A Coxeter theoretic interpretation of Euler numbers

Matthieu Josuat-Vergès

Université de Marne-la-Vallée

SLC 69, Strobl, September 2012.

Introduction

The Euler numbers T_n are defined via the generating function

$$\tan(z) + \sec(z) = \sum_{n \ge 0} T_n \frac{z^n}{n!}$$

Désiré André showed that T_n is the number of alternating permutations in S_n , i.e. those w such that $w(1) > w(2) < w(3) > \ldots$

Since then, a lot of interest has been given to these numbers and these permutations [Stanley, a survey of alternating permutations (2010)]

Outline

Springer showed that, considering alternating permutations as the largest *descent class* in S_n , there is an analogue of T_n for other finite irreducible Coxeter groups (he also computed the value in each case of the ABDE... classification).

There is another way to relate T_n with the symmetric group as a Coxeter group, relying on a result of Stanley about orbits of maximal chains in the set partition lattice. We present a method to compute the value in each case of the classification.

Let $\mathcal{P}(n)$ be the lattice of set partitions of $\{1, \ldots, n\}$. It is ordered by refinement: $\mu \leq \pi$ if every block of μ is contained in a block of π .

For example: $\{\{1,2,4\},\{3,6\},\{5\}\} \leq \{\{1,2,4\},\{3,5,6\}\}.$

A maximal chain in $\mathcal{P}(n)$ is a sequence $\pi_1 < \cdots < \pi_n$ where

•
$$\pi_1 = \{\{1\}, \{2\}, \dots, \{n\}\},\$$

•
$$\pi_n = \{\{1, \ldots, n\}\},\$$

• π_{i+1} is obtained by joining two blocks of π_i .

For example: $\{\{1\},\{2\},\{3\},\{4\}\} < \{\{1,3\},\{2\},\{4\}\} < \{\{1,3\},\{2,4\}\} < \{\{1,2,3,4\}\}.$

 S_n acts on these maximal chains in an "obvious way", and Stanley proved that the number of orbits is T_{n-1} .

In this talk, we see a finite Coxeter group W as a real reflection group, i.e. we have a *defining representation* $W \subset GL(V)$ for some Euclidian space V, such that W is generated by orthogonal reflections.

H is a *reflecting hyperplane* if the orthogonal reflection through it is in W.

Definition

The set partition lattice $\mathcal{P}(W)$ is the set of all subspaces

 $H_1 \cap \cdots \cap H_r$

where each H_i is a reflecting hyperplane. It is ordered by reverse inclusion. In type A_{n-1} , $W = S_n$ acts on $V = \{v \in \mathbb{R}^n : \sum v_i = 0\}$ by permuting coordinates.

 $w \in S_n$ is a reflection if it permutes v_i and v_j for some i < j, i.e. is the orthogonal reflection through the subspace

$$H_{ij}=\{v\in V : v_i=v_j\}.$$

Then the set of all subspaces

$$H_{i_1j_1}\cap\cdots\cap H_{i_kj_k}$$

is in bijection with set partitions. For example if n = 7:

$$\begin{aligned} H_{1,7} \cap H_{2,4} \cap H_{4,5} &= \{ v \in V \ : \ v_1 = v_7, \ v_2 = v_4 = v_5 \} \\ &\leftrightarrow \{ \{1,7\}, \{2,4,5\}, \{3\}, \{6\} \}. \end{aligned}$$

And the refinement order on set partitions corresponds to reverse inclusion in subspaces of V.

Let $\mathcal{M}(W)$ the set of maximal chains of the set partition lattice $\mathcal{P}(W)$.

There is an action of W on $\mathcal{M}(W)$, we consider the number of orbits $K(W) = \#(\mathcal{M}(W)/W)$.

So Stanley's result is $K(A_n) = T_n$. (Remark: In Springer's problem of the largest descent class, T_n is the number associated to S_n i.e. type A_{n-1} and not A_n .)

What is K(W) for the other cases of the classification ?

The general method

W acts on lines (=coatoms) in $\mathcal{P}(W)$. Let L_1, \ldots, L_k be some orbit representatives. For each line L_i , let

$$\operatorname{Fix}(L_i) = \{ w \in W : w(x) = x, \forall x \in L_i \}, \\ \operatorname{Stab}(L_i) = \{ w \in W : w(L_i) = L_i \}.$$

Proposition

 $\operatorname{Fix}(L_i)$ is itself a Coxeter group, so $\mathcal{P}(\operatorname{Fix}(L_i))$ and $\mathcal{M}(\operatorname{Fix}(L_i))$ are defined, they are acted on by $\operatorname{Stab}(L_i)$, and

$$\mathcal{K}(W) = \sum_{i=1}^{k} \# (\mathcal{M}(\operatorname{Fix}(L_i)) / \operatorname{Stab}(L_i)).$$

Remark

lf

•
$$\operatorname{Stab}(L_i) = \operatorname{Fix}(L_i)$$
, or

• $\operatorname{Stab}(L_i) = \operatorname{Fix}(L_i) \rtimes \{\pm Id\},\$

then we have

$$\#(\mathcal{M}(\operatorname{Fix}(L_i))/\operatorname{Stab}(L_i)) = \mathcal{K}(\operatorname{Fix}(L_i)),$$

which we assume we already know by induction. (note that $\{\pm Id\}$ acts trivially on $\mathcal{P}(W)$)

Proof.

From each orbit of maximal chains, we can extract an orbit of lines. It suffices to show that the number of orbits of maximal chains associated to the orbit of L_i is $\#(\mathcal{M}(\operatorname{Fix}(L_i))/\operatorname{Stab}(L_i))$.

Fix(L_i) is seen as a Coxeter group with defining representation acting on L_i^{\perp} . The interval $[\hat{0}, L_i]$ in $\mathcal{P}(W)$ is identified with $\mathcal{P}(\text{Fix}(L_i))$ (we use the bijection: subspaces containing $L_i \leftrightarrow$ subspaces in L_i^{\perp}).

The number of *W*-orbits of chains $\hat{0} < \cdots < w(L_i) < \hat{1}$ for some $w \in W$, is also the number of $\operatorname{Stab}(L_i)$ -orbits of chains $\hat{0} < \cdots < L_i < \hat{1}$. Hence it is $\#(\mathcal{M}(\operatorname{Fix}(L_i))/\operatorname{Stab}(L_i))$.

Another useful result:

Proposition

If W_1 , and W_2 have ranks m and n, we have:

$$K(W_1 \times W_2) = \binom{m+n}{m} K(W_1) K(W_2).$$

Proof.

A maximal chain in $\mathcal{P}(W_1 \times W_2)$ is obtained by "shuffling" two maximal chains in $\mathcal{P}(W_1)$ and $\mathcal{P}(W_2)$. For example from $x_0 < \cdots < x_m$ and $y_0 < \cdots < y_n$ we can form $(x_0, y_0) < (x_0, y_1) < (x_1, y_1) < (x_2, y_1) < \cdots$

The number of shuffles is the binomial coefficient. This operation is still well-defined for the orbits of maximal chains. Case of the symmetric group S_n (type A_{n-1})

Let $V = \{v \in \mathbb{R}^n : \sum v_i = 0\}$. The coatoms are the 2-block set partitions and a set of orbit representatives is:

$$L_i = \{ v \in V : v_1 = \cdots = v_i, v_{i+1} = \cdots = v_n \}$$

with $1 \leq i \leq \frac{n}{2}$.

- If $i < \frac{n}{2}$, $\operatorname{Fix}(L_i) = \operatorname{Stab}(L_i) = S_i \times S_{n-i}$.
- If i = n/2, Fix(L_i) = S_i × S_i and Stab(L_i) = (S_i × S_i) ⋊ S₂ where S₂ permutes the two factors in S_i × S_i.

In the second case, we have

$$\mathcal{M}(\operatorname{Fix}(L_i))/\operatorname{Stab}(L_i) = \mathcal{M}(S_i \times S_i)/(S_i \times S_i)/S_2$$

where the S_2 -action has no fixed point, so

$$\#(\mathcal{M}(\mathrm{Fix}(L_i))/\mathrm{Stab}(L_i)) = \frac{1}{2}\mathcal{K}(S_i \times S_i).$$

Case of the symmetric group S_n (type A_{n-1})

Let
$$a_n = K(A_n)$$
, we obtain:
 $a_{n-1} = \sum_{1 \le i < \frac{n}{2}} {\binom{n-2}{i-1}} a_{i-1} a_{n-i-1} + \chi[n \text{ even}] \frac{1}{2} {\binom{n-2}{n/2-1}} a_{n/2-1}^2.$

This is equivalent to

$$a_{n-1} = \frac{1}{2} \sum_{i=1}^{n-1} {n-2 \choose i-1} a_{i-1} a_{n-i-1}.$$

So $A(z) = \sum_{n\geq 0} a_n \frac{z^n}{n!}$ satisfies $A'(z) = \frac{1}{2}(1 + A(z)^2)$ with A(0) = 1.

The solution is A(z) = tan(z) + sec(z).

So $a_n = T_n$ (number of alternating permutations in S_n).

Case of B_n

Let $V = \mathbb{R}^n$. In the case B_n , the reflecting hyperplanes are: $\{v \in V : v_i = 0\}, \{v \in V : v_i = v_j\}$, and $\{v \in V : v_i = -v_j\}$ (i < j).

As orbit representatives of the lines in $\mathcal{P}(B_n)$, we can take:

$$L_i = \{ v \in V : v_1 = \cdots = v_i = 0, v_{i+1} = \cdots = v_n \},\$$

with $0 \le i \le n - 1$. We have

 $\operatorname{Fix}(L_i) = B_i \times A_{n-i-1}, \text{ and } \operatorname{Stab}(L_i) = (B_i \times A_{n-i-1}) \rtimes \{\pm Id\}.$

So

$$b_n = \sum_{i=0}^{n-1} \binom{n-1}{i} b_i a_{n-i-1}.$$

Case of B_n

Let
$$B(z) = \sum_{n \ge 0} b_n \frac{z^n}{n!}$$
. The recursion
 $b_n = \sum_{i=0}^{n-1} {n-1 \choose i} b_i a_{n-i-1}, \qquad b_0 = 1.$

is equivalent to B'(z) = B(z)A(z) and B(0) = 1.

The solution is $B(z) = A'(z) = \frac{1}{1-\sin(z)}$.

So $b_n = T_{n+1}$ (number of alternating permutations in S_{n+1}).

Case of D_n

Let $V = \mathbb{R}^n$. In type D_n , the reflecting hyperplanes are: $\{v \in V : v_i = v_j\}$ and $\{v \in V : v_i = -v_j\}$ (i < j).

As orbit representatives of the lines in $\mathcal{P}(D_n)$, we can take:

►
$$L_i = \{ v \in V : v_1 = \cdots = v_i = 0, v_{i+1} = \cdots = v_n \}$$
,
with $i = 0$ or $2 \le i \le n - 1$. We have $Fix(L_i) = D_i \times A_{n-i-1}$,

$$\operatorname{Stab}(L_i) = \begin{cases} (D_i \times A_{n-i-1}) \rtimes \{\pm Id\} \text{ if } n \text{ is even,} \\ (D_i \times A_{n-i-1}) \rtimes \{Id, (1, -1, \dots, -1)\} \text{ if } n \text{ is odd and } i > 0. \\ (D_i \times A_{n-i-1}) \text{ if } n \text{ is odd and } i = 0. \end{cases}$$

And if *n* is even, we also include $L'_0 = \{ v \in V : -v_1 = v_2 = \cdots = v_n \}.$ We have $\operatorname{Fix}(L'_0) = \operatorname{Stab}(L'_0) = A_{n-1}.$ Case of D_n

Let $d_n = K(D_n)$ and $\overline{d}_n = \#(\mathcal{M}(D_n)/B_n)$. The recursion for d_n is:

$$d_n = 2a_{n-1} + \sum_{i=2}^{n-1} {n-1 \choose i} d_i a_{n-1-i}$$

if n is even, and

$$d_{n} = a_{n-1} + \sum_{\substack{2 \le i \le n-1 \\ n-i \text{ even}}} {\binom{n-1}{i}} d_{i} a_{n-1-i} + \sum_{\substack{2 \le i \le n-1 \\ n-i \text{ odd}}} {\binom{n-1}{i}} \bar{d}_{i} a_{n-1-i}$$

if *n* is odd.

We need to compute $\bar{d}_n = #(\mathcal{M}(D_n)/B_n)$. If *n* is odd, $B_n = D_n \rtimes \{\pm Id\}$ so $\bar{d}_n = d_n$. The scheme for computing K(W) works for \overline{d}_n too and gives:

$$\bar{d}_n = a_{n-1} + \sum_{i=2}^{n-1} {n-1 \choose i} \bar{d}_i a_{n-1-i}.$$

Let $\bar{D}(z) = \sum_{n \ge 0} \bar{d}_n \frac{z^n}{n!}$, the recursion is equivalent to: $\bar{D}'(z) = (\bar{D}(z) - z)A(z), \qquad D(0) = 1.$

This is solved by

$$\bar{D}(z) = \frac{2-\cos(z)-z\sin(z)}{1-\sin(z)}.$$

It follows $\overline{d}_n = 2T_{n+1} - (n+1)T_n$ if $n \ge 2$. So for odd $n \ge 2$, we have $d_n = 2T_{n+1} - (n+1)T_n$.

18 / 22

From the recursions for \overline{d}_n and d_n , we have for even n:

$$(d_n - \bar{d}_n) = a_{n-1} + \sum_{i=2}^{n-1} (d_n - \bar{d}_n) a_{n-i-1}.$$

Let $U(z) = 1 + \sum_{n \ge 2} (d_n - \bar{d}_n) \frac{z^n}{n!}$, the recursion is equivalent to:

$$U'(z) = U(z) \tan(z), \qquad U(0) = 1.$$

This is solved by $U(z) = \sec(z)$. So for even $n \ge 2$ we have $d_n = (d_n - \overline{d}_n) + d_n = 2T_{n+1} - nT_n$.

Remaining cases

Dihedral groups:

$$K(I_2(m)) = \begin{cases} 1 \text{ if } n \text{ is odd,} \\ 2 \text{ if } n \text{ is even.} \end{cases}$$

Exceptional groups: one method is to see them as symmetry groups of some semiregular polytopes, and use the geometry of these polytopes.

$$K(H_3) = 4$$
, $K(H_4) = 12$, $K(F_4) = 16$,
 $K(E_6) = 82$, $K(E_7) = 768$, $K(E_8) = 4056$.

In all cases except E_6 , the polytope is centrally symmetric and this ensures we have $\operatorname{Stab}(L_i) = \operatorname{Fix}(L_i) \rtimes \{\pm Id\}$.

The general method to find orbit representatives of lines in $\mathcal{P}(W)$ is the following.

Let H_1, \ldots, H_n so that the orthogonal reflections are simple generators and

$$L_i = \bigcap_{j \neq i} H_j.$$

Then L_1, \ldots, L_n are representatives, except that if $L_i = w_0(L_j)$ we only take one of L_i and L_j (w_0 is the longest element).

thanks for your attention