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What motivated us

An example

12 regions of the hyperplane arrangement Cat2(A2) and 12
dissections of an 8-gon, corresponding to the facets of ∆2(A2).
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Outline

1. Introduction
• Extended Catalan arrangement of type A
• Generalized cluster complex of type A

2. Problem setup

3. Integer partition models
• A bijection between the set of “gray” regions and a set of

partitions
• A bijection between the set of polygon dissections and a set of

partitions

4. Results
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Root system of type A

Simple roots and positive roots

• Let {ε1, ε2, . . . , εn+1} be the standard basis and 〈·, ·〉 the
standard inner product of Rn+1.

• For 1 ≤ i ≤ n we set αi = εi − εi+1.

• For 1 ≤ i ≤ j ≤ n we set αij = αi + αi+1 + · · ·+ αj .

• Π = {α1, α2, . . . , αn} is the set of simple roots of type An.

• Φ>0 = {αij , 1 ≤ i ≤ j ≤ n} is the set of positive roots of type
An.
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On one hand...

Extended Catalan arrangement

• Hα,k = {v ∈ Rn+1 : 〈v , α〉 = k}.

• H+
α,k = {v ∈ Rn+1 : 〈v , α〉 ≥ k}.

• The dominant chamber is the intersection⋂
α∈Φ>0

H+
α,0.

Definition

The m-(extended) Catalan arrangement Catm(An) is the set of
hyperplanes {Hα,k : α ∈ Φ>0, 0 ≤ k ≤ m}.
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On one hand...

Some more definitions

• The regions of a hyperplane arrangement are the connected
components of the complement of the arrangement.

• Each hyperplane which supports a facet of a region R is called
a wall of the region R.

• A wall H of a region is a separating wall if the origin and the
region lie in different half-spaces relative to H.

• The regions lying in the dominant chamber are called
dominant regions.

Notation:

• Rm(An) := {R, R dominant region of Catm(An)}.
• Rm

+(An) := {R, R bounded dominant region of Catm(An)}.
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On one hand...

The hyperplane arrangement Cat2(A2)

• Let {ε1, ε2, ε3} be the standard basis of R3.

• Π = {α1, α2}, where αi = εi − εi+1.

• Φ>0 = {α1, α2, α12}, where α12 = α1 + α2.
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On one hand...

The hyperplane arrangement Cat2(A2)
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...on the other hand

Generalized cluster complex

• Let Φ>0 be set of positive roots and Π the set of simple roots
of type An.

• Φm
≥−1: set of colored almost positive roots.

Φm
≥−1 = {αk : α ∈ Φ>0, k ∈ {1, 2, . . . ,m}} ∪ (−Π).

• The m-generalized cluster complex ∆m(An) is a pure
simplicial complex of dimension n − 1 on the ground set of
colored almost positive roots.

• The positive part ∆m
+(An) is a subcomplex of ∆m(An) whose

facets contain no negative simple roots.

We will use the following combinatorial model realizing the
complex ∆m(An). [Fomin, Reading, Tzanaki ’05]
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...on the other hand

Construction of ∆m(An)

Consider an (m(n + 1) + 2)-gon P.

• Vertices: diagonals which dissect the polygon into two
subpolygons with number of vertices 2 modm. We call these
diagonals m-diagonals.

• k-faces: dissections having k + 1 many m-diagonals.

• Facets: dissections having n many m-diagonals.

Recall: The ground set of ∆m(An) is the set Φm
≥−1.

Q: Which diagonals correspond to negative simple roots and
which to colored positive roots?
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...on the other hand

Polygon dissections of type A

n = 4,m = 3
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−α1

• Negative simple roots: n
consecutive m-diagonals (“snake”).
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...on the other hand

Polygon dissections of type A

n = 4,m = 3

color 1

color 2

color 3

•
•

•

•

•

•

•

•••

•

•

•

•

•

•
•
−α4

−α3

−α2

−α1

• Negative simple roots: n
consecutive m-diagonals (“snake”).

• The m-colored copies of each
positive root are determined from
the snake:

- for each positive root αij there
exist m many m-diagonals, which
“intersect” with the roots
−αi ,−αi+1, . . . ,−αj .These are
the m colored copies of αij .

• α13, α13, α13



Introduction Problem setup Integer partition models Results Appendix

...on the other hand

Polygon dissections of type A

n = 4,m = 3

color 1

color 2

color 3

•
•

•

•

•

•

•

•••

•

•

•

•

•

•
•
−α4

−α3

−α2

−α1

• Negative simple roots: n
consecutive m-diagonals (“snake”).

• The m-colored copies of each
positive root are determined from
the snake:

- for each positive root αij there
exist m many m-diagonals, which
“intersect” with the roots
−αi ,−αi+1, . . . ,−αj .These are
the m colored copies of αij .

• α24, α24, α24



Introduction Problem setup Integer partition models Results Appendix

...on the other hand

Polygon dissections of type A

n = 4,m = 3

color 1

color 2

color 3

•
•

•

•

•

•

•

•••

•

•

•

•

•

•
•
−α4

−α3

−α2

−α1

• Negative simple roots: n
consecutive m-diagonals (“snake”).

• The m-colored copies of each
positive root are determined from
the snake:

- for each positive root αij there
exist m many m-diagonals, which
“intersect” with the roots
−αi ,−αi+1, . . . ,−αj .These are
the m colored copies of αij .

• α3, α3, α3



Introduction Problem setup Integer partition models Results Appendix
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Polygon dissections of type A

n = 4,m = 3
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• Negative simple roots: n
consecutive m-diagonals (“snake”).

• The m-colored copies of each
positive root are determined from
the snake:

- for each positive root αij there
exist m many m-diagonals, which
“intersect” with the roots
−αi ,−αi+1, . . . ,−αj .These are
the m colored copies of αij .

Notation:

• Dm(An) = {F ,F facet of ∆m(An)}.
• Dm

+(An) = {F ,F facet of ∆m
+(An)}.
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Connections between extended Catalan arrangements and generalized cluster complexes

Motivation (formally)

The following hold.

• #Rm(An) = #Dm(An) = 1
n+1

((m+1)(n+1)
n

)
• #Rm

+(An) = #Dm
+(An) = 1

n+1

(m(n+1)+n−1
n

)
Property

For any J ⊆ {1, . . . , n}, the number of facets of ∆m(An)
containing exactly the negative simple roots −αi with i ∈ J, is
equal to the number of dominant regions in Catm(An) with
separating walls Hαi ,m with i ∈ J.
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Connections between extended Catalan arrangements and generalized cluster complexes

back to our example

• #R2(A2) = #D2(A2) = 12

• #R2
+(A2) = #D2

+(A2) = 7

1 2 3
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Strategy

Goal: Find a bijection between Rm(An) and Dm(An) that preserves
our property.

Tool: Integer partitions.

We consider the set of (n,m)-dilated partitions:

DLm(n) := {(λ1, λ2, . . . , λn) | 0 ≤ λi ≤ m(n − i + 1)}.

Idea: Encode both objects in terms of (n,m)-dilated partitions.
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First step: Encode the dominant regions

Shi tableaux An

Proposition

There is a bijection between the dominant regions in Catm(An)
and the so-called m-Shi tableaux of type A. [Athanasiadis ’05,
Fishel, Tzanaki, Vazirani ’11]

k14 k13 k12 k11

k24 k23 k22

k34 k33

k44

• An m-Shi tableau is an
n-staircase diagram with entries
being positive integers between 0
and m that satisfy certain
conditions. It can be considered
as the “coordinates” of a given
region.
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Shi tableaux An

Proposition

There is a bijection between the dominant regions in Catm(An)
and the so-called m-Shi tableaux of type A. [Athanasiadis ’05,
Fishel, Tzanaki, Vazirani ’11]

α14 α13 α12 α11
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α34 α33
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Hαij ,k

• An m-Shi tableau is an
n-staircase diagram with entries
being positive integers between 0
and m that satisfy certain
conditions. It can be considered
as the “coordinates” of a given
region.
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First step: Encode the dominant regions

Example: Regions in Cat2(A2) and their tableaux
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First step: Encode the dominant regions
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First step: Encode the dominant regions

The bijection between Rm(An) and DLm(n)

Let φ : Rm(An)→ DLm(n) be the map which sends each m-Shi
tableau to the partition whose parts are the sum of the entries of
each row.

Example: n = 3,m = 4

4 4 2

4 4

1

- Separating wall: the hyperplane Hα2,4.
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First step: Encode the dominant regions

The bijection between Rm(An) and DLm(n)

Let φ : Rm(An)→ DLm(n) be the map which sends each m-Shi
tableau to the partition whose parts are the sum of the entries of
each row.

Example: n = 3,m = 4

4 4 2

4 4

1

4

- Separating wall: the hyperplane Hα2,4.
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First step: Encode the dominant regions

First result

Theorem (FKT ’11)

The map φ is a bijection. In particular, the hyperplane Hαi ,m

(where αi ∈ Π) is a separating wall of the region R if and only if
the partition φ(R) = (λ1, λ2, . . . , λn) satisfies λi = (n − i + 1)m.

m m m m
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Second step: encode the facets of ∆m(An)

The bijection between Dm(An) and DLm(n)

In view of the map φ and our property, we need a bijection such
that
the dissection D ∈ Dm(An) contains the negative simple root −αi

if and only if its image (λ1, . . . , λn) satisfies λi = (n − i + 1)m.

•
•

•

•

•

•
•

•••
•

•

•

•

•
•

•
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Second step: encode the facets of ∆m(An)

The bijection between Dm(An) and DLm(n)

Idea: We label the vertices of the (m(n + 1) + 2)-gon P. For
1 ≤ i ≤ n, let ia, ib with ia < ib be a pair of labels
corresponding to each diagonal. The point ia is called initial
point of the diagonal {ia, ib}. We map the dissection D to the
partition defined by the initial points 1a, 2a, . . . , na.

Problem: How do we label the vertices so that the property is satisfied?
For instance, the “natural” labeling does not work.

Solution: Use a labeling which we call the alternating labeling.
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Second step: encode the facets of ∆m(An)

The bijection between Dm(An) and DLm(n)
The alternating labeling

n = 4,m = 3

•
•

•

•

•

•

•
•••

•

•

•

•

•

•
•

0

1

25

4
3

6

7

811

10

9

12
131416

15 −α1

−α
2

−α3

−α
4

• Let P be a (m(n + 1) + 2)-gon.

• Fix some vertex 0 of P and label
its vertices from 1 to m(n + 1) + 1
as follows:

- the vertices on the right of 0 are
labeled in increasing order with
those
k ∈ {0, 1, . . . ,m(n + 1) + 1} for
which b kmc is odd.

- the vertices on the left of 0 are
labeled in increasing order with
those
k ∈ {0, 1, . . . ,m(n + 1) + 1} for
which b kmc is even.
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• Fix some vertex 0 of P and label
its vertices from 1 to m(n + 1) + 1
as follows:

- the vertices on the right of 0 are
labeled in increasing order with
those
k ∈ {0, 1, . . . ,m(n + 1) + 1} for
which b kmc is odd.

- the vertices on the left of 0 are
labeled in increasing order with
those
k ∈ {0, 1, . . . ,m(n + 1) + 1} for
which b kmc is even.
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labeled in increasing order with
those
k ∈ {0, 1, . . . ,m(n + 1) + 1} for
which b kmc is even.
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• The m-diagonals {im, (i + 1)m},
for 1 ≤ i ≤ n, form a “snake”.

• We set −αi to be the diagonal
with endpoints
(n − i + 1)m, (n − i + 2)m.
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Second step: encode the facets of ∆m(An)

The bijection between Dm(An) and DLm(n)

Let ψ : Dm(An)→ DLm(n) be the map which sends each
dissection to the partition whose parts are the initial points w.r.t
the alternating labeling.

Example: n = 4,m = 3

•
•
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•
•

•••
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•

•
•

•
•

•
•
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0

1
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131416
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−α3

• Initial points:
λ1 = 10, λ2 = 9, λ3 = 6, λ4 = 2

• λ = (10, 9, 6, 2).

• negative simple roots −α2, −α3
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Second step: encode the facets of ∆m(An)

Second result

Theorem (FKT’11)

The map ψ is a bijection. In particular, the negative simple root
−αi is contained in D if and only if the partition
ψ(D) = (λ1, λ2, . . . , λn) satisfies λi = (n − i + 1)m.
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The bijection

Composing ψ−1 and φ

Theorem (FKT’11)

The map ψ−1 ◦ φ is a bijection. In particular, the hyperplane Hαi ,m

(where αi ∈ Π) is a separating wall of R if and only if ψ−1(φ(R))
contains the negative simple root −αi .

m m m m
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The bijection

Composing ψ−1 and φ

Positive part

−α1

−α2

−α1,−α2
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Further results

Types B and C

We employ the set of (n,m)-bounded partitions:

Bm(n) := {(λ1, λ2, . . . , λn)|0 ≤ λi ≤ mn}.

• We give a bijection between the sets Dm(Bn),Dm(Cn) and
the set Bm(n) and characterize the facets which contain the
negative simple root −αi , 1 ≤ i ≤ n.

• We give a bijection between a subset of Rm(Bn),Rm(Cn) and
a subset of Bm(n) and characterize the dominant regions
which are separated from the origin by certain hyperplanes of
the form Hαi ,m.
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Thank you

Danke schön!
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Reverse maps

The map φ−1 : DLm(n)→ Rm(n)

Let (λ1, . . . , λn) ∈ DLm(n). For each 1 ≤ i ≤ j ≤ n we define
recursively:

λ1
...
λi
...

λn−1

λn

ki ,j
ki ,j = min

m,


λi−

n∑
`=j+1

ki,`

+

j∑
`=i+1

k`,j

j−i+1


.
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Reverse maps

The map ψ−1 : DLm(n)→ Dm(n)

n = 4,m = 3

•
•

•

•

•

•

•
•••
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131416

15

• Given the partition λ = (10, 9, 6, 2)
we have to construct a polygon
dissection.

• Among the two points that are
m + 1 = 4 vertices apart from
vertex 10 we keep the one with the
greatest label.

• We continue similarly with the
vertices 9, 6 and 2.
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Reverse maps

Conditions for a Shi tableau

The filling of an n-staircase diagram is called an m-Shi tableau if:

k14 k13 k12 k11

k24 k23 k22

k34 k33

k44

• for each kij < m the sum of the values of
the endpoints of each hook on kij of
length j − i + 2 sum up to kij or kij − 1.

• for each kij = m the sum of the values of
the endpoints of each hook on kij of
length j − i + 2 sum up to a value
≥ m − 1.



Introduction Problem setup Integer partition models Results Appendix

Reverse maps

Example of a Shi tableau

n = 5,m = 5

5 4 3 2 2

5 2 1 0

4 1 1

3 0

2

• for each kij < 5 we check if the sum of
the values of the endpoints of each hook
on kij of length j − i + 2 sum up to kij or
kij − 1.

• for each kij = 5 we check if the sum of
the values of the endpoints of each hook
on kij of length j − i + 2 sum up to a
value ≥ m − 1.
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