Zeros of multivariate polynomials in combinatorics

Petter Brändén (KTH)
Séminaire Lotharingien de Combinatoire 69

Strobl, September 10-12, 2012

Multivariate polynomials with prescribed zero restrictions

- Statistical mechanics: Lee-Yang program on phase transitions, correlation inequalities.
- Probability theory: Negative dependence, symmetric exclusion process.
- Matrix theory: Matrix inequalities for Hermitian matrices, Horn's problem.
- Control theory: Stability of solutions systems of equations.
- Complex analysis: Dynamics of zeros of polynomials and entire functions.
- PDE: Hyperbolic PDE, fundamental solution of PDE's with constant coefficients.
- Optimization: Convex optimization generalizing semidefinite programming.
- Combinatorics: Unimodality, log-concavity, graph polynomials, matroid theory.

Outline

- Stable polynomials; a multivariate analog of real-rooted polynomials.
- Inequalities (Negative dependence).
- Symmetric exclusion process.
- Linear operators preserving real-rootedness/stability.
- Multivariate Eulerian polynomials.
- "Stability" in the algebra of free quasi-symmetric functions.
- Infinite log-concavity.
- Stable polynomials and matroid theory.
- Generalized Lax conjecture in convex optimization.

Real-rooted polynomials

Let $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial with positive coefficients.

- $\left\{a_{k}\right\}_{k=0}^{n}$ is unimodal if for some m :

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{m} \geq a_{m+1} \geq \cdots \geq a_{n-1} \geq a_{n}
$$

$\Longleftarrow\left\{a_{k}\right\}_{k=0}^{n}$ is log-concave:

$$
a_{k}^{2} \geq a_{k-1} a_{k+1}, \quad \text { for all } 1 \leq k \leq n-1
$$

$\Longleftarrow\left\{a_{k}\right\}_{k=0}^{n}$ is ultra-log-concave:

$$
\frac{a_{k}^{2}}{\binom{n}{k}^{2}} \geq \frac{a_{k-1}}{\binom{n}{k-1}} \frac{a_{k+1}}{\binom{n}{k+1}}, \quad \text { for all } 1 \leq k \leq n-1
$$

$\Longleftarrow P(x)$ is real-rooted.

Examples of real-rooted polynomials

- Eulerian polynomials (and generalizations):

$$
A_{n}(x)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{des}(\sigma)+1}
$$

where $\operatorname{des}(\sigma)=|\{i \in[n-1]: \sigma(i)>\sigma(i+1)\}|$.

- Matching polynomials: Generating polynomial of matchings in a graph. A matching is a subset M of pairwise disjoint edges.
- Independence polynomials of claw-free graphs: Generating polynomial of independent sets of vertices. A graph is claw free if it contains no induced claw.

- Orthogonal polynomials.
- Characteristic polynomials of hermitian matrices.

Multivariate analog of real-rootedness

- Let $P(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $H=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
- P is stable if

$$
\mathbf{x} \in H^{n} \quad \Longrightarrow \quad P(\mathbf{x}) \neq 0
$$

- $\left(1-x_{1} x_{2}\right)\left(1+2 x_{1}+4 x_{2}+3 x_{3}\right)$ is stable.
- If $P \in \mathbb{R}\left[x_{1}\right]$, then P is stable iff it is real-rooted.
- If $P \in \mathbb{R}[\mathbf{x}]$ is stable, then $P(x, x, \ldots, x)$ is real-rooted.
- By convention call the zero polynomial stable.
- The space of stable polynomial in n variables and of degree at most d is closed. (Hurwitz' theorem on the continuity of zeros).
- This space has nonempty interior.

Examples

- Helmann-Lieb theorem

Let $\mathbf{x}=\left(x_{i}\right)_{i \in V}$ be variables and $\lambda=\left(\lambda_{e}\right)_{e \in E}$ nonnegative weights. Then

$$
P_{G, \lambda}(\mathbf{x})=\sum_{M}(-1)^{|M|} \prod_{e=i j \in M} \lambda_{e} x_{i} x_{j}
$$

where the sum is over all matchings is stable.

- In particular, the generating polynomial

$$
\sum_{M} x^{|M|}
$$

is real-rooted.

Determinantal polynomials

- Let A_{0}, \ldots, A_{n} be hermitian $m \times m$ matrices. If A_{1}, \ldots, A_{n} are positive semidefinite, then

$$
P(\mathbf{x})=\operatorname{det}\left(A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}\right)
$$

is stable.
Proof. We may assume that A_{1} is positive definite. Let $\mathbf{x}+i \mathbf{y} \in H^{n}$. We need to prove that $P(\mathbf{x}+i \mathbf{y}) \neq 0$.

$$
\begin{aligned}
P(\mathbf{x}+i \mathbf{y}) & =\operatorname{det}\left(A_{0}+\sum_{k=0}^{n} x_{k} A_{k}+i \sum_{k=0}^{n} y_{k} A_{k}\right) \\
& =\operatorname{det}(A+i B)=\operatorname{det}(B) \operatorname{det}\left(B^{-1 / 2} A B^{-1 / 2}+i l\right)
\end{aligned}
$$

- $B^{-1 / 2} A B^{-1 / 2}$ is hermitian, so $-i$ is not an eigenvalue. Thus $P(\mathbf{x}+i \mathbf{y}) \neq 0$.

Determinantal polynomials

For $n=2$ there is a converse which follows from seminal work of Helton and Vinnikov which solves a conjecture of P. Lax from 1958:
Theorem
Let $P(x, y)$ be a real polynomial of degree at most d. TFAE

- P is stable;
- There exist three symmetric real $d \times d$ matrices A, B, C such that A, B are positive semidefinite and

$$
P(x, y)=\operatorname{det}(x A+y B+C)
$$

- The exact converse fails for more than three variables by a count of parameters: $\operatorname{Det}_{n, d} \leq n\binom{d+1}{2}$, Stable $_{n, d}=\binom{n+d}{n}$.

Spanning tree polynomials

- Let $G=(V, E)$ be a connected graph with $V=\{1, \ldots, n\}$.
- The spanning tree polynomial (in $\mathbf{x}=\left(x_{e}\right)_{e \in E}$) is

$$
P_{G}(\mathbf{x})=\sum_{T} \prod_{e \in T} x_{e}
$$

where the sum is over all spanning trees of G.

- The weighted Laplacian of G is the linear matrix polynomial

$$
L_{G}(\mathbf{x})=\sum_{e \in E} x_{e}\left(\delta_{e_{1}}-\delta_{e_{2}}\right)\left(\delta_{e_{1}}-\delta_{e_{2}}\right)^{T}
$$

where $\left\{\delta_{i}\right\}_{i=1}^{n}$ is the standard basis of \mathbb{R}^{n} and e_{1}, e_{2} are the vertices incident to the edge e.

- Kirchhoff's matrix-tree theorem

Let $L_{G}(\mathbf{x})_{i}$ be the matrix obtained by deleting row and column i in $L_{G}(\mathbf{x})$. Then $P_{G}(\mathbf{x})=\operatorname{det}\left(L_{G}(\mathbf{x})_{i}\right)$.

- Spanning tree polynomials are stable.

Inequalities

- Let

$$
P(\mathbf{x})=\sum_{\alpha \in \mathbb{N}^{n}} a(\alpha) \mathbf{x}^{\alpha}, \quad \text { where } \mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

be a stable polynomial with non-negative coefficients.

- For all $\alpha, \beta \in \mathbb{N}^{n}$

$$
a(\alpha) a(\beta) \geq a(\alpha \vee \beta) a(\alpha \wedge \beta)
$$

- Thm. (Gurvits): If P is homogeneous of degree n, then

$$
a(1,1, \ldots, 1) \geq \frac{n!}{n^{n}} \operatorname{Cap}(P)
$$

where

$$
\operatorname{Cap}(P)=\inf _{x_{1}, \ldots, x_{n}>0} \frac{P\left(x_{1}, \ldots, x_{n}\right)}{x_{1} \cdots x_{n}} .
$$

Inequalities

- Recall that a matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ with nonnegative entries is doubly stochastic if each row and each column sums to one.
- Let $P(\mathbf{x})=\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)=\sum_{\alpha} a(\alpha) \mathbf{x}^{\alpha}$.
- Then

$$
a(1, \ldots, 1)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}=\operatorname{per}(A)
$$

where \mathfrak{S}_{n} is the symmetric group on $\{1, \ldots, n\}$.

- Also P is stable and $\operatorname{Cap}(P)=1$.
- Hence

$$
\operatorname{per}(A) \geq \frac{n!}{n^{n}}
$$

- which was conjectured by Van der Waerden in 1926 and proved by Egorychev/Falikman in 1979/1980.

Inequalities: Positive dependence

- Let S be a finite set and μ a discrete probability measure on $\{0,1\}^{S}$ i.e.,

$$
\mu:\{0,1\}^{S} \rightarrow[0, \infty), \quad \sum_{\eta \in\{0,1\}^{S}} \mu(\eta)=1
$$

- Think of S as sites that can be occupied by particles.
- μ is pairwise positively correlated if for all distinct $i, j \in S$

$$
\mu(\eta: \eta(i)=\eta(j)=1) \geq \mu(\eta: \eta(i)=1) \mu(\eta: \eta(j)=1)
$$

- μ is positively associated if for all increasing
$f, g:\{0,1\}^{S} \rightarrow \mathbb{R}$

$$
\int f g d \mu \geq \int f d \mu \int g d \mu
$$

- Let $i \neq j$ and

$$
f(\eta)=\left\{\begin{array}{l}
1 \text { if } \eta(i)=1, \\
0 \text { if } \eta(i)=0
\end{array} \quad \text { and } \quad g(\eta)=\left\{\begin{array}{l}
1 \text { if } \eta(j)=1, \\
0 \text { if } \eta(j)=0
\end{array}\right.\right.
$$

- Then

$$
\int f d \mu=\mu(\eta: \eta(i)=1) \text { and } \int f g d \mu=\mu(\eta: \eta(i)=\eta(j)=1)
$$

- Hence positive association is stronger than pairwise positive correlation.
- FKG Theorem (Fortuin, Kasteleyn, Ginibre)
μ is positively associated if

$$
\mu(\alpha) \mu(\beta) \leq \mu(\alpha \vee \beta) \mu(\alpha \wedge \beta), \text { for all } \alpha, \beta \in\{0,1\}^{S}
$$

Inequalities: Negative dependence

- μ is pairwise negatively correlated if for all distinct $i, j \in S$

$$
\mu(\eta: \eta(i)=\eta(j)=1) \leq \mu(\eta: \eta(i)=1) \mu(\eta: \eta(j)=1)
$$

- μ is negatively associated (NA) if for all increasing
$f, g:\{0,1\}^{S} \rightarrow \mathbb{R}$ depending on disjoint sets of variables

$$
\int f g d \mu \leq \int f d \mu \int g d \mu
$$

- Negative association is a desirable property implying for example central limit theorems, but hard to prove for specific examples.
- There is no known FKG theorem for negative dependence. Find a "useful" property that implies NA!

Examples of NA measures

- The uniform spanning tree measure associated to a connected graph $G=(V, E)$ is the discrete probability measure on $\{0,1\}^{E}$, that puts all mass and equal mass to the spanning trees of G.
- Thm. (Feder and Mihail): Uniform spanning tree measures are negatively associated.
- Determinantal measures: Let A be a positive semidefinite $n \times n$ matrix with all eigenvalues ≤ 1. A defines a measure by

$$
\mu(\eta: \xi \leq \eta)=\operatorname{det}(A[\xi])
$$

where $A[\xi]$ is the principal minor with rows and columns indexed by ξ.

- Thm. (R. Lyons): Determinantal measures are negatively associated.

Strong Rayleigh measures

- The partition function of μ is the multivariate polynomial

$$
Z_{\mu}(\mathbf{x})=\sum_{\eta \in\{0,1\}^{S}} \mu(\eta) \mathbf{x}^{\eta}, \quad \text { where } \quad \mathbf{x}^{\eta}=\prod_{i \in S} x_{i}^{\eta(i)}
$$

- Strong Rayleigh measures: μ is strong Rayleigh if Z_{μ} is stable.
- Theorem (Borcea, B., Liggett)

Strong Rayleigh measures are negatively associated.

- The proof uses a general form of the Feder-Mihail theorem and theorems in analysis due to Grace-Walsh-Szegő and Gårding.
- Uniform spanning tree measures are strong Rayleigh.
- Determinantal measures are strong Rayleigh.
- Strong Rayleigh measures have nonempty interior in the space of all discrete probability measures on $\{0,1\}^{S}$.

The Symmetric Exclusion Process (SEP)

- Finite (countable) set S of sites.
- Configuration of particles $\eta \in\{0,1\}^{S}$.

$$
\eta(i)=0 \text { vacant } \quad \eta(i)=1 \text { occupied }
$$

- Nonnegative symmetric $S \times S$ matrix $Q=\left(q_{i j}\right)_{i, j=1}^{n}$
- The Symmetric Exclusion Process is the continuous time Markov process on $\{0,1\}^{S}$, $t \mapsto \eta_{t}$, with transitions described by:

$$
\eta \rightarrow \tau_{i j}(\eta) \quad \text { at rate } q_{i j}
$$

where $\tau_{i j}$ is the transposition that interchanges the coordinates $\eta(i)$ and $\eta(j)$.

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}
$$

$$
0_{0}^{0} 0
$$

$$
000
$$

$$
100
$$

$$
0
$$

Recall that a product measure is a measure μ of the form

$$
Z_{\mu}(\mathbf{x})=\prod_{i=1}^{n}\left(1-p_{i}+p_{i} x_{i}\right), \quad \text { where } \quad 0 \leq p_{i} \leq 1
$$

Theorem (Liggett 1970's)
Suppose that the initial distribution is a product measure then for any finite $A \subseteq S$ and $t \geq 0$

$$
\mathbb{P}\left(\eta_{t} \equiv 1 \text { on } A\right) \leq \prod_{i \in A} \mathbb{P}\left(\eta_{t}(i)=1\right)
$$

Theorem (Andjel 1985)
Suppose that the initial distribution is a product measure then for any finite disjoint sets $A, B \subseteq S$ and $t \geq 0$

$$
\mathbb{P}\left(\eta_{t} \equiv 1 \text { on } A \cup B\right) \leq \mathbb{P}\left(\eta_{t} \equiv 1 \text { on } A\right) \mathbb{P}\left(\eta_{t} \equiv 1 \text { on } B\right)
$$

- Conjecture (Liggett, Pemantle)

Suppose that the initial distribution in SEP is a product measure, then the distribution is negatively associated for all $t \geq 0$.

- Unfortunately NA is not preserved by SEP.
- Problem

Find a negative dependence property P satisfying
(1) P is preserved by SEP,
(2) $P \Longrightarrow N A$,
(3) Product measures have property P.

- Strong Rayleigh measures satisfy (2) and (3).
- Thm. (Borcea, B., Liggett): The strong Rayleigh property is preserved by SEP.

A refined particle process

- Consider SEP with particle creation and annihilation allowed.
- At each site a particle is created at a certain rate (provided that the site is empty).
- At each site a particle is annihilated at a certain rate (provided that the site is occupied).

Observation (Wagner)
SEP with particle creation and annihilation preserves the strong Rayleigh property.

- What is the stationary distribution?
- Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n+1} \in \mathfrak{S}_{n+1}$ be a permutation.
- Let $\mathrm{DB}(\sigma)=\left(\eta_{1}, \ldots, \eta_{n}\right) \in\{0,1\}^{n}$ be defined by $\eta_{\sigma_{i}}=1 \Longleftrightarrow \sigma_{i-1}>\sigma_{i}$.
- $\mathrm{DB}(37284156)=(1,1,0,1,0,0,0)$.
- Let μ_{n} be the distribution of DB , i.e.,

$$
\mu_{n}(\eta)=\frac{\left|\left\{\sigma \in \mathfrak{S}_{n+1}: \operatorname{DB}(\sigma)=\eta\right\}\right|}{(n+1)!}
$$

Theorem (Corteel and Williams)
μ_{n} is the stationary distribution for the above process.

- Hence μ_{n} is strong Rayleigh.
- Its partition function Z_{n} satisfies

$$
x(n+1)!Z_{n}(x, \ldots, x)=A_{n+1}(x)
$$

where $A_{n}(x)$ is the nth Eulerian polynomial.

- Problem. Find the stationary distribution for other graphs.
- It is necessarily strong Rayleigh.

Linear operators preserving stability

Problem.
Characterize linear operators $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ preserving real rootedness.

- An old problem that goes back to the work of Laguerre, Hermite, Jensen, Pólya, Schur who wanted to prove that all zeros of the entire function

$$
\xi(x)=\frac{1}{2}\left(x^{2}+\frac{1}{2}\right) \pi^{i x / 2-1 / 4} \Gamma\left(\frac{1}{4}-\frac{i x}{2}\right) \zeta\left(\frac{1}{2}-i x\right)
$$

are real.

- and more recently to Craven, Csordas, Saff, Iserles, Nørsett, Brenti, Wagner, ...
- Gauss and Lucas: $T=d / d x$
- Hermite, Poulain, Jensen: $T=\sum_{k=0}^{n} a_{k}(d / d x)^{k}$ preserves real-rootedness iff $\sum_{k=0}^{n} a_{k} x^{k}$ is real-rooted.
- A sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}$ is a multiplier sequence, if the (diagonal) operator $T\left(x^{k}\right)=\lambda_{k} x^{k}$ preserves real-rootedness.
- Hence $\lambda_{k}=k$ is a multiplier sequence $(T=x d / d x)$.

Theorem (Pólya and Schur, 1914). TFAE
(i) $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ is a multiplier sequence.
(ii) For each $n \in \mathbb{N}$, all zeros of

$$
T\left((1+x)^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} \lambda_{k} x^{k}
$$

are real and of the same sign.
(iii) The exponential generating function

$$
T\left(e^{x}\right)=\sum_{k=0}^{\infty} \frac{\lambda_{k}}{k!} x^{k}
$$

is an entire function, which is the limit, uniform on compact sets, of polynomials with only real zeros which are all of the same sign.

General Characterization

- Let $\mathbb{R}_{n}[x]=\{P \in \mathbb{R}[x]: \operatorname{deg} P \leq n\}$.
- The symbol of a linear operator $T: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}[x]$ is the bivariate polynomial

$$
G_{T}(x, y)=T\left((x+y)^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} T\left(x^{k}\right) y^{n-k}
$$

- Call T degenerate if its range is at most two-dimensional.

Theorem (Borcea and B.). A nondegenerate linear operator $T: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}[x]$ preserves real-rootedness iff

$$
G_{T}(x, y) \text { or } G_{T}(x,-y) \text { is stable. }
$$

Example

- Let $A_{n}(x)=\sum_{k=0}^{n} A(n, k) x^{k}$ be the Eulerian polynomial of degree n.
- $A(n+1, k)=k A(n, k)+(n+2-k) A(n, k-1)$

$$
\begin{gathered}
A_{n+1}(x)=x(1-x) \frac{d}{d x} A_{n}(x)+(n+1) x A_{n}(x)=T\left(A_{n}(x)\right) \\
T=x(1-x) \frac{d}{d x}+(n+1) x
\end{gathered}
$$

- We want to prove that $T: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}[x]$ preserves real-rootedness.

$$
\left.T\left((x+y)^{n}\right)\right)=x(x+y)^{n-1}(x+(d+1) y+d)
$$

- which is stable
- The symbol of a linear operator $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is the formal power series

$$
\mathcal{G}_{T}(x, y)=T\left(e^{-x y}\right)=\sum_{k=0}^{\infty} \frac{T\left(x^{k}\right)}{k!}(-y)^{k} .
$$

- The Laguerre-Pólya class of entire functions in n variables, $\mathcal{L}-\mathcal{P}_{n}(\mathbb{R})$, consists of all entire functions that are the uniform limit on compact sets of real stable polynomials in n variables.
- $e^{-x y}=\lim _{n \rightarrow \infty}(1-x y / n)^{n}$

Theorem (Borcea and B.). A nondegenerate linear operator $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ preserves real-rootedness iff
$\mathcal{G}_{T}(x, y)$ or $\mathcal{G}_{T}(x,-y)$ is in the Laguerre-Pólya class.

Example: Differential operators

- Let $T=\sum_{k=0}^{n} Q_{k}(x) d^{k} / d x^{k}$ be a differential operator. Then

$$
\mathcal{G}_{T}(x, y)=T\left(e^{-x y}\right)=e^{-x y} \sum_{k=0}^{n} Q_{k}(x)(-y)^{k}
$$

- Hence T preserves real-rootedness iff $\sum_{k=0}^{n} Q_{k}(x)(-y)^{k}$ is stable iff there exist three symmetric real matrices A, B, C such that A, B are positive semidefinite and

$$
\sum_{k=0}^{n} Q_{k}(x) y^{k}=\operatorname{det}(x A-y B+C)
$$

- Preserving real stability in one variable \Longleftrightarrow Symbol is real stable in two variables.
- For $\kappa=\left(\kappa_{1}, \ldots, \kappa_{n}\right) \in \mathbb{N}^{n}$, let

$$
\mathbb{C}_{\kappa}\left[x_{1}, \ldots, x_{n}\right]=\left\{P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: \operatorname{deg}_{x_{j}}(P) \leq \kappa_{j} \text { for all } j\right\} .
$$

- The symbol of a linear operator $T: \mathbb{C}_{\kappa}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is the $2 n$-variate polynomial

$$
G_{T}(\mathbf{x}, \mathbf{y})=T\left(\left(x_{1}+y_{1}\right)^{\kappa_{1}} \cdots\left(x_{n}+y_{n}\right)^{\kappa_{n}}\right),
$$

where T only acts on the x-variables.
Theorem (Borcea and B.). Suppose that the range of $T: \mathbb{C}_{\kappa}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ has dimension at least two.
Then T preserves stability if and only if $G_{T}(\mathbf{x}, \mathbf{y})$ is stable.

- The complex Laguerre-Pólya class of entire functions in n variables, $\mathcal{L}-\mathcal{P}_{n}(\mathbb{C})$, consists of all entire functions that are the uniform limit on compact sets of stable polynomials in n variables.
- The symbol of a linear operator $T: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is the formal power series

$$
\mathcal{G}_{T}(\mathbf{x}, \mathbf{y})=T\left(e^{-\mathbf{x} \cdot \mathbf{y}}\right)=\sum_{\alpha \in \mathbb{N}^{n}} \frac{T\left(\mathbf{x}^{\alpha}\right)}{\alpha!}(-\mathbf{y})^{\alpha},
$$

where $\alpha!=\alpha_{1}!\cdots \alpha_{n}$! and $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
Theorem (Borcea and B.). Suppose that the range of $T: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ has dimension at least two.
Then T preserves stability if and only if $\mathcal{G}_{T}(\mathbf{x}, \mathbf{y})$ is in the complex Laguerre-Pólya class.

Example

- Helmann-Lieb theorem

Let $\mathbf{x}=\left(x_{i}\right)_{i \in V}$ be variables and $\lambda=\left(\lambda_{e}\right)_{e \in E}$ nonnegative weights. Then

$$
P_{G, \lambda}(\mathbf{x})=\sum_{M}(-1)^{|M|} \prod_{e=i j \in M} \lambda_{e} x_{i} x_{j}
$$

where the sum is over all partial matchings is stable.

- Proof following Choe, Oxley, Sokal and Wagner:
- Let MAP : $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be the linear operator that maps P to its multi-affine part:

$$
\operatorname{MAP}\left(\sum_{\alpha \in \mathbb{N}^{n}} a(\alpha) \mathbf{x}^{\alpha}\right)=\sum_{\alpha \in\{0,1\}^{n}} a(\alpha) \mathbf{x}^{\alpha}
$$

- MAP preserves stability:

$$
\operatorname{MAP}\left(e^{-x \cdot y}\right)=\left(1-x_{1} y_{1}\right) \cdots\left(1-x_{n} y_{n}\right) .
$$

- The Heilmann-Lieb theorem follows from

$$
\operatorname{MAP}\left(\prod_{i j \in E}\left(1-\lambda(i j) x_{i} x_{j}\right)\right)=P_{G, \lambda}(\mathbf{x})
$$

Example: Eulerian polynomials

- Consider the homogenized Eulerian polynomials:

$$
\begin{gathered}
A_{n}(x, y)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{des}(\sigma)+1} y^{\operatorname{asc}(\sigma)+1}=y^{n+1} A_{n}(x / y) \\
A_{n+1}(x, y)=x y\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) A_{n}(x, y)=T\left(A_{n}\right)
\end{gathered}
$$

- To prove that $A_{n}(x, y)$ is stable and thus that $A_{n}(x)$ real-rooted, we want to prove that T preserves stability:

$$
T\left(e^{-x z-y w}\right)=-x y(z+w) e^{-x z-y w} \in \mathcal{L}-\mathcal{P}_{4}(\mathbb{C})
$$

Multivariate Eulerian polynomials

- Define the descent bottom set and ascent bottom set of $\sigma \in \mathfrak{S}_{n}$ as

$$
\begin{aligned}
& \operatorname{DB}(\sigma)=\{\sigma(i): \sigma(i-1)>\sigma(i)\} \text { and } \\
& \operatorname{AB}(\sigma)=\{\sigma(i): \sigma(i)<\sigma(i+1)\}
\end{aligned}
$$

where $\sigma(0)=\sigma(n+1)=\infty$.

- Define the weight of σ as

$$
\begin{gathered}
w(\sigma)=\prod_{i \in \operatorname{DB}(\sigma)} x_{i} \prod_{j \in \mathrm{AB}(\sigma)} y_{j} \\
w(5762413)=x_{5} x_{6} x_{2} x_{1} y_{2} y_{1} y_{3} y_{5} .
\end{gathered}
$$

- Define a multivariate Eulerian polynomial by

$$
A_{n}(\mathbf{x}, \mathbf{y})=\sum_{\sigma \in \mathfrak{S}_{n}} w(\sigma)
$$

Multivariate Eulerian polynomials

- $A_{n}(\mathbf{x}, \mathbf{y})$ is multi-affine and homogeneous of degree $n+1$.
- For $i=0, \ldots, n$, the i th slot of σ is the space between $\sigma(i)$ and $\sigma(i+1)$.
- Let σ be a permutation of $\{2, \ldots, n+1\}$ and insert the letter 1 in the slot i of σ.
- If $\sigma(i)<\sigma(i+1)$, then the new weight is
$\sigma(i+1)$

$$
x_{1} y_{1} \frac{\partial}{\partial y_{\sigma(i)}} w(\sigma)
$$

$$
1
$$

- If $\sigma(i)>\sigma(i+1)$, then the new weight is

$$
\sigma(i+1) \quad x_{1} y_{1} \frac{\partial}{\partial x_{\sigma(i+1)}} w(\sigma)
$$

- Inserting 1 in all slots has the effect:

$$
x_{1} y_{1}\left(\sum_{k=2}^{n+1} \frac{\partial}{\partial x_{k}}+\sum_{k=2}^{n+1} \frac{\partial}{\partial y_{k}}\right) w(\sigma)
$$

- Lemma

$$
A_{n+1}(\mathbf{x}, \mathbf{y})=x_{1} y_{1}\left(\sum_{k=2}^{n+1} \frac{\partial}{\partial x_{k}}+\sum_{k=2}^{n+1} \frac{\partial}{\partial y_{k}}\right) A_{n}\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)
$$

where $\mathbf{x}^{*}=\left(x_{2}, x_{3}, \ldots\right)$.

- Corollary
$A_{n}(\mathbf{x}, \mathbf{y})$ is stable.
- Proof. It suffices to prove that operators of the form $T=\sum_{i=1}^{n} \lambda_{i} \partial / \partial x_{i}$, where $\lambda_{i} \geq 0$, preserves stability.

$$
T\left(e^{-x \cdot y}\right)=-e^{-x \cdot y}\left(\sum_{i=1}^{n} \lambda_{i} y_{i}\right)
$$

Stability of free quasi-symmetric functions

- Let $\mathrm{FQSym}=\oplus_{n=0}^{\infty} \mathrm{FQSym}_{n}$ be a formal \mathbb{C}-linear vector space with FQSym ${ }_{n}$ having bases \mathfrak{S}_{n}.
- The product in FQSym is defined on the bases elements:

$$
\begin{aligned}
231 \cdot 21=23154 & +23514+23541+25314+25341+52314 \\
& +25431+52341+52431+54231
\end{aligned}
$$

- FQSym is called the algebra of free quasi-symmetric functions or the Malvenuto-Reutenauer (Hopf-) algebra.
- Let as before

$$
w(\sigma)=\prod_{i \in \operatorname{DB}(\sigma)} x_{i} \prod_{j \in \mathrm{AB}(\sigma)} y_{j}
$$

and extend w linearly to FQSym.

- Call a weight $w^{\prime}:$ FQSym $\rightarrow \mathbb{R}\left[t_{1}, t_{2}, \ldots\right]$ good if it is of the form

$$
w^{\prime}(\xi)=w(\xi)\left(t_{f(1)}, t_{f(2)}, \ldots, t_{g(1)}, t_{g(2)}, \ldots\right)
$$

where $f, g: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$are arbitrary.

- In particular $w_{1}(\sigma)=t_{1}^{\operatorname{des}(\sigma)+1} t_{2}^{|\sigma|-\operatorname{des}(\sigma)}$ is good.
- Lemma (B., Leander).

Let w^{\prime} be a good weight and $\eta, \xi \in \mathrm{FQSym}$. Then $w^{\prime}(\eta \cdot \xi)$ only depends on $w^{\prime}(\eta)$ and $w^{\prime}(\xi)$.

- Hence each good w^{\prime} defines an (descent bottom) algebra.
- Theorem (B., Leander).

Let w^{\prime} be a good weight and $\eta, \xi \in \mathrm{FQSym}$ be such that $w^{\prime}(\eta)$ and $w^{\prime}(\xi)$ are stable. Then $w^{\prime}(\eta \cdot \xi)$ is stable.

- Note that $A_{n}(\mathbf{x}, \mathbf{y})=w\left(1^{n}\right)$
- The case of the theorem when $w^{\prime}=w_{1}$ is a reformulation of conjecture of Brenti, first proved by Wagner.

P-Eulerian polynomials

- Let P be a partially ordered set on $\{1, \ldots, n\}$.

- Let $\mathcal{L}(P)$ be the linear extensions of P.

σ	$\operatorname{des}(\sigma)$	
35124	1	
35142	2	
31524	2	
31452	2	$A_{P}(x)=\sum_{\sigma \in \mathcal{L}(P)} x^{\operatorname{des}(\sigma)+1}=x^{2}+4 x^{3}+2 x^{4}$
53124	2	
31542	3	
53142	3	

Neggers-Stanley conjecture: All zeros of $A_{P}(x)$ are real.

- Disproved in 2004 by B.
- However it holds (or is open) for many important classes of permutations.
- We may define a multivariate analog by

$$
A_{P}(\mathbf{x}, \mathbf{y})=w(\ell(P)), \quad \text { where } \quad \ell(P)=\sum_{\sigma \in \mathcal{L}(P)} \sigma
$$

- If P is the anti-chain on [n], then $A_{P}(\mathbf{x}, \mathbf{y})=A_{n}(\mathbf{x}, \mathbf{y})$.
- Question: For which P is $A_{P}(\mathbf{x}, \mathbf{y})$ stable?
- The disjoint union $P \sqcup Q$ of two posets P and Q :

- Corollary

If $A_{P}(\mathbf{x}, \mathbf{y})$ and $A_{Q}(\mathbf{x}, \mathbf{y})$ are stable, then so is $A_{P \sqcup Q}(\mathbf{x}, \mathbf{y})$.
Proof. $\ell(P \sqcup Q)=\ell(P) \cdot \ell(Q)$.

- Corollary
$A_{P}(\mathbf{x}, \mathbf{y})$ is stable for naturally labelled trees.

Peaks

- We have an analogous version for peaks in permutations.
- Let

$$
\Lambda(\sigma)=\{\sigma(i): 2 \leq i \leq n-1 \text { and } \sigma(i-1)<\sigma(i)>\sigma(i+1)\} .
$$

- Define $w_{\Lambda}:$ FQSym $\rightarrow \mathbb{R}\left[x_{2}, x_{3}, \ldots\right]$ by

$$
w_{A}(\sigma)=\prod_{j \in \Lambda(\sigma)} x_{j}
$$

- Again say that $w_{\Lambda}^{\prime}: \operatorname{FQSym} \rightarrow \mathbb{R}\left[t_{1}, t_{2}, \ldots\right]$ is good if it is obtained from w_{Λ} by renaming and identifying some (or none) of the variables.
- Lemma (B., Leander).

Let w_{Λ}^{\prime} be a good weight and $\eta, \xi \in \mathrm{FQSym}$. Then $w_{\Lambda}^{\prime}(\eta \cdot \xi)$ only depends on $w_{\wedge}^{\prime}(\eta)$ and $w_{\wedge}^{\prime}(\xi)$.

- A polynomial is Hurwitz stable if it non-vanishing whenever all variables are in the open right half-plane.
- Theorem (B., Leander).

Let w_{Λ}^{\prime} be a good weight and $\eta, \xi \in \mathrm{FQSym}$ be such that $w_{\Lambda}^{\prime}(\eta)$ and $w^{\prime}(\xi)$ are Hurwitz stable. Then $w_{\Lambda}^{\prime}(\eta \cdot \xi)$ is Hurwitz stable.

- Corollary.

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{j \in \Lambda(\sigma)} x_{j} \quad \text { is Hurwitz stable. }
$$

- Corollary. Let \mathcal{A}_{n} be the alternating permutations of length n.

$$
\sum_{\sigma \in \mathcal{A}_{n}} \prod_{j \in \Lambda(\sigma)} x_{j} \quad \text { is stable. }
$$

Multivariate Eulerian polynomials for Coxeter groups

- Let W be a finite Coxeter group with generators S :

$$
W=\left\langle S:\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=1, m(s, s)=1\right\rangle
$$

- The descent set of $w \in W$ is

$$
D(w)=\{s \in S: \ell(w s)<\ell(w)\}
$$

- The W-Eulerian polynomial is

$$
A_{W}(x)=\sum_{w \in W} x^{|D(w)|+1}
$$

- Conjecture (Brenti)

For any finite Coxeter group $W, A_{W}(x)$ is real-rooted.

- The only remaining case is type D ? (Solution proposed by Shi-Mei Ma).

Multivariate Eulerian polynomials for Coxeter groups

- $A_{n}(\mathbf{x}, \mathbf{y})$ is a multivariate stable analog for type A.
- Recall that B_{n} may be realized as signed permutations

$$
\begin{aligned}
B_{n} & =\left\{\sigma_{1} \cdots \sigma_{n}: \sigma_{i} \in \mathbb{Z},\left|\sigma_{1}\right| \cdots\left|\sigma_{n}\right| \in \mathfrak{S}_{n}\right\} . \\
D(\sigma) & =\left\{i \in[n]: \sigma_{i-1}>\sigma_{i}\right\}, \quad \text { where } \quad \sigma_{0}:=0
\end{aligned}
$$

- Visontai and Williams proposed a multivariate analog:

$$
\begin{aligned}
\mathrm{DT}(\sigma) & =\left\{\max \left(\left|\sigma_{i-1}\right|,\left|\sigma_{i}\right|\right): i \in[n] \text { and } \sigma_{i-1}>\sigma_{i}\right\}, \\
\operatorname{AT}(\sigma) & =\left\{\max \left(\left|\sigma_{i-1}\right|,\left|\sigma_{i}\right|\right): i \in[n] \text { and } \sigma_{i-1}<\sigma_{i}\right\}, \\
B_{n}(\mathbf{x}, \mathbf{y}) & =\sum_{\sigma \in B_{n}} \prod_{i \in \mathrm{DT}(\sigma) j \in \mathrm{DT}(\sigma)} x_{i} \prod_{j} y_{j}
\end{aligned}
$$

- Theorem (Visontai and Williams) $B_{n}(\mathbf{x}, \mathbf{y})$ is stable.
- Question

Is there a case-free stable multivariate W-Eulerian polynomial?

- Stable multivariate analogs of real-rooted Eulerian polynomials for various classes of permutations have been obtained by Haglund and Visontai.
- The set of descent bottoms is equidistributed with the excedence set $E(\sigma)=\{i: \sigma(i)>i\}$.
- Note that

$$
\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in E(\sigma)} x_{i}=\operatorname{per}\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \\
x_{1} & 1 & 1 & 1 & \\
x_{1} & x_{2} & 1 & 1 & \cdots \\
x_{1} & x_{2} & x_{3} & 1 & \\
& & \vdots & &
\end{array}\right)
$$

- Consider a shape λ that fits into an $n \times n$ box

$$
\begin{gathered}
\left(\begin{array}{llllll}
x & y & y & y & y & y \\
x & x & x & y & y & y \\
x & x & x & y & y & y \\
x & x & x & x & y & y \\
x & x & x & x & x & y \\
x & x & x & x & x & y
\end{array}\right) \\
\lambda=(5,5,4,3,3,1)
\end{gathered}
$$

- Assign variables as

$$
B_{\lambda}=\left(\begin{array}{llllll}
x_{1} & y_{1} & y_{1} & y_{1} & y_{1} & y_{1} \\
x_{1} & x_{2} & x_{3} & y_{2} & y_{2} & y_{2} \\
x_{1} & x_{2} & x_{3} & y_{3} & y_{3} & y_{3} \\
x_{1} & x_{2} & x_{3} & x_{4} & y_{4} & y_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & y_{5} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & y_{6}
\end{array}\right)
$$

- Theorem (B., Haglund, Visontai, Wagner)

The permanent of B_{λ} is stable.

- Using this we proved the
- Monotone Column Permanent Conjecture (Haglund, Ono, Wagner (1999))
If A is a real matrix which is weakly increasing down columns and J is the all ones matrix, then $\operatorname{per}(A+x J)$ is real-rooted.

SEP preserves SR

- It will be convenient to view a Markov chain on measures on $\{0,1\}^{n}$ as acting on the partition functions of the measures.
- Hence we view a Markov chain as a family of linear operators $T_{t}, t \geq 0$, acting on the space, \mathcal{M}_{n}, of multi-affine complex polynomials in n variables.
- The Markov property translates as

$$
\frac{d}{d t} T_{t}=\mathcal{L} T_{t}, \quad \text { for all } t \geq 0
$$

where $\mathcal{L}: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is the (linear) generator.

- In the case of SEP

$$
\mathcal{L}=\sum_{i<j} q_{i j}\left(\tau_{i j}-\epsilon\right)
$$

where $q_{i j} \geq 0$ are the jump-rates, $\tau_{i j}$ is the transposition that interchanges coordinates i and j, and ϵ is the identity.

Infinite log-concavity

- Define an operator, \mathcal{L}, on sequences by

$$
\mathcal{L}\left(\left\{a_{k}\right\}_{k=0}^{n}\right)=\left\{b_{k}\right\}_{k=0}^{n}
$$

where

$$
b_{k}=a_{k}^{2}-a_{k-1} a_{k+1}
$$

and $a_{-1}=a_{n+1}=0$.

- $\left\{a_{k}\right\}_{k=0}^{n}$ is i-fold log-concave if $\mathcal{L}^{i}\left(\left\{a_{k}\right\}\right)$ is non-negative.
- $\left\{a_{k}\right\}_{k=0}^{n}$ is infinitely log-concave $\mathcal{L}^{i}\left(\left\{a_{k}\right\}\right)$ is non-negative for all i.
- For $k, n \in \mathbb{N}$ let

$$
d_{k}(n)=2^{-2 n} \sum_{j=k}^{n} 2^{j}\binom{2 n-2 j}{n-j}\binom{n+j}{n}\binom{j}{k}
$$

- $d_{k}(n)$ is the k th Taylor coefficient of the polynomial

$$
P_{n}(a)=\frac{2^{n+3 / 2}(a+1)^{n+1 / 2}}{\pi} \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{n+1}} d x
$$

- Boros-Moll Conjecture 1
$\left\{d_{k}(n)\right\}_{k=0}^{n}$ is infinitely log-concave
- Log-concavity proved by Kauers and Paule.
- 2-log-concavity proved by Chen and Xia.
- Conjecture (B.)

The polynomials

$$
R_{n}(x)=\sum_{k=0}^{n} \frac{d_{k}(n)}{(k+2)!} x^{k}
$$

are real-rooted.

- The conjecture implies 3-log-concavity of $\left\{d_{k}(n)\right\}_{k=0}^{n}$.
- Proved by Chen, Dou and Yang by establishing a recursion which preserves real-rootedness.
- Boros-Moll Conjecture 2 $\left\{\binom{n}{k}\right\}_{k=0}^{n}$ is infinitely log-concave.
- $\binom{n}{k}^{2}-\binom{n}{k-1}\binom{n}{k+1}=\frac{1}{n+2}\binom{n+1}{k}\binom{n+1}{k+1}$, Narayana numbers.
- Proved for $n \leq 1450$ by Sagan and McNamara.

Conjecture (Fisk, Sagan-McNamara, Stanley)
If $\sum_{k=0}^{n} a_{k} x^{k}$ has only real and nonpositive zeros, then so does

$$
\sum_{k=0}^{n}\left(a_{k}^{2}-a_{k-1} a_{k+1}\right) x^{k}
$$

\Longrightarrow Boros-Moll Conjecture 2.
Grace-Walsh-Szegő Coincidence Theorem
Let $K \subset \mathbb{C}$ be a disk or a half-plane and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a symmetric and multiaffine polynomial. For any $\zeta_{1}, \ldots, \zeta_{n} \in K$, there is a $\zeta \in K$ such that

$$
f\left(\zeta_{1}, \ldots, \zeta_{n}\right)=f(\zeta, \ldots, \zeta)
$$

A Catalan symmetric function identity

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and

$$
e_{k}(\mathbf{x})=\sum_{\substack{S \subseteq\{1, \ldots, n\} \\|S|=k}} \prod_{i \in S} x_{i},
$$

be the k th elementary symmetric polynomial in \mathbf{x}.
Lemma

$$
\sum_{k=0}^{n} e_{k}(\mathbf{x})^{2}-e_{k-1}(\mathbf{x}) e_{k+1}(\mathbf{x})=x_{1} \cdots x_{n} \sum_{k=0}^{\lfloor n / 2\rfloor} C_{k} e_{n-2 k}\left(\mathbf{x}+\frac{1}{\mathbf{x}}\right)
$$

where $1 / \mathbf{x}=\left(1 / x_{1}, \ldots, 1 / x_{n}\right)$ and

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k} \quad \text { is a Catalan number. }
$$

Shape $\lambda=(4,4,2,1) \quad$ Semi-standard Young tableau of shape λ Schur function of shape λ

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T} \prod_{t \in T} x_{t}=\cdots+x_{1}^{2} x_{2}^{2} x_{3} x_{4}^{2} x_{5}^{2} x_{6} x_{8}+\cdots
$$

summed over all SSYT of shape λ and entries in $\{1, \ldots, n\}$

$$
e_{k}(\mathbf{x})^{2}-e_{k+1}(\mathbf{x}) e_{k-1}(\mathbf{x})=s_{2^{k}}(\mathbf{x})
$$

where $2^{k}=(2, \ldots, 2)$. We want to prove

$$
\sum_{k=0}^{n} s_{2^{k}}(\mathbf{x})=\sum_{k=0}^{\lfloor n / 2\rfloor} C_{k} \sum_{|S|=2 k} \mathbf{x}^{S} \prod_{j \neq S}\left(1+x_{j}^{2}\right)
$$

1	2			
2	5			
4	6			
7	7			
8	9	$\quad \Longrightarrow \quad$	1	5
:---	:---	:---		
4	6			
8	9	,$\quad\{2,7\}$		

Number of standard Young tableaux of shape 2^{k} is C_{k}.

Proof of the SSMF Conjecture

- Let $P(x)=\sum_{k=0}^{n} a_{k} x^{k}=\prod_{k=0}^{n}\left(1+\rho_{k} x\right)$, where $\rho_{k}>0$.
- Suppose

$$
Q(\zeta)=\sum_{k=0}^{n}\left(a_{k}^{2}-a_{k-1} a_{k+1}\right) \zeta^{k}=0
$$

for some $\zeta \in \mathbb{C}$, with $\zeta \notin\{x \in \mathbb{R}: x \leq 0\}$.

- Write $\zeta=\xi^{2}$, where $\operatorname{Re}(\xi)>0$.

$$
Q(\zeta)=\sum_{k=0}^{n} e_{k}(\mathbf{z})^{2}-e_{k+1}(\mathbf{z}) e_{k-1}(\mathbf{z}), \quad \text { where } \mathbf{z}=\left(\rho_{1} \xi, \ldots, \rho_{n} \xi\right)
$$

- Hence

$$
\begin{gathered}
Q(\zeta)=a_{n} \xi^{n} \sum_{k=0}^{\lfloor n / 2\rfloor} C_{k} e_{n-2 k}\left(\rho_{1} \xi+\frac{1}{\rho_{1} \xi}, \ldots, \rho_{n} \xi+\frac{1}{\rho_{n} \xi}\right)=0 . \\
\operatorname{Re}\left(\rho_{k} \xi+\frac{1}{\rho_{k} \xi}\right)>0 .
\end{gathered}
$$

Proof of the SSMF Conjecture

- The Grace-Walsh-Szegő Theorem provides a number $\zeta \in \mathbb{C}$, with $\operatorname{Re}(\zeta)>0$, such that

$$
\sum_{k=0}^{\lfloor n / 2\rfloor} C_{k} e_{n-2 k}(\zeta, \ldots, \zeta)=\sum_{k=0}^{\lfloor n / 2\rfloor} C_{k}\binom{n}{2 k} \zeta^{n-2 k}=0
$$

- If $\operatorname{Re}(\zeta)>0$ then $1 / \zeta^{2}$ is not a negative real number.
- We are done if we can prove that all zeros of

$$
p_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor} C_{k}\binom{n}{2 k} x^{k}
$$

are negative.

- $p_{n}(x)$ is essentially a Jacobi orthogonal polynomial!!

Extending the SSMF conjecture

- Conjecture (Fisk)

Suppose $a_{0}+a_{1} x+\cdots+a_{d} x^{d}$ has only real and negative zeros. Then so does

$$
\sum_{n=0}^{d}\left|\begin{array}{ccc}
a_{n} & a_{n-1} & a_{n-2} \\
a_{n+1} & a_{n} & a_{n-1} \\
a_{n+2} & a_{n+1} & a_{n}
\end{array}\right| x^{n}
$$

Extension

- Let $\alpha=\left\{\alpha_{j}\right\}_{j=0}^{\infty} \subset \mathbb{R}$ and consider the operator T_{α} defined by

$$
a_{k} \mapsto \sum_{j=0}^{\infty} \alpha_{j} a_{k-j} a_{k+j}
$$

- Above we studied the case $\alpha=1,0,-1,0, \ldots$.
- Theorem (B.)
T_{α} preserves the property of having only nonpositive zeros iff
$T_{\alpha}\left(e^{x}\right)$ is in the Laguerre-Pólya class and has nonnegative coefficients.

Immanants

- Let χ_{λ} be a character of the symmetric group, indexed by the partition λ.
- The corresponding immanant is the matrix function defined by

$$
\operatorname{im}_{\lambda}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \chi_{\lambda}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)}, \quad \text { where } \quad A=\left(a_{i j}\right)_{i, j=1}^{n}
$$

- For the trivial character we get the permanent, and for the alternating the determinant.
- Theorem (Schur)

If A is positive semidefinite, then

$$
\operatorname{im}_{\lambda}(A) \geq f^{\lambda} \operatorname{det}(A)
$$

where $f^{\lambda}=\chi_{\lambda}(i d)$ is the number of standard Young tableaux of shape λ.

Permanent on top

- Lieb's "Permanent-on-top" conjecture

If A is positive semidefinite, then

$$
\operatorname{im}_{\lambda}(A) \leq f^{\lambda} \operatorname{per}(A)
$$

- Theorem (B.)

Let A be a $n \times n$ matrix, then the polynomial

$$
\sum_{\lambda \vdash n} \operatorname{im}_{\lambda^{\prime}}(A) s_{\lambda}(\mathbf{x})
$$

is stable.

- Question

What inequalities are satisfied for stable, homogeneous and symmetric polynomials?

- If the coefficients in the monomial bases of such a polynomial are nonnegative are also the coefficients in the Schur bases nonnegative?
- Theorem (Borcea, B.)

Let $P(\mathbf{z})=\sum_{\alpha \in \mathbb{N}^{n}} a(\alpha) \mathbf{z}^{\alpha} / \alpha$! be a stable polynomial with nonnegative coefficients. Then

- $a(\alpha)^{2} \geq a\left(\alpha+e_{i}-e_{j}\right) a\left(\alpha-e_{i}+e_{j}\right)$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is the standard bases.
- Recall that if $\lambda, \mu \vdash n$, then λ is majorized by μ if

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} \leq \mu_{1}+\mu_{2}+\cdots+\mu_{j}, \text { for all } j \geq 1
$$

- If P is symmetric and $\lambda \leq \mu$ in the majorization order, then $a(\lambda) \geq a(\mu)$.

Stable polynomials and Matroid theory

- Let E be a finite set. A collection $\mathcal{B} \subset 2^{E}$ is the set of bases of a matroid if for all $B_{1}, B_{2} \in \mathcal{B}$

$$
e \in B_{1} \backslash B_{2} \Longrightarrow \exists f \in B_{2} \backslash B_{1} \text { s.t. } B_{1} \backslash\{e\} \cup\{f\} \in \mathcal{B}
$$

- If v_{1}, \ldots, v_{m} are vectors in a vector space V over k that span V, then the set

$$
\left\{\left\{i_{1}, \ldots, i_{k}\right\}: v_{i_{1}}, \ldots, v_{i_{k}} \text { is a basis of } V\right\}
$$

is a bases of matroid representable over k.

- The support of a polynomial $P(\mathbf{x})=\sum_{\alpha \in \mathbb{N}^{n}} a(\alpha) \mathbf{x}^{\alpha}$ is

$$
\operatorname{supp}(P)=\{\alpha: a(\alpha) \neq 0\}
$$

- Theorem (Choe, Oxley, Sokal, Wagner)

The support of a homogeneous, multiaffine and stable polynomial is the set of bases of a matroid.

- Such matroids are called WHPP-matroids (weak half-plane property).
- Question. Which matroids are WHPP?
- Recall that the spanning tree polynomial is stable. Hence graphic matroids are WHPP.
- All matroids representable over \mathbb{C} are WHPP: If $A=\left[v_{1}, \ldots, v_{m}\right] \in \mathbb{C}^{r \times m}$, then

$$
\operatorname{det}\left(x_{1} v_{1} v_{1}^{*}+\cdots+x_{m} v_{m} v_{m}^{*}\right)=\sum_{|B|=r}|\operatorname{det}(A(B))|^{2} \prod_{j \in B} x_{j},
$$

where $A(B)$ is the $r \times r$ submatrix with columns indexed by B.

- Thm. (B., D'Leon): No projective geometry is WHPP. A binary matroid is WHPP iff it is regular.
- Let \mathcal{B} be the collection of all subsets of size 4 of $\{1, \ldots, 8\}$ such that the corresponding vertices do not lie in an affine plane in the following figure

- \mathcal{B} is the set of bases of the Vámos cube, V_{8}.
- Let further

$$
V(\mathbf{x})=\sum_{B \in \mathcal{B}} \prod_{j \in B} x_{j}=x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{3} x_{6}+\cdots
$$

- Theorem (Wagner-Wei, 2009) $V(\mathbf{x})$ is stable, hence V_{8} is WHPP.

Generalized Lax Conjecture

- The above questions can be thought of as discrete versions of questions considered in convex optimization.
- A polynomial $P(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a real zero polynomial (RZ) if
- $P(0) \neq 0$, and
- for all $\mathbf{x} \in \mathbb{R}^{n}$, the polynomial $t \mapsto P(t \mathbf{x})$ is real-rooted.
- If A_{1}, \ldots, A_{n} are hermitian matrices, then

$$
\operatorname{det}\left(I+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)
$$

is a RZ polynomial.

- If $P \in \mathbb{R}[\mathbf{x}]$ and $P(0) \neq 0$ let \mathcal{C}_{P} be the connected component of

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: P(\mathbf{x}) \neq 0\right\}
$$

containing the origin.

- Theorem (Gårding)

If P is a RZ polynomial, then \mathcal{C}_{P} is a convex set, called rigidly convex.

- The ball $\left\{x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}$ is rigidly convex since $1-x_{1}^{2}-\cdots-x_{n}^{2}$ is an RZ polynomial.
- The ancient tv-screen is not rigidly convex:

- If $P(\mathbf{x})=\operatorname{det}\left(I+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$ where A_{1}, \ldots, A_{n} are hermitian, then
$\mathcal{C}_{P}=\left\{\mathbf{x} \in \mathbb{R}^{n}: I+x_{1} A_{1}+\cdots+x_{n} A_{n}\right.$ is positive semidefinite $\}$.
- Such sets are called spectrahedral, and are the feasible sets for semidefinite optimization.
- Methods generalizing semidefinite optimization have been developed for rigidly convex sets.
- Generalized Lax conjecture
$\{$ rigidly convex sets $\}=\{$ spectrahedral sets $\}$.
- Conjecture (P. Lax)

If $P(x, y)$ is a RZ polynomial of degree d, then there are symmetric $d \times d$ matrices such that

$$
P(x, y)=\operatorname{det}(I+x A+y B)
$$

- Proved by Helton and Vinnikov.
- The exact analog of the Lax conjecture fails in more than three variables by a count of parameters.
- Helton and Vinnikov proposed the following two conjectures.
- Conjecture 1. If $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a RZ polynomial, then there exists symmetric matrices A_{1}, \ldots, A_{n} such that $P(\mathbf{x})=\operatorname{det}\left(I+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$.
- Conjecture 2. If $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a RZ polynomial, then there exists symmetric matrices A_{1}, \ldots, A_{n} and a positive integer N such that $P(\mathbf{x})^{N}=\operatorname{det}\left(I+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$.
- Suppose that $H(\mathbf{x})$ is a homogeneous and stable polynomial. Then $P(\mathbf{x})=H\left(x_{1}+1, \ldots, x_{n}+1\right)$ is an RZ polynomial.
- Theorem (B.)

There is no power N such that

$$
V\left(x_{1}+1, \ldots, x_{8}+1\right)^{N}
$$

is a determinantal polynomial.

- The idea of the proof is that V_{8} is a WHPP matroid which is not representable over \mathbb{C}.

