Which algebraic integers are chromatic roots?

Adam Bohn

Queen Mary, University of London
a.bohn@qmul.ac.uk

September 11, 2012

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

The chromatic polynomial

- A q-colouring of a graph G is an assignment of q colours to the vertices of G, such that no two adjacent vertices receive the same colour.
- The chromatic polynomial $P_{G}(x)$ of G is the unique monic polynomial whose evaluation at any positive integer q is the number of q-colourings of G (note that not all q colours must be used in each colouring).

Example: colourings of K_{3}

K_{3} is the complete graph on three vertices.
$P_{K_{3}}(x)=x(x-1)(x-2)$, so K_{3} has six 3-colourings.

Chromatic roots

A chromatic root of G is a zero of $P_{G}(x)$. Much is known about the distribution of chromatic roots in the real line and complex plane.

Chromatic roots

A chromatic root of G is a zero of $P_{G}(x)$. Much is known about the distribution of chromatic roots in the real line and complex plane.

Distribution of chromatic roots

- There are no chromatic roots in $(-\infty, 0) \bigcup(0,1) \bigcup(1,32 / 27]$ (Jackson, 1993)

Chromatic roots

A chromatic root of G is a zero of $P_{G}(x)$. Much is known about the distribution of chromatic roots in the real line and complex plane.

Distribution of chromatic roots

- There are no chromatic roots in $(-\infty, 0) \bigcup(0,1) \bigcup(1,32 / 27]$ (Jackson, 1993)
- Chromatic roots are dense in the remainder of the real line (Thomassen, 1997)

Chromatic roots

A chromatic root of G is a zero of $P_{G}(x)$. Much is known about the distribution of chromatic roots in the real line and complex plane.

Distribution of chromatic roots

- There are no chromatic roots in $(-\infty, 0) \bigcup(0,1) \bigcup(1,32 / 27]$ (Jackson, 1993)
- Chromatic roots are dense in the remainder of the real line (Thomassen, 1997)
- Chromatic roots are dense in the whole complex plane (Sokal, 2001)

Chromatic roots

A chromatic root of G is a zero of $P_{G}(x)$. Much is known about the distribution of chromatic roots in the real line and complex plane.

Distribution of chromatic roots

- There are no chromatic roots in $(-\infty, 0) \cup(0,1) \cup(1,32 / 27]$ (Jackson, 1993)
- Chromatic roots are dense in the remainder of the real line (Thomassen, 1997)
- Chromatic roots are dense in the whole complex plane (Sokal, 2001)

But these are analytic results-they tell us almost nothing about which specific complex numbers can be chromatic roots...

Which numbers are chromatic roots?

Every chromatic root is an algebraic integer, but little is known of the converse:

Which numbers are chromatic roots?

Every chromatic root is an algebraic integer, but little is known of the converse:

Motivating question

- Which algebraic integers are chromatic roots?

Which numbers are chromatic roots?

Every chromatic root is an algebraic integer, but little is known of the converse:

Motivating question

- Which algebraic integers are chromatic roots?

We can currently only discount those having conjugates in $(-\infty, 0) \cup(0,1) \cup(1,32 / 27]$.

Which numbers are chromatic roots?

Every chromatic root is an algebraic integer, but little is known of the converse:

Motivating question

- Which algebraic integers are chromatic roots?

We can currently only discount those having conjugates in $(-\infty, 0) \bigcup(0,1) \bigcup(1,32 / 27]$.

Slightly easier questions

- Is the set of chromatic roots closed under multiplication by positive integers?
- Is every normal extension of \mathbb{Q} generated by a factor of some chromatic polynomial?

Two conjectures on chromatic roots

Conjecture 1 (The $\alpha+n$ Conjecture)

For any algebraic integer α, there is some natural number n such that $\alpha+n$ is a chromatic root.

If this were true, it would imply that every number field is contained in the splitting field of a chromatic factor.

Two conjectures on chromatic roots

Conjecture 2 (The $n \alpha$ Conjecture)

If α is a chromatic root, then so too is $n \alpha$ for all natural numbers
n.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

$$
P_{G}(\alpha)=0
$$

Outline of proof
Let G be a graph with chromatic root α, and let G_{i} be the join of G with a copy of K_{i}.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

Outline of proof
Let G be a graph with chromatic root α, and let G_{n} be the join of G with a copy of K_{n}.
Then: $P_{G_{1}}=x P_{G}(x-1)$, and so G_{1} has a chromatic root $\alpha+1$.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

Outline of proof
Let G be a graph with chromatic root α, and let G_{n} be the join of G with a copy of K_{n}.
$P_{G_{2}}=(x)_{2} P_{G}(x-2)$, and so G_{2} has
a chromatic root $\alpha+2$.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

Outline of proof
Let G be a graph with chromatic root α, and let G_{n} be the join of G with a copy of K_{n}.
$P_{G_{n}}=(x)_{n} P_{G}(x-n)$, and so G_{n} has
a chromatic root $\alpha+n$.

Evidence?

Other than data on small graphs, the main reason to suspect these conjectures may be true is the following:

Proposition

If α is a chromatic root, then so too is $\alpha+n$ for all $n \in \mathbb{N}$.

- The n α conjecture proposes a multiplicative analogue of this result.
- The implication that algebraic integers with larger real parts are more likely to be chromatic roots lends credibility to the $\alpha+n$ conjecture.

Generalised theta graphs

A generalised theta graph $\Theta_{m_{1}, \ldots, m_{n}}$ consists of two vertices joined by n otherwise disjoint paths of length m_{1}, \ldots, m_{n}. Sokal used these graphs in his proof that chromatic roots are dense in the complex plane.

Clique-theta graphs, and the $n \alpha$ Conjecture

A clique-theta graph is any graph obtained from a generalised theta graph by "blowing up" vertices into cliques.

Clique-theta graphs, and the $n \alpha$ Conjecture

Let G be a clique-theta graph consisting of n disjoint "clique-paths" connecting a single vertex to a k-clique, and let $a_{i(j)}$ be the size of the j th clique in the i th path. Then the chromatic polynomial of G is:

$$
\begin{aligned}
{\left[k(x-k)^{n-1} \prod_{i=1}^{n} \frac{1}{x}\right.} & \left.\left(\prod_{l=1}^{m_{i}}\left(x-a_{i(l)}\right)-\prod_{l=1}^{m_{i}}\left(-a_{i(l)}\right)\right)\right] \\
& +\left[\prod_{i=1}^{n} \frac{1}{x}\left((x-k) \prod_{l=1}^{m_{i}}\left(x-a_{i(l)}\right)+k \prod_{l=1}^{m_{i}}\left(-a_{i(l)}\right)\right)\right]
\end{aligned}
$$

Clique-theta graphs, and the $n \alpha$ Conjecture

Let G be a clique-theta graph consisting of n disjoint "clique-paths" connecting a single vertex to a k-clique, and let $a_{i(j)}$ be the size of the j th clique in the i th path. Then the chromatic polynomial of G is:

$$
\begin{aligned}
{\left[k(x-k)^{n-1} \prod_{i=1}^{n} \frac{1}{x}\right.} & \left.\left(\prod_{l=1}^{m_{i}}\left(x-a_{i(l)}\right)-\prod_{l=1}^{m_{i}}\left(-a_{i(l)}\right)\right)\right] \\
& +\left[\prod_{i=1}^{n} \frac{1}{x}\left((x-k) \prod_{l=1}^{m_{i}}\left(x-a_{i(l)}\right)+k \prod_{l=1}^{m_{i}}\left(-a_{i(l)}\right)\right)\right]
\end{aligned}
$$

Proposition

There is a dense subset of \mathbb{C} consisting of chromatic roots which remain chromatic roots upon multiplication by positive integers.

Clique-theta graphs, and the $n \alpha$ Conjecture

Proof

Let α be a non-integer chromatic root of a generalised theta graph G. Then, for any $n \in \mathbb{N}, n \alpha$ is a chromatic root of the clique-theta graph H obtained by replacing all but one endpoint vertex of G with n-cliques.

$$
\forall \alpha \notin \mathbb{Z}, P_{G}(\alpha)=0 \quad \Rightarrow \quad P_{H}(2 \alpha)=0
$$

Which algebraic integers are chromatic roots?

A rephrasing of the $\alpha+n$ conjecture

The $\alpha+n$ conjecture asserts that every monic, irreducible polynomial in $\mathbb{Z}[X]$ is an "integer shift" of some chromatic factor. This can be restated in a form more amenable to computation:

A rephrasing of the $\alpha+n$ conjecture

The $\alpha+n$ conjecture asserts that every monic, irreducible polynomial in $\mathbb{Z}[X]$ is an "integer shift" of some chromatic factor. This can be restated in a form more amenable to computation:

- Write that a monic, irreducible, degree d polynomial $f(x)$ is reduced if $0 \leq\left[x^{d-1}\right] f(x) \leq d-1$.

A rephrasing of the $\alpha+n$ conjecture

The $\alpha+n$ conjecture asserts that every monic, irreducible polynomial in $\mathbb{Z}[X]$ is an "integer shift" of some chromatic factor. This can be restated in a form more amenable to computation:

- Write that a monic, irreducible, degree d polynomial $f(x)$ is reduced if $0 \leq\left[x^{d-1}\right] f(x) \leq d-1$.
- The set of reduced polynomials of degree d form a complete set of congruence class representatives for the relation:

$$
f(x) \equiv g(x) \Leftrightarrow f(x)=g(x+n), n \in \mathbb{Z}
$$

A rephrasing of the $\alpha+n$ conjecture

The $\alpha+n$ conjecture asserts that every monic, irreducible polynomial in $\mathbb{Z}[X]$ is an "integer shift" of some chromatic factor. This can be restated in a form more amenable to computation:

- Write that a monic, irreducible, degree d polynomial $f(x)$ is reduced if $0 \leq\left[x^{d-1}\right] f(x) \leq d-1$.
- The set of reduced polynomials of degree d form a complete set of congruence class representatives for the relation:

$$
f(x) \equiv g(x) \Leftrightarrow f(x)=g(x+n), n \in \mathbb{Z}
$$

- The $\alpha+n$ conjecture is thus equivalent to the assertion that every reduced polynomial can be obtained from some chromatic factor by translating the domain.

Bicliques

A graph G is bipartite if its set of vertices can be partitioned into 2 subsets with no internal edges.

Bicliques

A biclique is the complement of a bipartite graph, consisting of two cliques joined by edges. A (j, k)-biclique has cliques of size j and k, with $j \leq k$.

A (3,5)-biclique

Biclique colourings from bipartite matchings

Let $G=(V, E)$ be a (j, k)-biclique, and $\bar{G}=(V, \bar{E})$ its bipartite complement.

Biclique colourings from bipartite matchings

Let $G=(V, E)$ be a (j, k)-biclique, and $\bar{G}=(V, \bar{E})$ its bipartite complement.

- The colour classes of any colouring of G form a partition of V into blocks of independent vertices.

Biclique colourings from bipartite matchings

Let $G=(V, E)$ be a (j, k)-biclique, and $\bar{G}=(V, \bar{E})$ its bipartite complement.

- The colour classes of any colouring of G form a partition of V into blocks of independent vertices.
- A maximal block contains 2 vertices, which are the endpoints of an element of \bar{E}.

Biclique colourings from bipartite matchings

Let $G=(V, E)$ be a (j, k)-biclique, and $\bar{G}=(V, \bar{E})$ its bipartite complement.

- The colour classes of any colouring of G form a partition of V into blocks of independent vertices.
- A maximal block contains 2 vertices, which are the endpoints of an element of \bar{E}.
- The blocks of a partition having m maximal blocks gives can be q-coloured in $(q)_{|V|-m}$ possible ways.

Biclique colourings from bipartite matchings

Let $G=(V, E)$ be a (j, k)-biclique, and $\bar{G}=(V, \bar{E})$ its bipartite complement.

- The colour classes of any colouring of G form a partition of V into blocks of independent vertices.
- A maximal block contains 2 vertices, which are the endpoints of an element of \bar{E}.
- The blocks of a partition having m maximal blocks gives can be q-coloured in $(q)_{|V|-m}$ possible ways.
Each colouring of G is thus induced by a matching of \bar{G}, and:

$$
P_{G}(x)=\sum_{M}(x)_{|V|-|M|}=\sum_{M}(x)_{j+k-|M|},
$$

where the sum is over all matchings M of \bar{G}.

Example

$$
P_{G}(x)=(x)_{7}+
$$

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+(x)_{6}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+(x)_{6}+(x)_{6}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+(x)_{6}+(x)_{6}+(x)_{6}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+(x)_{6}+(x)_{6}+(x)_{6}+(x)_{6}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+(x)_{6}+(x)_{6}+(x)_{6}+(x)_{6}+(x)_{6}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+(x)_{5}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+(x)_{5}+(x)_{5}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+(x)_{5}+(x)_{5}+(x)_{5}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+(x)_{5}+(x)_{5}+(x)_{5}+(x)_{5}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+(x)_{5}+(x)_{5}+(x)_{5}+(x)_{5}+(x)_{5}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+5(x)_{5}+(x)_{4}+
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+5(x)_{5}+(x)_{4}+(x)_{4}
$$

Matching of \bar{G}

Possible corresponding colouring of G

Example

$$
P_{G}(x)=(x)_{7}+5(x)_{6}+5(x)_{5}+2(x)_{4}
$$

Bicliques and the $\alpha+n$ conjecture

Let G be a (j, k)-biclique, with bipartite complement \bar{G}. Then:

$$
P_{G}(x)=(x)_{k} \sum_{i=0}^{j} m_{\bar{G}}^{i}(x-k)_{j-i}
$$

where $m_{\bar{G}}^{i}$ is the i th matching number of \bar{G}.

Bicliques and the $\alpha+n$ conjecture

Let G be a (j, k)-biclique, with bipartite complement \bar{G}. Then:

$$
P_{G}(x)=(x)_{k} \sum_{i=0}^{j} m_{\bar{G}}^{i}(x-k)_{j-i}
$$

where $m_{\bar{G}}^{i}$ is the i th matching number of \bar{G}.

Interesting consequence

Any two (j, k)-bicliques whose inter-clique edges complement each other inside $K_{j, k}$ have chromatic polynomials which generate the same splitting field.

Bicliques and the $\alpha+n$ conjecture

Let G be a (j, k)-biclique, with bipartite complement \bar{G}. Then:

$$
P_{G}(x)=(x)_{k} \sum_{i=0}^{j} m_{\bar{G}}^{i}(x-k)_{j-i}
$$

where $m_{\bar{G}}^{i}$ is the i th matching number of \bar{G}.

Interesting consequence

Any two (j, k)-bicliques whose inter-clique edges complement each other inside $K_{j, k}$ have chromatic polynomials which generate the same splitting field.

Theorem

For all quadratic (resp. cubic) integers α, there are natural numbers n, k and a $(2, k)$-biclique (resp. $(3, k)$-biclique) G such that $\alpha+n$ is a chromatic root of G.

Matching polynomials \& rook polynomials

Matching polynomials \& rook polynomials

- The matching polynomial of a graph G is the generating function for the matching numbers of G.

Matching polynomials \& rook polynomials

- The matching polynomial of a graph G is the generating function for the matching numbers of G.
- The rook polynomial of a board (subset of a grid) S is the generating function for the number of ways to place non-attacking rooks on S.

Matching polynomials \& rook polynomials

- The matching polynomial of a graph G is the generating function for the matching numbers of G.
- The rook polynomial of a board (subset of a grid) S is the generating function for the number of ways to place non-attacking rooks on S.
- Any bipartite graph G can be encoded as a board by associating the two subsets of $V(G)$ with rows and columns respectively, and defining the board as containing a square (i, j) of the grid if and only if the corresponding vertices of G are adjacent.

Matching polynomials \& rook polynomials

- The matching polynomial of a graph G is the generating function for the matching numbers of G.
- The rook polynomial of a board (subset of a grid) S is the generating function for the number of ways to place non-attacking rooks on S.
- Any bipartite graph G can be encoded as a board by associating the two subsets of $V(G)$ with rows and columns respectively, and defining the board as containing a square (i, j) of the grid if and only if the corresponding vertices of G are adjacent.
- A matching can now be visualized as a placement of non-attacking rooks.

Matching polynomials \& rook polynomials

- The matching polynomial of a graph G is the generating function for the matching numbers of G.
- The rook polynomial of a board (subset of a grid) S is the generating function for the number of ways to place non-attacking rooks on S.
- Any bipartite graph G can be encoded as a board by associating the two subsets of $V(G)$ with rows and columns respectively, and defining the board as containing a square (i, j) of the grid if and only if the corresponding vertices of G are adjacent.
- A matching can now be visualized as a placement of non-attacking rooks.

The $\alpha+n$ conjecture for bicliques is thus equivalent to a statement about which sequences of coefficients can appear in rook polynomials.

Thanks for listening!

