−1
m

]
q
. This finishes the proof of the second

statement. �

5. Proof of cyclic sieving phenomena

For a partition λ = (1m1 , 2m2, . . . ) we denote by S(λ) the set of rearrangements of the
sequence

m1︷ ︸︸ ︷
1, . . . , 1,

m2︷ ︸︸ ︷
2, . . . , 2, . . . .

In other words, each element in S(λ) is a sequence (a1, a2, . . . ) where each integer i appears
exactly mi times. If each mi is divisible by d, we define λ/d = (1m1/d, 2m2/d, . . . ). In this
case we say that λ is divisible by d.

Lemma 5.1. If there is a permutation π ∈ ANC(n,m; c, r, s, R, S;α, β, λ, µ) invariant

under an annular rotation of order d, then all of n,m, c, r, s, R, S, α, β, λ, µ are divisible by

d.

Proof. Since this is obvious when d = 1, we can assume that d ≥ 2. Suppose that π is
invariant under an annular rotation (c1, c2) of order d. It suffices to show the following
claim.

Claim: for every cycle γ of π, we have (c1, c2)
(i)(γ) 6= γ for all i = 1, 2, . . . , d− 1.

We first consider a connected cycle γ = (a1, . . . , au, b1, . . . , bv) with a1, . . . , au ∈ [n] and
b1, . . . , bv ∈ {n + 1, . . . , n +m}. Suppose for contradiction that (c1, c2)

(i)(γ) = γ for some
1 ≤ i ≤ d− 1. Then we get

γ = (c1, c2)
(i)(γ) = ((c1, c2)

(i)(a1), . . . , (c1, c2)
(i)(au), (c1, c2)

(i)(b1), . . . , (c1, c2)
(i)(bv)).

Since the expression γ = (a1, . . . , au, b1, . . . , bv) is unique, we have (c1, c2)
(i)(a1) = a1, which

is impossible because 1 ≤ i ≤ d−1. Thus (c1, c2)
(i)(γ) are distinct for all i = 0, 1, 2 . . . , d−1.

In the diagram of π we have d distinct arrows from (c1, c2)
(i)(au) to (c1, c2)

(i)(b1) for i =
0, 1, 2 . . . , d− 1. These arrows then divide the annulus into d regions. By the noncrossing
property, we obtain the claim. �

Now we are ready to enumerate annular noncrossing permutations with given cycle types.

Theorem 5.2. The number of permutations π ∈ ANC(n,m; c, r, s, R, S;α, β, λ, µ) invari-
ant under an annular rotation of order d is equal to

d ·
(n̂− R̂)(m̂− Ŝ)

ĉ

(
n̂

r̂

)(
m̂

ŝ

)(
r̂

α̂

)(
ŝ

β̂

)(
ĉ

λ̂

)(
ĉ

µ̂

)
,

if all of n,m, c, r, s, R, S, α, β, λ, µ are divisible by d, and 0 otherwise. Here Ẑ means Z/d.

Sketch of Proof. Since the proof is similar to those in [7, Proposition 4.2] and in [8, Propo-
sition 4.1], we will only give a sketch with an example.

By Lemma 5.1 we can assume that all of n,m, c, r, s, R, S, α, β, λ, µ are divisible by d.
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Figure 4. The annular noncrossing permutation π in the proof of Theo-
rem 5.2. Here, n = 30, m = 18, and π is invariant under an annular rotation
of order d = 3. Each orbit of the annular rotation consists of one cycle with
solid arrows, one cycle of dashed arrows, and one cycle of dotted arrows.

Let (c1, c2) be an annular rotation of order d. We will find a bijection between the set

A =

{
(γ, π)

∣∣∣∣
π ∈ ANC(n,m; c, r, s, R, S;α, β, λ, µ), (c1, c2)π = π,
γ is a connected cycle of π

}

and the set

B =




(a, b, RE , RI , V E, V I , V CE, V CI)

∣∣∣∣∣∣∣∣

a ∈ [n− R], b ∈ [m− S],
RE ⊂ [n̂], RI ⊂ [m̂], |RE| = r̂, |RI | = ŝ,

V E ∈ S(α̂), V I ∈ S(β̂),

V CE ∈ S(λ̂), V CI ∈ S(µ̂)





.

Suppose (γ, π) ∈ A. As a running example we will consider (γ, π), where π is the annular
noncrossing permutation in Figure 4 and γ = (27, 28, 4, 37, 40).

Let γ = (a1, . . . , au, b1, . . . , bv) with a1, . . . , au ∈ [n] and b1, . . . , bv ∈ {n+ 1, . . . , n+m}.
We define a = a1 and b = bv. Let A1, A2, . . . , An̂ be the n̂ consecutive numbers on the
exterior circle in clockwise order starting with A1 = a. Let B1, B2, . . . , Bm̂ be the m̂
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consecutive numbers on the interior circle in counter-clockwise order ending with Bm̂ = b.
In our example, we have a = 27, b = 40, and

A1, A2, . . . , An̂ = 27, 28, 29, 30, 1, 2, 3, 4, 5, 6,

B1, B2, . . . , Bm̂ = 35, 36, 37, 38, 39, 40.

By symmetry, π is determined by the cycles whose elements are contained in the sequence

(5.1) A1, A2, . . . , An̂, B1, B2, . . . , Bm̂.

From now on we consider only those cycles. For each exterior or interior cycle of size t,
we place a right parenthesis )t labeled by t after the rightmost integer in the sequence (5.1)
which is an element of the cycle. We define RE (respectively RI) to be the set of integers
i for which Ai (respectively Bi) has a right parenthesis. In our example, we have

A1, A2, A3, A4, A5)2, A6, A7)3, A8, A9, A10, B1)1, B2, B3, B4, B5)2, B6

27, 28, 29, 30, 1)2, 2, 3)3, 4, 5, 6, 35)1, 36, 37, 38, 39)2, 40.

Hence, RE = {5, 7} and RI = {1, 5}.
Then we have |RE| = r̂ and |RI | = ŝ. Let i1 < i2 < · · · < ir̂ be the elements of

RE . We define V E to be the sequence (ℓ1, ℓ2, . . . , ℓr̂) where ℓj is the label of the right
parenthesis after Aij . The sequence V I is defined similarly. In our example, V E = (2, 3)

and V I = (1, 2).
Now remove the integers contained in an exterior or an interior cycle from the sequence

(5.1). For each connected cycle, we place a left (respectively right) parenthesis before
(respectively after) the leftmost (respectively rightmost) integer in the remaining sequence
which is an element of the cycle. In our example, we have

(27, 28, 4, (5, 6, 36), 37, 40).

Then the c left parentheses divide the first part of the remaining sequence consisting
of integers at most n into c subsequences. Let V CE be the sequence of sizes of the c
subsequences. Similarly, the c right parentheses divide the second part of the remaining
sequence consisting of integers greater than n into c subsequences. We define V CI to be
the sequence of sizes of the c subsequences. In our example, we have V CE = (3, 2) and
V CI = (1, 2).

We have just constructed the map (γ, π) 7→ (a, b, RE , RI , V E, V I , V CE, V CI). Using the
ideas of [7, Proposition 4.2] and [8, Proposition 4.1] , one can show that this gives a bijection
from A to B.

Thus the number of π ∈ ANC(n,m; c, r, s, R, S;α, β, λ, µ) invariant under an annular
rotation of order d is |A|/c = |B|/c, which is easily seen to be equal to the number in the
theorem. �

The following evaluations of q-binomial coefficients at a root of unity are well known.
See for instance [18, Exercise 96 in Chapter 1].
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Lemma 5.3. Suppose ω is a primitive dth root of unity and n is divisible by d. Then we

have

[n]q=ω = n/d,
[
n

k

]

q=ω

=

{ (
n/d
k/d

)
if k is divisible by d,

0 otherwise,
[
n− 1

k

]

q=ω

=

{ (
n/d−1
k/d

)
if k is divisible by d,

0 otherwise.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We will only show that (2.1) exhibits the cyclic sieving phenomenon.
Then (2.2), (2.3), (2.4), and (2.5) follow from Theorem 3.4 and the fact that if q is equal
to ω a primitive dth root of unity for a common divisor d of n and m, then

Kreann(n,m; c, r, s, R, S;α, β, λ, µ) =
[(n− R)(m− S)]q

[c]q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

λ

]

q

[
c

µ

]

q

,

Naraann1 (n,m; c, r, s, R, S) = c

[
n

r

]

q

[
m

s

]

q

[
R− 1

r − 1

]

q

[
S − 1

s− 1

]

q

[
n−R

c

]

q

[
m− S

c

]

q

,

Naraann2 (n,m; c, r, s) = c

[
n

r

]

q

[
m

s

]

q

[
n

r + c

]

q

[
m

s + c

]

q

,

Naraann3 (n,m; c) = c

[
2n

n− c

]

q

[
2m

m− c

]

q

,

Catann(n,m) =
[2nm]q
[m+ n]q

[
2n− 1

n

]

q

[
2m− 1

m

]

q

.

Suppose (c1, c2) is an (n,m)-annular rotation of order d. Then d divides both n and m.
By Theorem 5.2 it is sufficient to show that for ω a primitive dth root of unity, we have

(5.2) X(ω) = d ·
(n̂− R̂)(m̂− Ŝ)

ĉ

(
n̂

r̂

)(
m̂

ŝ

)(
r̂

α̂

)(
ŝ

β̂

)(
ĉ

λ̂

)(
ĉ

µ̂

)
,

if all of n,m, c, r, s, R, S, α, β, λ, µ are divisible by d, and X(ω) = 0 otherwise. By Lem-
ma 5.3 we get (5.2) when all of n,m, c, r, s, R, S, α, β, λ, µ are divisible by d.

It remains to show that if at least one of n,m, c, r, s, R, S, α, β, λ, µ is not divisible by d,
then X(ω) = 0. Since d divides both n and m, we have the following cases.

Case 1: r or s is not divisible by d. By (4.3), X(q) is a polynomial divisible by
[
n
r

]
q

[
m
s

]
q
.

Thus, by Lemma 5.3, we get X(ω) = 0.
Case 2: Both r and s are divisible by d, but α or β is not. Suppose α = (1a1 , 2a2, . . . )

is not divisible by d. Suppose moreover that aj is not divisible by d. Again by (4.3), X(q)
is divisible by [

r

α

]

q

=

[
r

aj

]

q

[
r − aj

a1, . . . , aj−1, aj+1, . . .

]

q

.
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Thus, by Lemma 5.3, we get X(ω) = 0. If β is not divisible by d, by the same arguments,
we get X(ω) = 0.

Case 3: All of r, s, α, β are divisible by d, but c is not. Note that since α and β are
divisible by d, so are R and S. By (4.3), we can write

X(q) =
1− qm−S

1− qc
Y (q)

for a polynomial Y (q). Since m− S is divisible by d, but c is not, 1−ωm−S

1−ωc = 0 and we get

X(ω) = 0.
Case 4: All of r, s, α, β, R, S, c are divisible by d, but λ or µ is not. Suppose λ is not

divisible by d. By (4.3), X(q) is divisible by
[
c
λ

]
q
. By the same argument as in Case 2

we obtain that X(ω) = 0. If µ is not divisible by d, we can do the same thing using the
expression

X(q) =
[(n− R)(m− S)]q

[n−R]q

[
n

r

]

q

[
m

s

]

q

[
r

α

]

q

[
s

β

]

q

[
c

µ

]

q

[n−R]q
[c]q

[
c

λ

]

q

.

Thus in all cases we have X(ω) = 0, which finishes the proof. �

6. Annular noncrossing matchings

An (n,m)-annular noncrossing matching is a complete matching on [n +m] which can
be drawn in an (n,m)-annulus without crossing. By considering each matching pair (i, j)
as a cycle of size 2, one can identify an annular noncrossing matching with an annular
noncrossing permutation consisting of cycles of size 2 only.

Theorem 6.1. Suppose n ≡ m ≡ c mod 2. The number of (n,m)-annular noncrossing

matchings with exactly c connected matching pairs is

c

(
n

n−c
2

)(
m
m−c
2

)
.

Proof. Such an annular noncrossing matching can be considered as an annular noncrossing
permutation with α = (2R) ∈ Par(2R,R), β = (2S) ∈ Par(2S, S), λ = µ = (1c) ∈ Par(c, c),
and n− 2R = m− 2S = c. Thus, we obtain the formula immediately from (2.6). �

We can also obtain a closed formula for the total number of connected annular noncross-
ing matchings.

Theorem 6.2. For n ≡ m mod 2, the number of connected (n,m)-annular noncrossing

matchings is

2
⌈
n
2

⌉ ⌈
m
2

⌉

n+m

(
n⌈
n
2

⌉
)(

m⌈
m
2

⌉
)
.
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Proof. We will prove the equivalent statement: for k ∈ {0, 1}, the number of connected
(2n+ k, 2m+ k)-annular noncrossing matchings is

(n+ k)(m+ k)

n+m+ k

(
2n+ k

n+ k

)(
2m+ k

m+ k

)
.

By Theorem 6.1, the number is equal to

∑

c≥0

(2c+ k)

(
2n+ k

n− c

)(
2m+ k

m− c

)
.

Then we are done by Lemma 3.3 for q = 1. �
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